NLP高频面试题(十六)——deepspeed原理

近年来,随着深度学习模型尤其是大型语言模型(LLM)的迅猛发展,训练所需的资源与计算能力不断攀升。单个GPU或节点的资源已很难满足数百亿甚至上万亿参数模型的训练需求,这种情况下,多卡甚至多节点分布式训练技术应运而生。然而,传统的PyTorch自带的分布式训练工具在显存占用、训练效率和可扩展性上存在诸多限制。这正是Deepspeed诞生的重要背景。

本文将深入探讨Deepspeed的核心技术,分析其在大型模型训练中的重要作用。

一、为什么需要Deepspeed?

Deepspeed由微软开发,是一个基于PyTorch的开源分布式训练框架。它的目标是:

  • 高效地进行超大规模模型训练
  • 降低模型训练的资源消耗和通信开销
  • 提升分布式训练的扩展性

具体而言,Deepspeed相较于其他框架(如PyTorch Accelerate)优势明显:

  1. 支持更广泛的GPU硬件
    PyTorch官方工具Accelerate仅支持nvlink接口的GPU,而Deepspeed则支持更多类型(如T4、3090显卡使用PIX通信协议)。

  2. 显存占用优化
    大模型训练通常面临显存不足问题,Deepspeed的ZeRO(Zero Redundancy Optimizer)技术大幅降低显存占用,最高可训练万亿级参数模型。

  3. <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值