NLP高频面试题(九)——大模型常见的几种解码方案

大模型常见的几种解码方案

在自然语言生成任务中,如何从模型生成的概率分布中选择合适的词汇,是影响文本质量的关键问题。常见的解码方法包括贪心搜索(Greedy Search)、束搜索(Beam Search)、随机采样(Sampling)、Top-k 采样、Top-p 采样(Nucleus Sampling)以及温度调节(Temperature Sampling)。

1. 贪心搜索(Greedy Search)

贪心搜索在每个解码步骤中选择具有最高概率的词,形成最可能的序列。这种方法的优点是计算高效,但容易陷入局部最优,导致生成的文本缺乏多样性。

示例:

假设当前模型输出如下概率分布:

概率
女孩 0.6
鞋子 0.3
大象 0.1

贪心搜索会选择“女孩”作为下一个词。

2. 束搜索(Beam Search)

束搜索是一种改进的搜索策略,它在每个时间步维护 k 个候选序列,并选取概率最高的 k 个序列继续扩展。最终选择概率最高的序列作为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值