人工智能之最优化问题数学模型

本文探讨了人工智能的本质——最优化过程,详细介绍了最优化问题的数学模型,包括变量、目标函数和约束条件。变量分为常量和变量,目标函数通常要求极小化,而约束条件则为问题设定了限制。该模型适用于解决包含多个维度和约束的优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能的本质其实就是最优化过程。最优化就是在有限或者无限种可能的方案中选择一个最好的方案以达到最优目标。

最优化问题数学模型的一般形式为:
minf(x⃗)x⃗∈Rns.t.{ ci(x⃗)=0,i∈E={ 1,2,⋯ ,l}ci(x⃗)≤0,i∈I={ l+1,l+2,⋯ ,l+m} min f(\vec{x})\quad \vec{x}\in R^n\\ s.t. \begin{cases} c_i(\vec{x})=0,\quad i \in E= \{1,2,\cdots,l\}\\ \\ c_i(\vec{x})\leq0,\quad i \in I=\{l+1,l+2,\cdots,l+m\}\\ \end{cases} minf(x )x Rns.t. ci(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WEL测试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值