机器学习之卡方分布

卡方(χ2)分布在统计学中扮演重要角色,尤其在机器学习的统计推断中。它具有可加性和一致渐进正态性,并常用于分析定类数据的相关性,如性别与购买行为的关系。χ2分布的概率密度函数与自由度有关,自由度定义为不受限制的随机变量数量。期望值为自由度n,方差为2n。在涉及多个独立变量的场景中,自由度计算为变量总数减去限制条件的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

统计量是样本的函数,它是一个随机变量。统计量的分布称为抽样分布,当总体的分布函数已知时,抽样分布是确定的,但要求出统计量的精确分布比较困难,统计量的分布是进行统计推断的必要信息

卡方(χ2)分布具有可加性,一致渐进正态性 ,卡方检验时用于分析定类数据与定类数据之间的关系情况,例如想要研究性别和是否购买产品之间的关系,值越小说明模型和数据越符合

X1,X2,X3,⋅⋅⋅,XnX_1,X_2,X_3,\cdot \cdot \cdot,X_nX1,X2,X3,,Xn是来自总体N(0,1)的样本,则统计量χ2=X12+X22+⋅⋅⋅+Xn2\chi^2=X_1^2+X_2^2+\cdot\cdot\cdot+X_n^2χ2=X1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WEL测试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值