文章目录
一、特征选择的几种方式
特征选择是从原始特征集中选择最相关或最有用的特征子集,以提高机器学习模型的性能和效率。以下是一些常见的特征选择方法:
-
过滤法(Filter Methods):
这些方法在特征选择和模型训练之前进行,它们使用统计或信息论等技术对特征进行排序或评估,然后选择前几个最有用的特征。常见的过滤法包括相关系数、方差分析、互信息等。 -
包裹法(Wrapper Methods):
这些方法将特征选择问题视为一个搜索优化问题,通过不断地训练模型并评估特征子集的性能来选择最佳特征子集。常见的包裹法有递归特征消除(Recursive Feature Elimination,RFE)和正向选择(Forward Selection)等。 -
嵌入法(Embedded Methods):
嵌入法将特征选择融入到模型训练的过程中。一些机器学习算法,如L1正则化的逻辑回归和决策树,本身就可以在训