文章目录
一、权重初始化如何影响训练?
权重初始化对于深度学习模型的训练过程和性能具有重要影响。不同的权重初始化方法可以影响模型的收敛速度、稳定性以及最终的性能。错误的权重初始化可能导致训练过程困难,甚至让模型无法收敛。
以下是权重初始化如何影响训练的几个方面:
-
收敛速度: 合适的权重初始化可以加快模型的收敛速度。如果权重初始化太小,梯度可能会过小,导致训练变得缓慢。相反,权重初始化太大可能导致梯度爆炸,使训练不稳定。
-
避免梯度消失/爆炸: 权重初始化对于避免梯度消失和梯度爆炸问题很重要。过小的初始化可能导致梯度消失,过大的初始化可能导致梯度爆炸。合适的初始化范围可以帮助在训练中保持合适的梯度大小。
-
避免局部最优: 错误的权重初始化可能导致模型陷入局部最优解。合适的初始化方法可以帮助模型跳出局部最优,更好地探索参数空间。
-
模型性能: