LR和SVM的联系与区别?

本文探讨了LR(逻辑回归)和SVM(支持向量机)的联系与区别。LR是一种用于二分类的简单算法,适用于线性可分问题,但对非线性问题效果有限。SVM通过寻找最大间隔超平面实现分类,能处理线性和非线性问题,并具有优秀的泛化能力,但训练成本高。两者都是监督学习算法,但在决策边界、目标函数、核技巧和数据规模处理上有差异,适用于不同场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

一、LR

“LR"通常指的是"Logistic Regression”(逻辑回归),虽然它的名称中包含"Regression"(回归),但实际上是一种用于解决分类问题的机器学习算法,而不是回归问题。逻辑回归是一种简单且广泛应用的分类算法,常被用于二分类问题。

在这里插入图片描述

逻辑回归的主要思想是通过一个Sigmoid函数将线性组合的特征映射到0和1之间的概率,然后基于概率进行分类。其数学表达式为:

P ( y = 1 ∣ x ) = 1 1 + e − ( w x + b ) P(y=1|x) = \frac{1}{1 + e^{-(wx + b)}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值