随着深度学习模型规模的迅速增长,单个设备往往无法满足训练需求,因此分布式训练技术成为了业界的热点和研究前沿。本文将介绍几种常见的分布式训练方法。
一、数据并行(Data Parallelism)
数据并行是一种简单高效的并行训练方法。它的核心思想是将数据集分成多个子集,每个设备使用完整的模型副本,但只处理部分数据。训练结束后,各设备的梯度进行同步,从而更新统一的模型参数。
典型实现:
- PyTorch DDP (Distributed Data Parallel)
二、模型并行(Model Parallelism)
模型并行通过将模型切分到多个设备上,来解决单个设备无法容纳整个模型的问题,主要分为张量并行和流水线并行两类。
1. 张量并行(Tensor Parallelism)
张量并行是在模型内部的特定操作层面上实现并行,比如将大规模的矩阵乘法操作拆分到多个设备进行并行计算。这种方式通常需要额外通信来聚合计算结果。
典型实现:
- Megatron-LM(1D 张量并行)
- Colossal-AI(2D、2.5D、3D 张量并行)
2. 流水线并行(Pipeline Parallelism)
流水线并行将模型按层切分到不同设备