无需编码5分钟免费部署云上调用满血版DeepSeek

大家好,我是 V 哥。如何自己部署DeepSeek调用满血版。首先,如果你遇到了使用公共服务器时的延迟或限制,想要本地部署以获得更好的性能和稳定性。你是不是也想自己来部署DeepSeek呢,其实除了自己部署本地DeepSeek,还可以在云上免费部署满血版DeepSeek,接下来,V 哥来介绍这两种方式,兄弟们可以根据自己的需要来选择。

来给 V 哥投个票呗:2024博客之星评选

自己部署DeepSeek

以下是部署DeepSeek满血版的详细步骤(基于2025年2月最新信息):

  1. 环境准备

    • 操作系统:推荐Ubuntu 20.04 LTS或CentOS 7
    • 硬件要求:16GB内存/4核CPU/50GB硬盘
    • 网络优化:建议使用迅游加速工具优化下载速度
  2. 基础部署方案

   # 安装Docker和依赖
   sudo apt-get install -y docker.io docker-compose python3-pip git
   sudo systemctl start docker

   # 克隆项目
   git clone 
   cd deepseek

   # 配置环境变量
   echo "API_KEY=your_api_key" > .env
   docker-compose up -d
  1. 快速部署方案(推荐新手)
    • 下载Ollama客户端(Windows/Mac/Linux)
    • 执行命令:
   ollama run deepseek-chat:8b  # 8B参数模型约需5GB存储
  1. 企业级调用(满血功能)
    • 访问DeepSeek官网获取API密钥
    • 通过Cherry Studio调用:
   import deepseek
   client = deepseek.Client(api_key="your_key")
   response = client.chat(prompt="你的问题", search_web=True)  # 启用实时搜索

注意事项

  • 模型下载时建议保持网络稳定,8B模型约需5GB空间
  • 若遇网络问题,可通过迅游加速器优化下载通道
  • 企业级API支持实时网络搜索和扩展知识库

建议开发者优先采用Docker部署方案,普通用户可使用Ollama快速体验。若需最新网络功能,推荐通过官方API调用企业版。

是不是感觉还挺麻烦的,接下来 V 哥来讲一下在云上部署免费的满血版DeepSeek,你没有听错,就是免费资源哈,咱们可以使用阿里云提供的解决方案,调用满血版 DeepSeek 的 API 及部署各尺寸模型的方式,无需编码,最快5分钟、最低0元即可部署实现。

阿里云部署DeepSeek

阿里提供的解决方案如下:在云端部署您的专属 DeepSeek 模型

先来看一下结果:

基于百炼调用 DeepSeek-R1 满血版 API,享100万免费token。

本方案以 DeepSeek-R1 满血版为例进行演示,通过百炼模型服务进行 DeepSeek 开源模型调用,可以根据实际需求选择其他参数规模的 DeepSeek 模型。百炼平台的 API 提供标准化接口,无需自行搭建模型服务基础设施,且具备负载均衡和自动扩缩容机制,保障 API 调用稳定性。搭配 Chatbox 可视化界面客户端,进一步简化了调用流程,无需在命令行中操作,通过图形化界面即可轻松配置和使用 DeepSeek 模型。

部署时长:5 分钟

预估费用:0 元(享有 100万 免费 token ,百炼新用户从开通起算 180 天内有效,百炼老用户从 1 月 27 日 0 点起算 180 天内有效。实际使用中可能会因超出免费额度而产生费用,请以控制台显示的实际报价以及最终账单为准。)

开始部署

打开链接,可以看到以下位置,点击免费体验。

选择快速入口的第一项:大模型服务平台百炼

同意协议后,领取免费额度:

确认开通:

选择模型:

到这,就已完成部署工作,开始体验吧。

下面来说一下使用体验

大家通过以上操作步骤,可以快速轻松的在阿里云部署自己的 DeepSeek,关键是无需任何代码,相比自己部署本地DeepSeek要简单的太多,关键还能体验满血版 R1,这是本地部署受硬件限制只能部署8B左右参数模型所无法比拟的,所以,使用阿里云的部署方案优势是:

  • 操作步骤十分简单,真的5分钟搞定
  • 无需编码
  • 可部署DeepSeek R1 满血版
  • 部署后使用体验比较流畅,无需等待过长时间
  • 多次使用(V 哥测试了20遍以上)0宕机情况

V 哥在测试中提问,反应还是挺快的,再也不怕 DeepSeek宕机了,自己的部署的用起来就是爽歪歪,兄弟们,快用起来吧。

最后

开发者们可以自己试试哦,这么好用的免费的方案,不用白不用,好了,今天的内容就分享这么多,关注威哥爱编程,做个高效的程序员。

### DeepSeek 满血模型的完整训练过程 DeepSeek满血模型通常指的是其未经过蒸馏或参数量削减的大规模语言模型本。以下是关于该类模型完整的训练流程及相关细节: #### 训练数据准备 大规模预训练语言模型的基础在于海量高质量的数据集。对于 DeepSeek 而言,其训练数据来源于互联网爬取的内容、书籍以及公开可用的语言资源集合[^2]。这些数据被清洗并结构化处理成适合模型学习的形式。 #### 预训练阶段 在这一阶段,采用自回归或者编码器解码器架构来初始化网络权重。具体来说,通过最大化给定前缀序列下预测下一个词的概率来进行优化目标设定。此过程中运用了Transformer机制下的多头注意力层与前馈神经网络组件构建基础框架,并利用AdamW作为主要优化算法完成梯度更新操作[^3]。 #### 微调(Fine-tuning)与指令微调(IF) 当基本的语言建模能力形成之后,则进入特定应用场景导向型调整时期——即所谓的fine-tuning环节。这里特别强调的是Instruction Tuning部分,在这个子步骤里会加入人工标注过的示范样本对齐最终期望行为模式,使得机器能够更好地理解和执行人类发出的各种命令请求[^4]。 #### Distillation & Optimization (可选) 虽然题目询问的是“full-version”,但在某些情况下仍可能涉及知识蒸馏技术的应用场景讨论。比如将大型复杂模型中的有效信息传递到较小更高效的student-model当中去;或者是针对不同硬件条件做出相应适配性的改进措施等等。上述提到过的方法论可以应用于此类情况之中。 ```python # Example pseudo-code for fine-tuning a pre-trained transformer on custom dataset. from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments tokenizer = AutoTokenizer.from_pretrained("deepseek/large") model = AutoModelForCausalLM.from_pretrained("deepseek/large") train_dataset = [...] # Your tokenized training data here. training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, save_steps=10_000, save_total_limit=2, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, tokenizer=tokenizer, ) trainer.train() ``` 以上代码片段展示了如何使用 Hugging Face Transformers 库加载预先存在的 deepseek 大型模型实例,并对其进行进一步定制化的再教育程序设计思路概述。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

威哥爱编程(马剑威)

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值