一、什么是思维链提示(CoT)?
思维链提示是一种新颖的提示方法,通过向模型提供少量的推理步骤示范,让语言模型在给出最终答案之前展示出自己的推理过程。其核心思想在于鼓励模型模仿人类逐步推理的方式,从而提高复杂任务的推理准确性。
二、思维链提示与传统提示方法的区别
传统的少样本(few-shot)提示方法通常只提供问题及最终答案,模型的推理过程是隐含的。而CoT则明确地展示中间推理步骤,从而使模型能够更有效地学习推理路径,更好地处理复杂任务。
简单来说,标准提示是“只告诉你答案”,而思维链提示则是“告诉你如何得出答案”。
三、思维链提示为何有效?
思维链提示之所以能显著提高模型复杂推理能力,主要体现在以下几个方面:
- 问题分解:将复杂问题拆解为更易解决的子任务。
- 示范推理过程:模型能学习人类的逐步逻辑推理路径。
- 激活背景知识:明确的推理步骤更容易唤醒模型已有的知识。
- 提高可解释性:模型输出的推理过程使得结果可解释且易于优化。
- 增强逻辑推理能力:帮助模型建立更强大的逻辑推理框架。
四、思维链提示的应用场景
研究表明,CoT在以下场景尤其有效:
- 算术推理: