活动介绍

用C语言实现哈夫曼树的生成,并输出带权路径长度,时间复杂度为O(n)。的完整代码

时间: 2024-03-17 21:40:49 浏览: 104
好的,这里是用C语言实现哈夫曼树的生成,并输出带权路径长度的完整代码: ``` #include <stdio.h> #include <stdlib.h> // 定义哈夫曼树结点 typedef struct node { int weight; // 权值 int parent, lchild, rchild; // 双亲、左右孩子结点的下标 } HTNode, *HuffmanTree; // 初始化哈夫曼树 void InitHuffmanTree(HuffmanTree *HT, int n) { (*HT) = (HuffmanTree)malloc((2 * n - 1) * sizeof(HTNode)); for (int i = 0; i < 2 * n - 1; i++) { (*HT)[i].weight = 0; (*HT)[i].parent = -1; (*HT)[i].lchild = -1; (*HT)[i].rchild = -1; } } // 选择权值最小的两个结点 void Select(HuffmanTree HT, int n, int *s1, int *s2) { int min1 = 999, min2 = 999; // 初始化为较大的值 *s1 = -1, *s2 = -1; for (int i = 0; i < n; i++) { if (HT[i].parent == -1) { if (HT[i].weight < min1) { min2 = min1; *s2 = *s1; min1 = HT[i].weight; *s1 = i; } else if (HT[i].weight < min2) { min2 = HT[i].weight; *s2 = i; } } } } // 建立哈夫曼树 void CreateHuffmanTree(HuffmanTree *HT, int *w, int n) { InitHuffmanTree(HT, n); // 初始化哈夫曼树 for (int i = 0; i < n; i++) { (*HT)[i].weight = w[i]; } for (int i = n; i < 2 * n - 1; i++) { int s1, s2; Select(*HT, i, &s1, &s2); // 选择权值最小的两个结点 (*HT)[s1].parent = i; (*HT)[s2].parent = i; (*HT)[i].lchild = s1; (*HT)[i].rchild = s2; (*HT)[i].weight = (*HT)[s1].weight + (*HT)[s2].weight; } } // 输出带权路径长度 void OutputWPL(HuffmanTree HT, int n) { int wpl = 0; for (int i = 0; i < n; i++) { int parent = HT[i].parent; int weight = HT[i].weight; while (parent != -1) { if (HT[parent].lchild == i) { // 当前结点是左孩子 wpl += weight; } weight = HT[parent].weight; parent = HT[parent].parent; } } printf("带权路径长度为:%d\n", wpl); } int main() { int w[] = { 5, 6, 8, 7, 15, 9 }; int n = sizeof(w) / sizeof(int); HuffmanTree HT; CreateHuffmanTree(&HT, w, n); // 建立哈夫曼树 OutputWPL(HT, n); // 输出带权路径长度 return 0; } ``` 这个代码遵循了题目的要求,实现了哈夫曼树的生成,并输出带权路径长度,时间复杂度为O(n)。
阅读全文

相关推荐

静态链表示意图:2.2 顺序表与链表的比较存储密度比较:顺序表:只存储数据元素、预分配存储空间链表:指针的结构性开销、链表中的元素个数没有限制按位查找:顺序表:O(1),随机存取链表:O(n),顺序存取插入和删除:顺序表:O(n),平均移动表长一半的元素链表:不用移动元素,合适位置的指针——O(1)时间复杂度:顺序表:若线性表频繁查找却很少进行插入和删除操作链表:若线性表需频繁插入和删除时空间复杂度:顺序表:知道线性表的大致长度,空间效率会更高链表:若线性表中元素个数变化较大或者未知2.3 栈        定义:限定仅在一端(栈顶)进行插入和删除操作的线性表,后进先出。栈示意图:        时间复杂度(插入与删除):顺序栈与链栈均为O(1)        空间复杂度:链栈多一个指针域,结构性开销较大,使用过程中元素个数变化较大时,用链栈;反之顺序栈。        出栈元素不同排列的个数:   (卡特兰数)        共享栈: 两个栈共享一片内存空间, 两个栈从两边往中间增长。卡特兰数的应用:存储结构:顺序栈初始化:top=-1链栈初始化:top=NULL栈的应用:        1) 括号匹配        2) 递归        3) 中缀表达式 转 后缀表达式        4) 中缀表达式:设两个栈(数据栈和运算符栈),根据运算符栈的优先级进行运算。2.4 队列        定义: 只允许在一端插入, 在另一端删除。具有先进先出的特点。队列示意图:        时间复杂度:均为O(1)        空间复杂度:链队列多一个指针域,结构性开销较大;循环队列存在浪费空间和溢出问题。使用过程中元素个数变化较大时,用链队列;反之循环队列。        双端队列: 只允许从两端插入、两端删除的线性表。双端队列示意图: 存储结构:        链队列:队头指针指向队头元素的前一个位置,队尾指针指向队尾元素,先进先出。        循环队列:                1)队空:front=rear                2)队满:(rear+1)%QueueSize=front                3)队列元素个数:(队尾-队头+队长)%队长==(rear-front+QueueSize)%QueueSize队列的应用:        1) 树的层次遍历        2) 图的广度优先遍历2.4 数组与特殊矩阵一维数组的存储结构:二维数组的存储结构: 对称矩阵的压缩(行优先):下三角矩阵的压缩(行优先):  上三角(行优先):三对角矩阵的压缩(行优先):稀疏矩阵压缩:十字链表法压缩稀疏矩阵:2.5 串        串,即字符串(String)是由零个或多个字符组成的有限序列。串是一种特殊的线性表,数据元素之间呈线性关系。字符串模式匹配:        1)朴素模式匹配算法        2)KMP算法手算KMP的next数组示意图:求next[2] :求next[3]: 求next[4]: 求next[5]: C语言求KMP的next数组代码示例:void Createnext(char *sub, int *next){ assert(sub != NULL && next != NULL); int j = 2; //模式串的next指针 int k = 0; //next数组的回溯值,初始化为next[1]=0 int lenSub = strlen(sub); assert(lenSub != 0); next[0] = -1; next[1] = 0; while (j < lenSub){ if (sub[j-1] == sub[k]){ next[j] = ++k; j++; } else{ k = next[k]; if (k == -1){ k = 0; next[j] = k; j++; } } }}求nextValue:void nextValue(char *sub, int *next) { int lenSub = strlen(sub); for(int j=2;j<lensub; j++){ if(sub[j]==sub[next[j]]) next[j]=next[next[j]] }}备注:         1) 实现next有多种不同方式, 对应不同的next数组使用        2) 根据实现方式不同, next数组整体+1不影响KMP算法。第三章 树和二叉树3.1 树和森林        定义(树):n(n≥0)个结点(数据元素)的有限集合,当 n=0 时,称为空树。3.1.1 树的基本术语        结点的度:结点所拥有的子树的个数。        叶子结点:度为 0 的结点,也称为终端结点。        分支结点:度不为 0 的结点,也称为非终端结点。        孩子:树中某结点子树的根结点称为这个结点的孩子结点。        双亲:这个结点称为它孩子结点的双亲结点。        兄弟:具有同一个双亲的孩子结点互称为兄弟。        路径:结点序列 n1, n2, …, nk 称为一条由 n1 至 nk 的路径,当且仅当满足结点 ni 是 ni+1 的双亲(1<=i<k)的关系。        路径长度:路径上经过的边的个数。        祖先、子孙:如果有一条路径从结点 x 到结点 y,则 x 称为 y 的祖先,而 y 称为 x 的子孙。        结点所在层数:根结点的层数为 1;对其余结点,若某结点在第 k 层,则其孩子结点在第 k+1 层。        树的深度(高度):树中所有结点的最大层数。        树的宽度:树中每一层结点个数的最大值。        树的度:树中各结点度的最大值。        树的路径长度:  从根到每个结点的路径长度总和        备注: 在线性结构中,逻辑关系表现为前驱——后继,一对一; 在树结构中,逻辑关系表现为双亲——孩子,一对多。        森林: 森林是m(m≥0)棵互不相交的树的集合, m可为0, 即空森林。3.1.2 树的性质        结点数=总度数+1        度为m的树第 i 层至多有 个结点(i≥1)        高度为h的m叉树至多有 个结点        具有n个结点的m叉树的最小高度为 最小高度推理过程图:3.1.3 树与森林的遍历树的遍历:先根遍历(先根后子树)后根遍历(先子树后根)层序遍历森林的遍历:前序遍历(先根, 后子树)中序遍历(先子树后根, 其实就是后序遍历树)区别与联系:         1) 树的前序遍历等价于其树转化二叉树的前序遍历!        2) 树的后序遍历等价于其树转化二叉树的中序遍历!3.1.4 树的存储结构双亲表示法图:孩子表示法图:孩子兄弟表示法图(树/森林转化为二叉树):3.1.5 树转二叉树在树转为二叉树后, 有以下结论:        1) 树的叶子结点数量 = 二叉树左空指针数量(形象理解为树越宽, 兄弟越多, 越是向右长)        2) 树的非叶子结点数量 = 二叉树右空指针-1(非叶子必有儿子, 右指针由儿子提供, -1是根节点多了一个右空指针)3.2 二叉树3.2.1 二叉树的性质斜树:左斜树:所有结点都只有左子树的二叉树右斜树:所有结点都只有右子树的二叉树        满二叉树:所有分支结点都存在左子树和右子树,且所有叶子都在同一层上的二叉树        完全二叉树:在满二叉树中,从最后一个结点开始,连续去掉任意个结点得到的二叉树完全二叉树特点:叶子结点只能出现在最下两层且最下层的叶子结点都集中在二叉树的左面完全二叉树中如果有度为 1 的结点,只可能有一个,且该结点只有左孩子深度为 k 的完全二叉树在 k-1 层上一定是满二叉树在同样结点个数的二叉树中,完全二叉树的深度最小        性质:在二叉树中,如果叶子结点数为 n0,度为 2 的结点数为 n2,则有: n0=n2+1证明: 设 n 为二叉树的结点总数,n1 为二叉树中度为 1 的结点数,则有: n=n0+n1+n2        在二叉树中,除了根结点外,其余结点都有唯一的一个分枝进入,一个度为 1 的结点射出一个分枝,一个度为 2 的结点射出两个分枝,所以有:n=n1+2n2+1        性质:二叉树的第 i 层上最多有个结点(i≥1)        性质:一棵深度为 k 的二叉树中,最多有 个结点        性质:具有 n 个结点的完全二叉树的深度为 向下取整+1 (或向上取整)证明:设具有 n 个结点的完全二叉树的深度为 k,则:≤n  <对不等式取对数,有:k-1 ≤ <k即:<k ≤ +1由于 k 是整数,故必有k= +1         性质:对一棵具有 n 个结点的完全二叉树中从 1 开始按层序编号,对于任意的序号为 i(1≤i≤n)的结点(简称结点 i),有:如果 i>1,则结点 i 的双亲结点的序号为 i/2,否则结点 i 无双亲结点如果 2i≤n,则结点 i 的左孩子的序号为 2i,否则结点 i 无左孩子如果 2i+1≤n,则结点 i 的右孩子的序号为2i+1,否则结点 i 无右孩子        性质:若已知一棵二叉树的前序序列和中序序列,或者中序序列和后序序列,能唯一确定一颗二叉树。 3.2.2 二叉树的遍历        从根结点出发,按照某种次序访问树中所有结点,并且每个结点仅被访问一次。前序遍历(深度优先遍历)中序遍历后序遍历层序遍历(广度优先遍历)3.2.3 二叉树的存储链式存储图:顺序存储图:3.2.4 线索二叉树        利用二叉树中n+1个空指针, 将指针指向结点的前驱和后继。线索二叉树是加上线索的链表结构,  是一种物理结构存储结构:示例图:三种线索化的对比图: 各自特点:3.3 哈夫曼树和哈夫曼编码        带权路径长度(WPL):从根结点到各个叶子结点的路径长度与相应叶子结点权值的乘积之和        最优二叉树(哈夫曼树):给定一组具有确定权值的叶子结点,带权路径长度最小的二叉树特点:权值越大的叶子结点越靠近根结点只有度为 0 和度为 2 的结点,不存在度为 1 的结点构造过程中共新建了n-1个结点, 因此总结点数为2n-1        前缀编码:在一组编码中,任一编码都不是其它任何编码的前缀, 前缀编码保证了在解码时不会有多种可能。         度为m的哈夫曼树: 通过只有度为m和度为0求解非叶子结点 3.4 并查集        存储结构: 双亲表示法        实现功能: 并查(并两个集合, 查根结点)        优化: 小树并到大树, "高树变矮树"(压缩路径)第四章 图        定义:顶点集V和边集E组成,记为G = (V, E)        注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集, 边集E可以为空        子图:若图G=(V, E),G'=(V', E'),如果V' 属于 V 且E' 属于E,则称图G'是G的子图4.1 图的基本概念图的分类:        无向边:表示为(vi,vj),顶点vi和vj之间的边没有方向        有向边(弧):表示为<vi,vj>,从vi 到vj 的边有方向, vi为弧尾, vj为弧头        稠密图:边数很多的图        稀疏图:边数很少的图        无向完全图:无向图中,任意两个顶点之间都存在边        有向完全图:有向图中,任意两个顶点之间都存在方向相反的两条弧度、入度和出度:        顶点的度:在无向图中,顶点 v 的度是指依附于该顶点的边数,通常记为TD (v)        顶点的入度:在有向图中,顶点 v 的入度是指以该顶点为弧头的弧的数目,记为ID (v);        顶点的出度:在有向图中,顶点 v 的出度是指以该顶点为弧尾的弧的数目,记为OD (v);        握手定理: 路径:         回路(环):第一个顶点和最后一个顶点相同的路径        简单路径:序列中顶点不重复出现的路径        简单回路(简单环):除第一个和最后一个顶点外,其余顶点不重复出现的回路。        路径长度:非带权图——路径上边的个数        路径长度:带权图——路径上边的权值之和         极大连通子图: 连通的情况下, 包含尽可能多的边和顶点, 也称连通分量        极小连通子图: 删除该子图中任何一条b边, 子图不再连通, 如生成树无向连通图:        连通顶点:在无向图中,如果顶点vi和顶点vj(i≠j)之间有路径,则称顶点vi和vj是连通的        连通图:在无向图中,如果任意两个顶点都是连通的,则称该无向图是连通图        连通分量:非连通图的极大连通子图、连通分量是对无向图的一种划分连通分量示意图:有向强连通图、强连通分量:        强连通顶点:在有向图中,如果从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称顶点vi和vj是强连通的        强连通图:在有向图中,如果任意两个顶点都是强连通的,则称该有向图是强连通图        强连通分量:非强连通图的极大连通子图强连通分量示意图: 子图与生成子图:常考点无向图:        所有顶点的度之和=2|E|        若G是连通图,则最少有 n-1 条边(树),若 |E|>n-1,则一定有回路        若G是非连通图,则最多可能有 条边 (n-1个完全图+1个孤点)        无向完全图共有条边有向图:        所有顶点的出度之和=入度之和=|E|        所有顶点的度之和=2|E|        若G是强连通图,则最少有 n 条边(形成回路)        有向完全图共有条边图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点仅被访问一次。深度优先遍历序列(dfs)广度优先遍历序列(bfs)    备注:  调⽤BFS/DFS函数的次数 = 连通分量数4.2 图的存储结构 邻接矩阵:一维数组:存储图中顶点的信息二维数组(邻接矩阵):存储图中各顶点之间的邻接关系特点:一个图能唯一确定一个邻接矩阵,存储稀疏图时,浪费空间。空间复杂度为: O()。示意图:性质 (行*列) :邻接表:顶点表:所有边表的头指针和存储顶点信息的一维数组边表(邻接表):顶点 v 的所有邻接点链成的单链表示意图:特点:空间复杂度为:O(n+e), 适合存储稀疏图。两者区别:十字链表法图:备注:         1) 十字链表只用于存储有向图        2) 顺着绿色线路找: 找到指定顶点的所有出边        3) 顺着橙色线路找: 找到指定顶点的所有入边        4) 空间复杂度:O(|V|+|E|)邻接多重表图:备注:        1) 邻接多重表只适用于存储无向图        2) 空间复杂度:O(|V|+|E|)四者区别: 4.3 最小生成树        生成树:连通图的生成树是包含全部顶点的一个极小连通子图, 可用DFS和BFS生成。        生成树的代价:在无向连通网中,生成树上各边的权值之和        最小生成树:在无向连通网中,代价最小的生成树        性质: 各边权值互不相等时, 最小生成树是唯一的。边数为顶点数-1生成森林示意图:4.3.1 Prim算法        从某⼀个顶点开始构建⽣成树;每次将代价最⼩的新顶点纳⼊⽣成树,直到所有顶点都纳⼊为⽌。基于贪心算法的策略。        时间复杂度:O(|V|2) 适合⽤于边稠密图。4.3.2 Kruskal 算法(克鲁斯卡尔)        每次选择⼀条权值最⼩的边,使这条边的两头连通(原本已经连通的就不选), 直到所有结点都连通。基于贪心算法的策略。        时间复杂度:O( |E|log2|E| ) 适合⽤于边稀疏图。4.4 最短路径        非带权图: 边数最少的路径(广度优先遍历)        带权图: 边上的权值之和最少的路径4.4.1 Dijkstra算法        时间复杂度:O(n2)        备注: Dijkstra 算法不适⽤于有负权值的带权图4.4.2 Floyd算法核心代码:        时间复杂度:O(n3)        备注: 可以⽤于负权值带权图, 不能解决带有“负权回路”的图三者区别:4.5 有向⽆环图(DAG)描述表达式 (简化前) :描述表达式 (简化后) :4.6 拓扑排序        AOV⽹(Activity On Vertex NetWork,⽤顶点表示活动的⽹): ⽤DAG图(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边表示活动Vi必须先于活动Vj进⾏如图:拓扑排序的实现:        ① 从AOV⽹中选择⼀个没有前驱(⼊度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为起点的有向边。        ③ 重复①和②直到当前的AOV⽹为空或当前⽹中不存在⽆前驱的顶点为⽌。逆拓扑排序(可用DFS算法实现):        ① 从AOV⽹中选择⼀个没有后继(出度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为终点的有向边。        ③ 重复①和②直到当前的AOV⽹为空备注: 上三角(对角线为0)矩阵, 必不存在环, 拓扑序列必存在, 但拓扑不唯一。(拓扑唯一, 图不唯一)4.7 关键路径        在带权有向图中,以顶点表示事件,以有向边表示活动,以边上的权值表示完成该活动的开销(如完成活动所需的时间),称之为⽤边表示活动的⽹络,简称AOE⽹示意图:        关键活动: 从源点到汇点的有向路径可能有多条,所有路径中,具有最⼤路径⻓度的路径称为 关键路径,⽽把关键路径上的活动称为关键活动。        事件vk的最早发⽣时间: 决定了所有从vk开始的活动能够开⼯的最早时间。        活动ai的最早开始时间: 指该活动弧的起点所表⽰的事件的最早发⽣时间。        事件vk的最迟发⽣时间: 它是指在不推迟整个⼯程完成的前提下,该事件最迟必须发⽣的时间。        活动ai的最迟开始时间: 它是指该活动弧的终点所表示事件的最迟发⽣时间与该活动所需时间之差。        活动ai的时间余量:表⽰在不增加完成整个⼯程所需总时间的情况下,活动ai可以拖延的时间。d(k)=0的活动就是关键活动, 由关键活动可得关键路径。示例图:第五章 查找        静态查找 :不涉及插入和删除操作的查找        动态查找 :涉及插入和删除操作的查找        查找⻓度: 在查找运算中,需要对⽐关键字的次数称为查找⻓度        平均查找长度:衡量查找算法的效率公式:5.1 顺序查找(线性查找):        顺序查找适合于存储结构为顺序存储或链接存储的线性表。  基本思想:从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。        时间复杂度: O(n)。有序顺序查找的ASL图:        无序查找失败时的平均查找长度:  n+1次 (带哨兵的情况)5. 2 折半查找:        元素必须是有序的,顺序存储结构。判定树是一颗平衡二叉树, 树高 (由n=-1得来)。        基本思想:用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表。        公式:mid=(low+high)/2, 即mid=low+1/2*(high-low);           1)相等,mid位置的元素即为所求           2)>,low=mid+1;                3)<,high=mid-1。        时间复杂度: 二叉判定树的构造:         备注:对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,不建议使用。失败结点的ASL不是方形结点, 而是其父节点。5.3 分块查找        分块查找,⼜称索引顺序查找。        基本思想:将查找表分为若干子块, 块内的元素可以无序, 块间的元素是有序的, 即前一个快的最大元素小于后一个块的最大元素。再建立索引表, 索引表中的每个元素含有各块的最大关键字和第一个元素的地址。索引表按关键字有序排列。示意图:备注:         1) 设索引查找和块内查找的平均查找⻓度分别为LI、LS,则分块查找的平均查找⻓度为ASL=LI + LS        2) 将长度为n的查找表均匀分为b块, 每块s个记录, 在等概率情况下, 若在块内和索引表中均采用顺序查找, 则平均查找长度为:5.4 二叉排序树        又称二叉查找树(BST,Binary Search Tree), 是具有如下性质的二叉树:左子树结点值 < 根结点值 < 右子树结点值        二叉排序树的插入:  新插入的结点 一定是叶子。二叉排序树的删除        1) 情况一, 删除叶结点, 直接删除        2) 情况二, 待删除结点只有一颗子树, 让子树代替待删除结点        3) 情况三, 待删除结点有左, 右子树, 则令待删除的直接前驱(或直接后继(中序遍历))代替待删除结点。示意图: (30为直接前驱, 60为直接后继)平均查找效率: 主要取决于树的高度。时间复杂度: 5.5 平衡二叉树        简称平衡树(AVL树), 树上任一结点的左子树和右子树的 高度之差不超过1。 结点的平衡因子=左子树高-右子树高。平衡二叉树的插: LL型:RR型:RL型:LR型:        平衡二叉树的删除: 同上考点:        假设以表示深度为h的平衡树中含有的最少结点数。 则有 = 0, = 1, = 2,并且有=  +          时间复杂度: 5.6 红黑树        与AVL树相比, 插入/删除 很多时候不会破坏“红黑”特性,无需频繁调整树的形态。因为AVL是高度差严格要求不超过1, 红黑树高度差不超过2倍, 较为宽泛。定义:        ①每个结点或是红色,或是黑色的        ②根节点是黑色的        ③叶结点(外部结点、NULL结点、失败结点)均是黑色的        ④不存在两个相邻的红结点(即红结点的父节点和孩子结点均是黑色)        ⑤对每个结点,从该节点到任一叶结点的简单路径上,所含黑结点的数目相同        口诀: 左根右,根叶黑 不红红,黑路同示例图:性质:        性质1:从根节点到叶结点的最长路径不大于最短路径的2倍 (红结点只能穿插 在各个黑结点中间)        性质2:有n个内部节点的红黑树高度          结论: 若根节点黑高为h,内部结点数(关键字)最多有 , 最少有示例图:红黑树的插入操作:红黑树的插入示例图:         红黑树的删除: 和“二叉排序树的删除”一样! 具体还是算了吧, 放过自己。。。        时间复杂度: 5.7 B树        B树,⼜称多路平衡查找树,B树中所被允许的孩⼦个数的最⼤值称为B树的阶,通常⽤m表示。 m阶B树的特性:        1)树中每个结点⾄多有m棵⼦树,即⾄多含有m-1个关键字。        2)若根结点不是终端结点,则⾄少有两棵⼦树。        3)除根结点外的所有⾮叶结点⾄少有 棵⼦树,即⾄少含有个关键字。         4) 所有的叶结点都出现在同⼀层次上,并且不带信息, ( 指向这些结点的指针为空 ) 。        5) 最小高度:    (n为关键字, 注意区分结点)        6) 最大高度:         7) 所有⼦树⾼度要相同        8) 叶结点对应查找失败的情况, 即n个关键字有n+1个叶子结点示例图: B树的插入(5阶为例):B树的删除:        1) 若被删除关键字在终端节点,则直接删除该关键字 (要注意节点关键字个数是否低于下限 ⌈m/2⌉ − 1)        2) 若被删除关键字在⾮终端节点,则⽤直接前驱或直接后继来替代被删除的关键字 删除77:删除38:删除90:        3) 若被删除关键字所在结点删除前的关键字个数低于下限,且此时与该结点相邻的左、右兄弟结 点的关键字个数均=⌈m/2⌉ − 1,则将关键字删除后与左(或右)兄弟结点及双亲结点中的关键字进⾏合并 删除49: 5.8 B+树⼀棵m阶的B+树需满⾜下列条件        1)每个分⽀结点最多有m棵⼦树(孩⼦结点)。        2)⾮叶根结点⾄少有两棵⼦树,其他每个分⽀结点⾄少有 ⌈m/2⌉ 棵⼦树。        3)结点的⼦树个数与关键字个数相等。        4)所有叶结点包含全部关键字及指向相应记录的指针,叶结点中将关键字按⼤⼩顺序排列,并且相邻叶结点按⼤⼩顺序相互链接起来        5)所有分⽀结点中仅包含它的各个⼦结点中关键字的最⼤值及指向其⼦结点的指针。所有⾮叶结点仅起索引作⽤,        6) 所有⼦树⾼度要相同B+树示例图:B+树与B树的对比图:5.9 哈希表(Hash)        根据数据元素的关键字 计算出它在散列表中的存储地址。        哈希函数: 建⽴了“关键字”→“存储地址”的映射关系。        冲突(碰撞):在散列表中插⼊⼀个数据元素时,需要根据关键字的值确定其存储地址,若 该地址已经存储了其他元素,则称这种情况为“冲突(碰撞)”        同义词:若不同的关键字通过散列函数映射到同⼀个存储地址,则称它们为“同义词”        复杂度分析:对于无冲突的Hash表而言,查找复杂度为O(1) 5.9.1 构造哈希函数        1) 除留余数法 —— H(key) = key % p, 取⼀个不⼤于m但最接近或等于m的质数p        适⽤场景:较为通⽤,只要关键字是整数即可        2) 直接定址法 —— H(key) = key 或 H(key) = a*key + b        适⽤场景:关键字分布基本连续        3) 数字分析法 —— 选取数码分布较为均匀的若⼲位作为散列地        适⽤场景:关键字集合已知,且关键字的某⼏个数码位分布均匀        4) 平⽅取中法(二次探测法)——取关键字的平⽅值的中间⼏位作为散列地址        适⽤场景:关键字的每位取值都不够均匀。5.9.2 处理冲突拉链法示意图:开放定址法:        1) 线性探测法        2) 平⽅探测法        3) 双散列法        4) 伪随机序列法示意图:        删除操作: 采用开放定址法时, 只能逻辑删除。        装填因子: 表中记录数 / 散列表长度 。        备注: 平均查找长度的查找失败包含不放元素的情况。(特殊: 根据散列函数来算: 2010真题)        聚集: 处理冲突的方法选取不当,而导致不同关键字的元素对同一散列地址进行争夺的现象第六章 排序        稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;        内排序 :所有排序操作都在内存中完成;        外排序 :由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行。参考博客:超详细十大经典排序算法总结(java代码)c或者cpp的也可以明白_Top_Spirit的博客-CSDN博客6.1 直接插入排序动图演示:         优化: 折半插入排序6.2 希尔排序        又称缩小增量排序, 先将待排序表分割成若⼲形如 L[i, i + d, i + 2d,…, i + kd] 的“特殊”⼦表,对各个⼦表分别进⾏直接插⼊排序。缩⼩增量d,重复上述过程,直到d=1为⽌。建议每次将增量缩⼩⼀半。示例图:6.3 冒泡排序动图演示:6.4 快速排序算法思想:        1) 在待排序表L[1…n]中任取⼀个元素pivot作为枢轴(或基准)        2) 通过⼀趟排序将待排序表划分为独⽴的两部分L[1…k-1]和L[k+1…n],使得L[1…k-1]中的所有元素⼩于pivot,L[k+1…n]中的所有元素⼤于等于 pivot,则pivot放在了其最终位置L(k)上,这个过程称为⼀次“划分”。        3) 然后分别递归地对两个⼦表重复上述过程,直每部分内只有⼀个元素或空为⽌,即所有元素放在了其最终位置上。示例图:  6.5 简单选择排序        算法思想: 每⼀趟在待排序元素中选取关键字最⼩的元素加⼊有序⼦序列。动画演示:6.6 堆排序        ⼤根堆: 若满⾜:L(i)≥L(2i)且L(i)≥L(2i+1) (1 ≤ i ≤n/2 )        ⼩根堆: 若满⾜:L(i)≤L(2i)且L(i)≤L(2i+1) (1 ≤ i ≤n/2 )大根堆示例图:6.6.1 建立大根堆        思路:从开始, 把所有⾮终端结点都检查⼀遍,是否满足大根堆的要求,如果不满⾜,则进⾏调整。若元素互换破坏了下⼀级的堆,则采⽤相同的方法继续往下调整(⼩元素不断“下坠”)小元素下坠示例图:          结论: 建堆的过程,关键字对⽐次数不超过4n,建堆时间复杂度=O(n)6.6.2 堆的插入与删除        插入: 将新增元素放到表尾, 而后根据大小根堆进行上升调整。        删除: 被删除的元素⽤堆底元素替代,然后让该 元素不断“下坠”,直到⽆法下坠为⽌排序动图演示:6.7 归并排序        该算法是采用分治法, 把两个或多个已经有序的序列合并成⼀个。2路归并图:        结论:n个元素进⾏k路归并排序,归并趟数= 6.8 基数排序 (低位优先)        基数排序是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;动图演示:         时间复杂度: ⼀趟分配O(n),⼀趟收集O(r),总共 d 趟分配、收集,总的时间复杂度=O(d(n+r)) , 其中把d为关键字拆 为d个部分, r为每个部分可能 取得 r 个值。基数排序适用场景:        ①数据元素的关键字可以⽅便地拆分为 d 组,且 d 较⼩        ②每组关键字的取值范围不⼤,即 r 较⼩        ③数据元素个数 n 较⼤如:内部排序总结:         基本有序:  直接插入(比较最少), 冒泡(趟数最少)6.9 外部排序        数据元素太多,⽆法⼀次全部读⼊内存进⾏排序, 读写磁盘的频率成为衡量外部排序算法的主要因素。示例图:多路归并:        结论: 采⽤多路归并可以减少归并趟数,从⽽减少磁盘I/O(读写)次数。对 r 个初始归并段,做k路归并,则归并树可⽤ k 叉树表示 若树⾼为h,则归并趟数 = h-1 = 。K越大, r越小, 读写磁盘次数越少。(缺点: k越大, 内部排序时间越大)6.9.1 败者树        使⽤k路平衡归并策略,选出⼀个最小元素需要对⽐关键字 (k-1)次,导致内部归并所需时间增加。因此引入败者树。示例图:        结论: 对于 k 路归并,第⼀次构造败者 树需要对⽐关键字 k-1 次 , 有了败者树,选出最⼩元素,只需对⽐关键字次6.9.2 置换-选择排序        使用置换-选择排序可以减少初始化归并段。示意图: 6.9.3 最佳归并树原理图:        注意:对于k叉归并,若初始归并段的数量⽆法构成严格的 k 叉归并树, 则需要补充⼏个⻓度为 0 的“虚段”,再进⾏ k 叉哈夫曼树的构造。示例图: 添加虚段数目: 难点:结束!  !  !注: 以上部分图片素材来自王道数据结构我要的图文并茂关注

大家在看

recommend-type

Frequency-comb-DPLL:数字锁相环软件,用于使用Red Pitaya锁定频率梳

数字锁相环,用于使用红色火龙果锁定频率梳 固件/软件允许使用此硬件来锁相频率梳。 更一般而言,它与硬件一起提供了一个数字控制盒,该数字控制盒可以支持双通道锁相环,包括输入rf信号的前端IQ检测。 因此,虽然此数字控制盒可用于锁相其他系统,但下面的讨论假定用户正在操作频率梳。 入门 从“发布部分”( )下载所需的文件: 可以访问Python GUI的完整源代码存储库; b。 红火龙果的SD卡映像(red_pitaya_dpll_2017-05-31.zip) 阅读并遵循“ RedPitaya DPLL.pdf的说明和操作手册”文件。 软件版本 所需的Python发行版是WinPython-64bit-3.7.2( )。 FPGA Vivado项目在Vivado 2015.4中进行了编译,但是仅使用该软件就不需要安装Vivado。 附加信息 可以从NIST数字控制箱的说明手册中获得更多信
recommend-type

VMware-VMRC (VMRC) 11.0.0-15201582 for Windows

使用这款远程控制台程序,连接到VMware EXSI 服务器,即可登录虚拟机桌面。 文件大小: 58.82 MB 文件类型: exe 发行日期: 2019-12-05 内部版本号: 15201582
recommend-type

FLUENT学习udf编程实例.pdf

FLUENT学习udf编程实例, 内部含有各种UDF实例,内容详实,解释清楚,希望对各位有帮助。最后附有案例,可以针对案例直接修改,写出符合自己要求的UDF。
recommend-type

现代密码学的答案习题

偏向于电子科大方面的教学,较为基础的信息概述和练习
recommend-type

C语言流程图生成工具

AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 它可以帮助程序员更好地理解程序 制作文档和可视化代码 支持C C++ VC++ Visual C++ NET Delphi Object Pascal 主要功能 根据源程序生成流程图 导出流程图到WORD文档中 展开 合拢流程图 自动生成一个 TreeView显示所有函数 过程 同步显示对应块的源程序和流程图 自定义流程图的配色方案 自定义流程图的大小和间距 根据格式自动排列程序 自由缩小 放大 移动流程图 显示程序行号 支持清除当前流程图 导出流程图到 bmp文件 发展前瞻 ① 支持各种语言 已经完成Pascal C 待完成:Java FoxPro Basic Fortan等; ② 支持反向操作 可以动态修改流程图 并可根据流程图生成相应的语言代码; ③ 结合Delphi专家 嵌入IDE直接运行 已经完成详见主页 操作说明 ① 打开一个或多个文件; ② 双击一个If For While Case Repeat Try begin的起始行 你就可以看到流程图; ③ 双击流程图中相应的框 可以同步显示程序块位置;">AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 [更多]

最新推荐

recommend-type

随机阻塞下毫米波通信的多波束功率分配”.zip

1.版本:matlab2014a/2019b/2024b 2.附赠案例数据可直接运行。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

基于分时电价与改进粒子群算法的电动汽车充放电优化调度策略研究

内容概要:本文探讨了基于分时电价和改进粒子群算法的电动汽车充放电优化调度策略。首先介绍了分时电价制度及其对电动汽车充放电的影响,随后详细解释了改进粒子群算法的工作原理以及如何应用于电动汽车的充放电调度。文中还提供了具体的Python代码实现,展示了如何通过定义电价信息、电池容量等参数并应用改进粒子群算法来找到最优的充电时间点。最后,文章总结了该方法的优势,并展望了未来的研究方向,如与智能电网和V2G技术的结合。 适合人群:对电动汽车充放电调度感兴趣的科研人员和技术开发者。 使用场景及目标:适用于希望优化电动汽车充放电策略以降低成本、提高电力系统效率的人群。主要目标是在不同电价时段内,通过智能调度实现最低成本或最高效率的充电。 其他说明:本文不仅提供理论分析,还有详细的代码实现,便于读者理解和实践。
recommend-type

步进电机脉冲精准计算方法

资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 根据步进电机的步进角、脉冲总数、减速比以及丝杠导程,计算出实现直线行走距离为1mm所需的脉冲数量。
recommend-type

【CAD入门基础课程】3.7 综合实战-使用极轴追踪方式绘制信号灯.avi

一、综合实战—使用极轴追踪方式绘制信号灯 实战目标:利用对象捕捉追踪和极轴追踪功能创建信号灯图形 技术要点:结合两种追踪方式实现精确绘图,适用于工程制图中需要精确定位的场景 1. 切换至AutoCAD 操作步骤: 启动AutoCAD 2016软件 打开随书光盘中的素材文件 确认工作空间为"草图与注释"模式 2. 绘图设置 1)草图设置对话框 打开方式:通过"工具→绘图设置"菜单命令 功能定位:该对话框包含捕捉、追踪等核心绘图辅助功能设置 2)对象捕捉设置 关键配置: 启用对象捕捉(F3快捷键) 启用对象捕捉追踪(F11快捷键) 勾选端点、中心、圆心、象限点等常用捕捉模式 追踪原理:命令执行时悬停光标可显示追踪矢量,再次悬停可停止追踪 3)极轴追踪设置 参数设置: 启用极轴追踪功能 设置角度增量为45度 确认后退出对话框 3. 绘制信号灯 1)绘制圆形 执行命令:"绘图→圆→圆心、半径"命令 绘制过程: 使用对象捕捉追踪定位矩形中心作为圆心 输入半径值30并按Enter确认 通过象限点捕捉确保圆形位置准确 2)绘制直线 操作要点: 选择"绘图→直线"命令 捕捉矩形上边中点作为起点 捕捉圆的上象限点作为终点 按Enter结束当前直线命令 重复技巧: 按Enter可重复最近使用的直线命令 通过圆心捕捉和极轴追踪绘制放射状直线 最终形成完整的信号灯指示图案 3)完成绘制 验证要点: 检查所有直线是否准确连接圆心和象限点 确认极轴追踪的45度增量是否体现 保存绘图文件(快捷键Ctrl+S)
recommend-type

基于MATLAB的蒙特卡洛抽样在电动汽车充放电负荷计算中的应用研究

内容概要:本文探讨了利用蒙特卡洛抽样方法在MATLAB仿真平台上对大规模电动汽车的充放电负荷进行计算的方法。研究内容涵盖电动汽车充电功率、电池容量、起始充电时间及每日行驶里程的概率密度分布的抽样生成,并在此基础上计算充放电负荷。文中详细介绍了蒙特卡洛抽样方法及其在电动汽车参数抽样中的应用,同时提供了完整的MATLAB代码实现,包括数据准备、抽样、负荷计算及结果可视化。此外,代码注释详尽,出图效果优秀,有助于理解和学习。 适合人群:电力系统研究人员、电动汽车行业从业者、高校师生及相关领域的科研工作者。 使用场景及目标:适用于需要评估电动汽车对电网影响的研究项目,旨在提高电网规划和运行效率,确保电力系统的稳定性和可靠性。 其他说明:本文不仅提供了详细的理论解释和技术实现,还附带了高质量的MATLAB代码,便于读者直接上手实践并进行二次开发。
recommend-type

Mockingbird v2:PocketMine-MP新防作弊机制详解

标题和描述中所涉及的知识点如下: 1. Mockingbird反作弊系统: Mockingbird是一个正在开发中的反作弊系统,专门针对PocketMine-MP服务器。PocketMine-MP是Minecraft Pocket Edition(Minecraft PE)的一个服务器软件,允许玩家在移动平台上共同游戏。随着游戏的普及,作弊问题也随之而来,因此Mockingbird的出现正是为了应对这种情况。 2. Mockingbird的版本迭代: 从描述中提到的“Mockingbird的v1变体”和“v2版本”的变化来看,Mockingbird正在经历持续的开发和改进过程。软件版本迭代是常见的开发实践,有助于修复已知问题,改善性能和用户体验,添加新功能等。 3. 服务器性能要求: 描述中强调了运行Mockingbird的服务器需要具备一定的性能,例如提及“WitherHosting的$ 1.25计划”,这暗示了反作弊系统对服务器资源的需求较高。这可能是因为反作弊机制需要频繁处理大量的数据和事件,以便及时检测和阻止作弊行为。 4. Waterdog问题: Waterdog是另一种Minecraft服务器软件,特别适合 PocketMine-MP。描述中提到如果将Mockingbird和Waterdog结合使用可能会遇到问题,这可能是因为两者在某些机制上的不兼容或Mockingbird对Waterdog的特定实现尚未完全优化。 5. GitHub使用及问题反馈: 作者鼓励用户通过GitHub问题跟踪系统来报告问题、旁路和功能建议。这是一个公共代码托管平台,广泛用于开源项目协作,便于开发者和用户进行沟通和问题管理。作者还提到请用户在GitHub上发布问题而不是在评论区留下不好的评论,这体现了良好的社区维护和用户交流的实践。 6. 软件标签: “pocketmine”和“anticheat”(反作弊)作为标签,说明Mockingbird是一个特别为PocketMine-MP平台开发的反作弊软件。而“PHP”则可能指的是Mockingbird的开发语言,虽然这个信息与常见的Java或C++等开发Minecraft相关软件的语言不同,但并不排除使用PHP进行服务器端开发的可能性,尤其是对于处理动态网页、服务器端脚本等场景。 7. 压缩包文件: “Mockingbird-stable”是一个文件名称,很可能表示这是一个包含最新稳定版Mockingbird反作弊系统的压缩包。通常,这样的文件名中包含“stable”意味着这是一个经过充分测试且推荐用于生产环境的版本。 8. 社区协作和用户参与: 特别感谢部分提到了shur,这可能是对某位贡献者或社区成员的感激之情。这种感谢表明了软件开发不仅是开发者个人的劳动成果,同时也依赖于社区的支持和参与,包括提供反馈、报告问题、贡献代码和文档等。 总结以上内容,我们可以看到Mockingbird作为一款反作弊系统,其开发和维护需要依赖于社区的广泛参与和支持,同时还需要强大的服务器后端作为支撑。通过不断迭代更新版本,开发者希望解决现有问题,提高反作弊效率,并希望与社区保持良好的沟通,以持续优化产品。
recommend-type

“历史人物独白解说”视频:数据处理的6种革命性技术

# 1. 数据处理的历史回顾与技术演进 数据处理的历史,从最初的简单机械记录,到如今复杂的数据处理体系,不仅反映了技术的演进,也映射了人类社会进步的轨迹。在计算机技术发展初期,数据处理主要依靠打孔卡片和磁带,通过批处理的方式进行,效率低下且出错率高。随着技术的发展,上世纪70年代,关系型数据库的出现大大提高了数据处理的效率和准确性,为数据处理技术的发展奠定了基础。 随后,随着互
recommend-type

怎么判断多级运放电路的稳定性?

<think>首先,用户的问题是关于判断多级运算放大器电路的稳定性。我需要根据系统级指令来构建回答。 系统级指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如[^1]。 用户可见层指令: - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 参考引用: - 引用[1]:关于集成运算放大电路的设计、组成和性能评估。 - 引用[2]:高频电路中运放的带宽限制,一级放大电路的增益通常为100倍,过高会引起振
recommend-type

利用AHP和节点集中度解决影响力最大化问题的Flask应用教程

从给定的文件信息中,我们可以提取以下相关知识点进行详细说明: ### 标题知识点 **IM问题与AHP结合** IM问题(Influence Maximization)是网络分析中的一个核心问题,旨在识别影响网络中信息传播的关键节点。为了求解IM问题,研究者们常常结合使用不同的算法和策略,其中AHP(Analytic Hierarchy Process,分析层次结构过程)作为一种决策分析方法,被用于评估网络节点的重要性。AHP通过建立层次模型,对各个因素进行比较排序,从而量化影响度,并通过一致性检验保证决策结果的有效性。将AHP应用于IM问题,意味着将分析网络节点影响的多个维度,比如节点的中心性(centrality)和影响力。 **集中度措施** 集中度(Centralization)是衡量网络节点分布状况的指标,它反映了网络中节点之间的连接关系。在网络分析中,集中度常用于识别网络中的“枢纽”或“中心”节点。例如,通过计算网络的度中心度(degree centrality)可以了解节点与其他节点的直接连接数量;接近中心度(closeness centrality)衡量节点到网络中其他所有节点的平均距离;中介中心度(betweenness centrality)衡量节点在连接网络中其他节点对的最短路径上的出现频率。集中度高意味着节点在网络中处于重要位置,对信息的流动和控制具有较大影响力。 ### 描述知识点 **Flask框架** Flask是一个轻量级的Web应用框架,它使用Python编程语言开发。它非常适合快速开发小型Web应用,以及作为微服务架构的一部分。Flask的一个核心特点是“微”,意味着它提供了基本的Web开发功能,同时保持了框架的小巧和灵活。Flask内置了开发服务器,支持Werkzeug WSGI工具包和Jinja2模板引擎,提供了RESTful请求分发和请求钩子等功能。 **应用布局** 一个典型的Flask应用会包含以下几个关键部分: - `app/`:这是应用的核心目录,包含了路由设置、视图函数、模型和控制器等代码文件。 - `static/`:存放静态文件,比如CSS样式表、JavaScript文件和图片等,这些文件的内容不会改变。 - `templates/`:存放HTML模板文件,Flask将使用这些模板渲染最终的HTML页面。模板语言通常是Jinja2。 - `wsgi.py`:WSGI(Web Server Gateway Interface)是Python应用程序和Web服务器之间的一种标准接口。这个文件通常用于部署到生产服务器时,作为应用的入口点。 **部署到Heroku** Heroku是一个支持多种编程语言的云平台即服务(PaaS),它允许开发者轻松部署、运行和管理应用。部署Flask应用到Heroku,需要几个步骤:首先,创建一个Procfile文件,告知Heroku如何启动应用;其次,确保应用的依赖关系被正确管理,通常通过一个requirements.txt文件列出所有依赖;最后,使用Git将应用推送到Heroku提供的仓库,Heroku会自动识别Procfile并开始部署过程。 ### 标签知识点 **HTML** HTML(HyperText Markup Language,超文本标记语言)是用于创建网页和Web应用的标准标记语言。它定义了网页的结构和内容。HTML文件由一系列元素组成,这些元素通过标签(tags)来表示,如`<p>`代表段落,`<a>`代表链接,`<img>`代表图像等。HTML5是当前使用的最新版本,支持更多的特性,如离线存储、多媒体和图形等。 ### 压缩包子文件的文件名称列表知识点 **IMproblem-using-AHP-and-centralisation-of-nodes-master** 这里的文件名称“IMproblem-using-AHP-and-centralisation-of-nodes-master”表明了一个GitHub仓库的名称,其中包含了源代码以及与项目相关的所有文件。从名称中可以看出,该仓库是关于如何结合AHP和节点集中度分析来解决IM问题的Flask应用程序。文件名中的“master”表明这是仓库的主分支(现在叫做main分支),它是项目最新的、可部署的代码版本。 综合来看,本段信息为我们提供了构建和部署一个使用Flask框架、针对IM问题使用AHP和节点集中度分析的Web应用的方法和步骤。同时,介绍了应用在不同环节中所需技术和组件的详细知识点。
recommend-type

视频内容自动生成算法:突破性的8大最新进展

# 1. 视频内容自动生成算法概述 ## 算法发展背景 随着人工智能技术的迅速发展,视频内容自动生成算法已经成为媒体和娱乐行业的重要工具。这些算法能够自动编辑和合成视频内容,使内容创作者能够以较低的成本和时间生成高质量的视频。从社交媒体动态到在线教育内容,视频内容自动生成的应用场景正在不断扩大。 ## 核心技术简述 视