【MATLAB图像处理实用案例详解(10)】——基于Kalman滤波的目标跟踪预测红色小球位置

文章介绍了Kalman滤波算法的基本原理和数学模型,包括系统状态方程和测量方程,以及预测、更新和协方差更新的步骤。通过示例程序展示了如何使用Kalman滤波预测系统状态,并提供了实际应用,如预测红色小球的位置。文章强调了Kalman滤波的最优化特性和对系统模型及噪声统计的依赖。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Kalman滤波

Kalman 滤波算法是一个最优化自回归数据处理算法,对于很多问题的解決,它是最优、效率最高甚至是最有用的。Kalman 滤波的广泛应用己经超过30年,领域包括机器人导航、控制、传感器数据融合以及军事方面的雷达系统、导弹追踪等。近年来 Kalman 滤波被应用于数宇图像处理,例如人脸识别、图像分割、目标跟踪、图像边缘检测等。
首先要引入一个离散控制过程的系统,该系统可用一个线性随机微分方程来描述:
X ( k ) = A X ( k − 1 ) + B U ( k ) + W ( k ) X(k)=AX(k-1)+BU(k)+W(k) X(k)=AX(k1)+BU(k)+W(k)
系统的测量值为:
Z ( k ) = H X ( k ) + V ( k ) Z(k)=HX(k)+V(k) Z(k)=HX(k)+V(k)
上面两个式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,它们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。它们被假设成高斯白噪声,其协方差分别是Q和R(这里假设它们不随系统状态变化而变化)。
对于满足上面条件的线性微分系统,Kalman滤波器是最优的闲心处理器。下面用Kalman滤波器来估计系统的最优化输出。
首先利用系统的过程模型来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,基于系统的上衣状态可以预测出现在状态:
X ( k ∣ k − 1 ) = A X ( k − 1 ∣ k − 1 ) + B U ( k ) X(k|k-1)=AX(k-1|k-1)+BU(k) X(kk1)=

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wendy_ya

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值