NLP高频面试题(十五)——有哪几种分布式训练方式

随着深度学习模型规模的迅速增长,单个设备往往无法满足训练需求,因此分布式训练技术成为了业界的热点和研究前沿。本文将介绍几种常见的分布式训练方法。

一、数据并行(Data Parallelism)

数据并行是一种简单高效的并行训练方法。它的核心思想是将数据集分成多个子集,每个设备使用完整的模型副本,但只处理部分数据。训练结束后,各设备的梯度进行同步,从而更新统一的模型参数。

典型实现:

  • PyTorch DDP (Distributed Data Parallel)

二、模型并行(Model Parallelism)

模型并行通过将模型切分到多个设备上,来解决单个设备无法容纳整个模型的问题,主要分为张量并行和流水线并行两类。

1. 张量并行(Tensor Parallelism)

张量并行是在模型内部的特定操作层面上实现并行,比如将大规模的矩阵乘法操作拆分到多个设备进行并行计算。这种方式通常需要额外通信来聚合计算结果。

典型实现:

  • Megatron-LM(1D 张量并行)
  • Colossal-AI(2D、2.5D、3D 张量并行)
2. 流水线并行(Pipeline Parallelism)

流水线并行将模型按层切分到不同设备

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值