深度学习技巧应用2-神经网络中的‘残差连接’的应用技巧

本文介绍了深度学习技巧——残差连接,用于解决深度神经网络的梯度消失问题,提高模型性能并降低训练难度。残差连接通过跨层直接连接,允许梯度直接传递,加速模型收敛。文中还提供了残差连接的原理解析及代码实例。

大家好,我是微学AI,今天给大家介绍 深度学习技巧应用2-神经网络中的‘残差连接’的应用技巧。

目录

一、残差连接介绍

二、残差连接解决问题

解决梯度消失问题

提高模型性能

降低训练难度

三、残差连接原理

四、残差连接代码实例


一、残差连接介绍

残差连接是一种神经网络中的一种运用技巧。由于深层网络容易出现梯度消失或梯度爆炸的问题,因此可以通过残差连接的方式,将网络的深度扩展到数十层以上,从而提高模型的性能。残差连接的基本思想是,在网络的某些层中,将输入的信号直接连接到输出,从而在网络中引入“跨层连接”。

### 残差链接的作用 残差链接(Skip Connection)是残差网络(ResNet)的关键特性之一,用于缓解深层神经网络训练过程中的退化问题。随着网络层数增加,传统深度网络可能会遇到梯度消失或爆炸的问题,导致性能饱和甚至下降。通过引入跳跃连接,使得每一层可以学习输入和输出之间的残差而非完整的映射关系,从而简化了优化目标并提高了模型收敛速度与最终效果[^1]。 ### 实现方式 具体来说,在前向传播过程中,除了正常的逐层传递外,还会有一条捷径直接将某一层的特征图传输给后续更深层次的位置相加在一起作为该位置的新输入;而在反向传播期间,则会沿着这条路径同步更新权重参数。这种设计不仅有助于保持信息流畅通无阻,而且能够有效防止过拟合现象的发生。 下面是一个简单的PyTorch代码片段展示如何构建带有跳接的基础模块: ```python import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() # 定义标准卷积层 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels * self.expansion) # 如果需要降采样则设置downsample操作 self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) # 将原始输入与经过两轮卷积后的输出相加形成残差连接 out += identity out = self.relu(out) return out ``` 此段代码展示了最基础形式下的残差块构造方法,其中包含了两个连续的标准二维卷积层及其对应的批标准化处理单元,并且当存在尺寸不匹配情况时可通过`downsample`参数指定额外的操作以调整张量形状使之能顺利完成相加运算[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值