有监督学习和无监督学习区别?

本文详细介绍了有监督学习和无监督学习的概念、流程、常见任务及应用场景。有监督学习依赖带标签的训练数据,适用于分类和回归问题;无监督学习则在无标签数据中寻找模式,常用于聚类和降维。两者在机器学习中各有其独特价值和适用范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

一、有监督学习

有监督学习(Supervised Learning)是一种机器学习方法,它是指在训练过程中,模型使用带有标签的训练数据来学习输入特征和输出标签之间的映射关系。在有监督学习中,训练数据包括输入特征和对应的输出标签,模型的目标是学习一个函数,使得给定输入特征能够准确地预测对应的输出标签。

在这里插入图片描述

有监督学习的基本流程如下:

  1. 数据收集: 收集带有标签的训练数据,其中包括输入特征和对应的输出标签。

  2. 特征提取和选择: 对输入特征进行预处理、提取和选择,以便模型能够更好地学习特征之间的关系。

  3. 选择模型: 根据任务的性质选择适当的模型,例如线性回归、决策树、神经网络等。

  4. 定义损失函数: 根据问题的特点定义一个损失函数,用于衡量模型在预测输出上的误差。

  5. 训练模型: 使用训练数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值