一、Kalman滤波
Kalman 滤波算法是一个最优化自回归数据处理算法,对于很多问题的解決,它是最优、效率最高甚至是最有用的。Kalman 滤波的广泛应用己经超过30年,领域包括机器人导航、控制、传感器数据融合以及军事方面的雷达系统、导弹追踪等。近年来 Kalman 滤波被应用于数宇图像处理,例如人脸识别、图像分割、目标跟踪、图像边缘检测等。
首先要引入一个离散控制过程的系统,该系统可用一个线性随机微分方程来描述:
X ( k ) = A X ( k − 1 ) + B U ( k ) + W ( k ) X(k)=AX(k-1)+BU(k)+W(k) X(k)=AX(k−1)+BU(k)+W(k)
系统的测量值为:
Z ( k ) = H X ( k ) + V ( k ) Z(k)=HX(k)+V(k) Z(k)=HX(k)+V(k)
上面两个式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,它们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。它们被假设成高斯白噪声,其协方差分别是Q和R(这里假设它们不随系统状态变化而变化)。
对于满足上面条件的线性微分系统,Kalman滤波器是最优的闲心处理器。下面用Kalman滤波器来估计系统的最优化输出。
首先利用系统的过程模型来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,基于系统的上衣状态可以预测出现在状态:
X ( k ∣ k − 1 ) = A X ( k − 1 ∣ k − 1 ) + B U ( k ) X(k|k-1)=AX(k-1|k-1)+BU(k) X(k∣k−1)=