NLP高频面试题(二十五)——RAG的reranker模块结果,原理和目前存在的挑战

在人工智能领域,检索增强生成(Retrieval-Augmented Generation,简称RAG)技术正日益受到关注。其中,Reranker模块在提升检索结果质量方面发挥着关键作用。本文将详细探讨Reranker的作用、工作原理以及当前面临的挑战。

Reranker的作用

在RAG系统中,Retriever负责从大规模语料库中检索与用户查询相关的候选文档。然而,初始检索阶段可能返回大量文档,其相关性和质量参差不齐。直接将这些未经筛选的文档输入生成模型,可能导致生成内容的准确性和相关性下降。Reranker的主要作用是对这些候选文档进行重新排序,优先选择最相关、最有价值的文档,以确保生成模型基于高质量的上下文进行内容生成,从而提高回答的准确性和相关性。

Reranker的工作原理

Reranker通常采用更复杂的语义理解模型,对检索到的候选文档进行评估和排序。其工作流程包括:

  1. 输入处理:将用户查询与每个候选文档组合成输入对。

  2. 相关性评估:使用深度学习模型(如基于BERT的交叉编码器)对每个查询-文档对进行评估,生成相关性分数。

  3. 结果排序:根据相关性分数,对候选文档进行排序,选择得分最高的文档作为生成模型的输入。

通过上述步骤,Reranker能够更准确地捕捉查询和文档之间的语义关系,提升检索结果的质量。

### IntelliJ IDEA 中通义灵码 AI 功能介绍 IntelliJ IDEA 提供了一系列强大的工具来增强开发体验,其中包括与通义灵码 AI 相关的功能。这些功能可以帮助开发者更高效地编写代码并提高生产力。 #### 安装通义灵码插件 为了使用通义灵码的相关特性,在 IntelliJ IDEA 中需要先安装对应的插件: 1. 打开 **Settings/Preferences** 对话框 (Ctrl+Alt+S 或 Cmd+, on macOS)。 2. 导航到 `Plugins` 页面[^1]。 3. 在 Marketplace 中搜索 "通义灵码" 并点击安装按钮。 4. 完成安装后重启 IDE 使更改生效。 #### 配置通义灵码服务 成功安装插件之后,还需要配置通义灵码的服务连接信息以便正常使用其提供的各项能力: - 进入设置中的 `Tools | Qwen Coding Assistant` 菜单项[^2]。 - 填写 API Key 其他必要的认证参数。 - 测试连接以确认配置无误。 #### 使用通义灵码辅助编程 一旦完成上述准备工作,就可以利用通义灵码来进行智能编码支持了。具体操作如下所示: ##### 自动补全代码片段 当输入部分语句时,IDE 将自动提示可能的后续逻辑,并允许一键插入完整的实现方案[^3]。 ```java // 输入 while 循环条件前半部分... while (!list.isEmpty()) { // 激活建议列表选择合适的循环体内容 } ``` ##### 解释现有代码含义 选中某段复杂的表达式或函数调用,右键菜单里会有选项可以请求通义灵码解析这段代码的作用以及优化意见。 ##### 生产测试案例 对于已有的业务逻辑模块,借助于通义灵码能够快速生成单元测试框架及初始断言集,减少手动构建的成本。 ```python def test_addition(): result = add(2, 3) assert result == 5, f"Expected 5 but got {result}" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值