深度解读 Qwen3 大语言模型的关键技术

一、模型架构设计

Qwen3 延续了当前主流大型语言模型的 Transformer 架构,并在此基础上进行了多项增强设计,包含特殊的 Transformer 变体、位置编码机制改进、混合专家 (MoE) 技术引入,以及支持多模态双重思考模式的新特性。

1. Transformer 基础架构与增强

基础架构: Qwen3 的主体是一个解码器式 Transformer(自回归语言模型),这意味着它通过注意力机制和前馈网络从左到右生成文本。与以往的 GPT 系列和 LLaMA 模型类似,Qwen3 采用了多层 Transformer 堆叠,每层包括多头自注意力前馈网络两大模块,并在网络中广泛使用残差连接归一化技术来确保训练稳定。

  • 架构增强: Qwen3 在 Transformer 框架中引入了几项经过验证的技术改进:

  • 分组查询注意力(Grouped Query Attention, GQA): Qwen3 的稠密模型延续了 Qwen2.5 等前代模型的注意力机制优化,即采用 GQA 来折中计算效率和建模能力。GQA 的做法是将多头注意力中的查询向量按组共享键/值投影,这样可以减少显存占用和计算开销,同时保持模型对不同部

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值