一、非线性函数
非线性函数是在输入和输出之间不满足线性关系的函数。在深度学习和神经网络中,非线性函数扮演着关键的角色,因为它们能够为网络引入复杂的映射能力,使神经网络可以学习和表示更加复杂的模式和关系。
以下是一些常见的非线性函数:
-
Sigmoid函数(Logistic函数): Sigmoid函数将输入映射到0到1之间的范围,形状类似"S"曲线。它在早期神经网络中常用作激活函数,但由于存在梯度消失和输出不以零为中心等问题,逐渐被其他激活函数取代。
-
双曲正切函数(Tanh函数): 双曲正切函数将输入映射到-1到1之间的范围,类似于Sigmoid函数,但是在零附近对称。它也在早期神经网络中使用,具有较大的输出动态范围。
-
整流线性单元(ReLU): ReLU函数在输入大于零时输出输入值,否则输出零。它在深度学习中广泛使用,因为它在计算上很高效并且可以减轻梯度消失问题。