人工智能之数学基础【导数】

本文深入探讨了导数的概念,包括导数的定义、基本导数公式,如(e^x)、(sinx)等的导数,并介绍了导数在和、差、积、商运算中的应用,以及极限中常用的等价无穷小。通过这些基础知识,有助于理解导数在人工智能中的重要角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导数

设一元函y=f(x)y=f(x)y=f(x)x0x_0x0的某一领域内有定义,当自变量xxxx0x_0x0处取得的增量Δx\Delta xΔx(点x0+Δxx_0+\Delta xx0+Δx仍在领域内)时,相应的函数增量Δy=f(x0+Δx)−f(x0)\Delta y=f(x_0+\Delta x)-f(x_0)Δy=f(x0+Δx)f(x0),如果极限
lim⁡Δx→0ΔyΔx=lim⁡Δx→0f(x0+Δx)−f(x0)Δx \lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim_{\Delta x \rightarrow 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
存在,则称函数y=f(x)y=f(x)y=f(x)x0x_0x0处可导,该极限为函数y=f(x)y=f(x)y=f(x)在点x0x_0x0处的导数,即f′(x0)f^{'}(x_0)f(x0),即:
f′(x0)=lim⁡Δx→0f(x0+Δx)−f(x0)Δx f^{'}(x_0)=\lim_{\Delta x \rightarrow 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}f

[本课程属于AI完整学习路线套餐,该套餐已“硬核”上线,点击立即学习!] 【为什么学习数学?】 人工智能的本质是数学,网上有很多AI课程,只蜻蜓点水的介绍一下算法背后的数学理论,知识点比较混乱,不成体系,学了以后一旦在实战遇到难点就不知道该怎么办了。比方说老师遇到过用很多层MLP预测用户转化率的工程师,只是单纯的追求模型的“复杂度”,而忘记了底层数学的本质回归问题超过3层神经网络足以拟合空间中任一曲线,耗费了大量的运算资源却造成了模型的过拟合。 很多同学因为不理解AI底层的数学和理论,知其然不知其所以然,遇到问题不知道如何从根源上去思考排查解决问题,而是花了大量时间做一个“调参侠”,期望蒙中一个优化组合,可是调参空间之巨大如果没有方向随机的搜索和买彩票一样。但是专门的数学课学习起来非常抽象和枯燥,而且其中大量内容和人工智能关系不大。因此在设计这门专为人工智能服务的数学课,讲解从人工智能用到的底层的数学逻辑,让大家可以真正理解数学知识。 【讲师介绍】 褚英昊  技术总监深造于美国圣地亚哥国家超级计算中心,毕业后归国曾服务于世界某500强中国区AI Lab,是人工智能+智能制造领域的专家。先后发表国际期刊21篇(其中SCI收录17篇),第一作者发明专利11份。【学习目标】 1、更加高效学习、更好的理解AI知识 2、在找工作中在众多的套工程的“调参侠”中脱颖而出,获得面试官的重视 3、在实际工作和开发中,遇到问题能理解问题的本质,真正做到精准而高效的解决问题,获得领导的倚重 【梳理数学与AI知识之间的关联】 【专门为数学设计的项目案例】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WEL测试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值