导数
设一元函y=f(x)y=f(x)y=f(x)在x0x_0x0的某一领域内有定义,当自变量xxx在x0x_0x0处取得的增量Δx\Delta xΔx(点x0+Δxx_0+\Delta xx0+Δx仍在领域内)时,相应的函数增量Δy=f(x0+Δx)−f(x0)\Delta y=f(x_0+\Delta x)-f(x_0)Δy=f(x0+Δx)−f(x0),如果极限
limΔx→0ΔyΔx=limΔx→0f(x0+Δx)−f(x0)Δx \lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim_{\Delta x \rightarrow 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
存在,则称函数y=f(x)y=f(x)y=f(x)在x0x_0x0处可导,该极限为函数y=f(x)y=f(x)y=f(x)在点x0x_0x0处的导数,即f′(x0)f^{'}(x_0)f′(x0),即:
f′(x0)=limΔx→0f(x0+Δx)−f(x0)Δx f^{'}(x_0)=\lim_{\Delta x \rightarrow 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}f′