大模型常见的几种解码方案
在自然语言生成任务中,如何从模型生成的概率分布中选择合适的词汇,是影响文本质量的关键问题。常见的解码方法包括贪心搜索(Greedy Search)、束搜索(Beam Search)、随机采样(Sampling)、Top-k 采样、Top-p 采样(Nucleus Sampling)以及温度调节(Temperature Sampling)。
1. 贪心搜索(Greedy Search)
贪心搜索在每个解码步骤中选择具有最高概率的词,形成最可能的序列。这种方法的优点是计算高效,但容易陷入局部最优,导致生成的文本缺乏多样性。
示例:
假设当前模型输出如下概率分布:
词 | 概率 |
---|---|
女孩 | 0.6 |
鞋子 | 0.3 |
大象 | 0.1 |
贪心搜索会选择“女孩”作为下一个词。
2. 束搜索(Beam Search)
束搜索是一种改进的搜索策略,它在每个时间步维护 k 个候选序列,并选取概率最高的 k 个序列继续扩展。最终选择概率最高的序列作为