【机器学习】欠拟合与过拟合

本文讨论了过拟合和欠拟合的概念,介绍了如何通过增加新特征、多项式特征、调整正则化参数、选择非线性模型以及应用集成学习来解决欠拟合问题,同时提供了应对过拟合的策略,如权值衰减、停止训练标准和正则化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
过拟合:模型在训练数据上表现良好对不可见数据的泛化能力差。

欠拟合:模型在训练数据和不可见数据上泛化能力都很差。

欠拟合常见解决办法

(1)增加新特征,可以考虑加入特征组合、高次特征,以此增大假设空间。

(2)添加多项式特征,这个在机器学习算法里用得很普遍,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强。

(3)减少正则化参数,正则化的目的是用来防止过拟合,但是模型出现了欠拟合,则需要减少正则化参数。

(4)使用非线性模型,例如支持向量机、决策树、深度学习等模型。

(5)调整模型的容量(Capacity),通俗地讲,模型的容量是指其拟合各种函数的能力。

(6)使用集成学习方法,如使用Bagging,可将多个弱学习器Bagging。

过拟合常见解决办法

(1)使用权值衰减的方法,即每次迭代过程中以某个小因子降低每个权值。

(2)选取合适的停止训练标准,使对机器的训练在合适的程度。

(3)保留验证数据集,对训练成果进行验证。

(4)获取额外数据进行交叉验证

(5)正则化,即在进行目标函数或代价函数优化时,在目标函数或代价函数后面加上一个正则项,一般有L1正则与L2正则等。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WEL测试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值