近年来,随着深度学习模型尤其是大型语言模型(LLM)的迅猛发展,训练所需的资源与计算能力不断攀升。单个GPU或节点的资源已很难满足数百亿甚至上万亿参数模型的训练需求,这种情况下,多卡甚至多节点分布式训练技术应运而生。然而,传统的PyTorch自带的分布式训练工具在显存占用、训练效率和可扩展性上存在诸多限制。这正是Deepspeed诞生的重要背景。
本文将深入探讨Deepspeed的核心技术,分析其在大型模型训练中的重要作用。
一、为什么需要Deepspeed?
Deepspeed由微软开发,是一个基于PyTorch的开源分布式训练框架。它的目标是:
- 高效地进行超大规模模型训练
- 降低模型训练的资源消耗和通信开销
- 提升分布式训练的扩展性
具体而言,Deepspeed相较于其他框架(如PyTorch Accelerate)优势明显:
-
支持更广泛的GPU硬件:
PyTorch官方工具Accelerate仅支持nvlink接口的GPU,而Deepspeed则支持更多类型(如T4、3090显卡使用PIX通信协议)。 -
显存占用优化:
大模型训练通常面临显存不足问题,Deepspeed的ZeRO(Zero Redundancy Optimizer)技术大幅降低显存占用,最高可训练万亿级参数模型。 - <