NLP高频面试题(一)——Transformer的基本结构、作用和代码实现

面试回答简洁版

Transformer模型主要由以下组件组成:

  1. 嵌入层(Embedding Layer)

    • Token Embedding:将token转换为词向量。
    • Positional Embedding:提供位置信息,帮助模型理解序列顺序。
    • (可选)Segment Embedding:用于区分不同句子或段落(如BERT)。
  2. 编码器(Encoder)

    • 由多个相同模块组成,每个模块包含两个核心子层:

      • 多头自注意力机制(Multi-head Self-Attention):允许模型关注序列不同位置的信息。
      • 前馈神经网络(Feed-Forward Network,FFN):两个线性变换及激活函数,进一步特征提取。
    • 每个子层都配备残差连接和层归一化。

  3. 解码器(Decoder,若存在)

    • 由多个模块堆叠,每个模块包括:

      • 掩码多头自注意
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值