D:\anaconda3\envs\YoloV5_PyQt5-main\python.exe C:/Users/asus/Desktop/UI界面/YoloV5_PyQt5-main/detect_logical.py Traceback (most recent call last): File "C:/Users/asus/Desktop/UI界面/YoloV5_PyQt5-main/detect_logical.py", line 10, in <module> import torch File "D:\anaconda3\envs\YoloV5_PyQt5-main\lib\site-packages\torch\__init__.py", line 219, in <module> raise ImportError(textwrap.dedent(''' ImportError: Failed to load PyTorch C extensions: It appears that PyTorch has loaded the `torch/_C` folder of the PyTorch repository rather than the C extensions which are expected in the `torch._C` namespace. This can occur when using the `install` workflow. e.g. $ python setup.py install && python -c "import torch" This error can generally be solved using the `develop` workflow $ python setup.py develop && python -c "import torch" # This should succeed or by running Python from a different directory. 进程已结束,退出代码1

时间: 2024-04-03 14:37:22 浏览: 378
这似乎是一个错误信息,它表明在运行某个 Python 脚本时发生了错误。根据错误信息中的内容来看,这个错误可能与 PyTorch 的 C 扩展有关,可能是 PyTorch 加载了不正确的路径导致的。可以尝试使用 `develop` workflow 或者在不同的目录下运行 Python,来解决这个问题。
相关问题

(yolov12) C:\Users\interesting\Desktop\yolov12-main>C:/Users/interesting/.conda/envs/yolov12/python.exe c:/Users/interesting/Desktop/yolov12-main/A_main.py Traceback (most recent call last): File "c:\Users\interesting\Desktop\yolov12-main\A_main.py", line 4, in <module> from PyQt5 import QtWidgets ModuleNotFoundError: No module named 'PyQt5.sip'

<think>好的,我现在需要解决用户遇到的错误:ModuleNotFoundError: No module named 'PyQt5.sip'。用户是在运行YOLOv12的A_main.py时遇到这个问题,错误提示缺少PyQt5.sip模块。 首先,我需要了解这个错误的原因。通常,当Python提示找不到某个模块时,最常见的原因是该模块没有安装,或者安装的版本不兼容。PyQt5是一个用于创建图形用户界面的库,而sip是PyQt的依赖项,用于生成Python绑定。可能用户在安装PyQt5时没有正确安装sip,或者安装的PyQt5版本与sip不兼容。 接下来,我应该考虑可能的解决方案。通常,安装PyQt5会包含sip,但有时候可能需要单独安装或升级。例如,使用pip安装PyQt5时会自动安装sip,但用户可能安装的是不带sip的版本,或者环境中的sip被损坏了。 我需要确认PyQt5和sip的正确安装方式。可能的步骤包括: 1. 检查PyQt5是否已安装。如果没有安装,建议用户安装。 2. 如果已安装,可能是sip模块缺失,需要单独安装或升级。 3. 确保安装的PyQt5和sip版本兼容。 4. 检查虚拟环境是否正确激活,因为用户使用的是conda环境,可能环境中的包不完整。 另外,用户使用的是conda环境,可能需要使用conda命令来安装PyQt5,或者使用pip安装。有时候conda和pip混用可能导致依赖问题,需要确保安装来源一致。 可能还需要考虑操作系统的影响,比如Windows、Linux或Mac可能会有不同的安装方式。但根据用户的路径(C:\Users),可以判断是Windows系统,因此安装命令需要适合Windows。 此外,用户提到的yolov12-main可能是一个自定义项目,需要确认项目是否对PyQt5有特定版本要求。如果项目依赖旧版PyQt5,而用户安装了新版,可能会出现兼容性问题。 总结可能的解决步骤: - 确保PyQt5和sip已正确安装,使用pip install PyQt5和pip install PyQt5.sip。 - 如果已经安装,尝试升级或重新安装。 - 检查conda环境中是否正确安装了这些包,可能需要使用conda install命令。 - 确保虚拟环境激活,并且安装位置正确。 在给出答案时,需要分步骤说明,并考虑到用户可能对命令行操作不熟悉,因此要给出具体的命令示例。同时,提醒用户注意环境激活和安装路径的问题,避免在全局环境中安装导致环境混乱。</think>### **解决 `ModuleNotFoundError: No module named 'PyQt5.sip'` 的逐步指南** --- #### **1. 问题定位** 错误提示表明Python环境中缺少 `PyQt5.sip` 模块。`PyQt5.sip` 是PyQt5的核心依赖库,用于处理Python与C++之间的接口绑定。此问题通常由以下原因导致: - PyQt5未正确安装 - SIP库未安装或版本不兼容 - 虚拟环境未激活或依赖未安装到当前环境 --- #### **2. 解决方案** ##### **2.1 通过pip安装PyQt5和SIP** ```bash # 激活你的conda环境(假设环境名为yolov12) conda activate yolov12 # 确保pip已更新 pip install --upgrade pip # 安装PyQt5和SIP pip install PyQt5 PyQt5-sip ``` **注意**: - PyQt5 >=5.11 版本后,`PyQt5-sip` 通常会自动安装,但部分系统需单独指定。 - 如果安装失败,尝试使用管理员权限运行命令(Windows下右键点击命令提示符选择“以管理员身份运行”)。 ##### **2.2 通过conda安装(推荐)** ```bash conda activate yolov12 conda install -c anaconda pyqt=5.15.7 # 指定兼容版本 ``` ##### **2.3 验证安装** ```python # 在Python交互环境中测试 import PyQt5 print(PyQt5.__version__) # 应输出版本号(如5.15.7) from PyQt5 import sip # 确认sip可导入 ``` --- #### **3. 常见问题排查** ##### **3.1 环境路径冲突** - **现象**:安装后仍报错 - **解决**: 1. 检查是否在正确的conda环境中安装: ```bash conda env list # 查看所有环境 conda activate yolov12 # 确保激活目标环境 ``` 2. 清除残留安装: ```bash pip uninstall PyQt5 PyQt5-sip conda remove pyqt ``` 3. 重新安装(优先使用conda)。 ##### **3.2 版本兼容性问题** - **现象**:PyQt5与Python版本不匹配(如Python 3.11+需PyQt5 >=5.15.4) - **解决**: ```bash # 查看Python版本 python --version # 安装指定版本PyQt5 pip install PyQt5==5.15.7 PyQt5-sip==12.11.0 ``` --- #### **4. 系统级修复(Windows专用)** 如果上述方法无效,尝试以下操作: 1. 安装Microsoft Visual C++ Redistributable: [下载地址](https://aka.ms/vs/17/release/vc_redist.x64.exe) 2. 安装Windows SDK: ```bash choco install windows-sdk-10.1 -y # 需预先安装Chocolatey包管理器 ``` --- #### **5. 备选方案** 如果仍无法解决,尝试以下替代库: ```bash # 安装PySide6(Qt官方Python绑定) pip install pyside6 ``` 然后在代码中替换导入语句: ```python from PySide6 import QtWidgets # 替代 from PyQt5 import QtWidgets ``` --- ### **总结** | 步骤 | 操作 | 命令示例 | |------|------|----------| | 1 | 激活conda环境 | `conda activate yolov12` | | 2 | 安装PyQt5 | `conda install -c anaconda pyqt=5.15.7` 或 `pip install PyQt5 PyQt5-sip` | | 3 | 验证安装 | `python -c "from PyQt5 import sip"` | 若问题持续,请检查以下事项: - Conda环境是否激活 - 网络代理是否阻碍包下载 - 系统权限是否足够(Windows建议管理员模式运行终端)

Traceback (most recent call last): File "D:\ptcharm\project\pythonProject\yolov5-5.0\yolov5-5.0\train.py", line 543, in <module> Traceback (most recent call last): File "<string>", line 1, in <module> File "D:\ANACONDA\envs\yolov5_new\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) train(hyp, opt, device, tb_writer) File "D:\ANACONDA\envs\yolov5_new\lib\multiprocessing\spawn.py", line 126, in _main File "D:\ptcharm\project\pythonProject\yolov5-5.0\yolov5-5.0\train.py", line 199, in train self = reduction.pickle.load(from_parent) EOFError: Ran out of input testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader File "D:\ptcharm\project\pythonProject\yolov5-5.0\yolov5-5.0\utils\datasets.py", line 79, in create_dataloader dataloader = loader(dataset, File "D:\ptcharm\project\pythonProject\yolov5-5.0\yolov5-5.0\utils\datasets.py", line 97, in __init__ self.iterator = super().__iter__() File "D:\ANACONDA\envs\yolov5_new\lib\site-packages\torch\utils\data\dataloader.py", line 491, in __iter__ return self._get_iterator() File "D:\ANACONDA\envs\yolov5_new\lib\site-packages\torch\utils\data\dataloader.py", line 422, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "D:\ANACONDA\envs\yolov5_new\lib\site-packages\torch\utils\data\dataloader.py", line 1146, in __init__ w.start() File "D:\ANACONDA\envs\yolov5_new\lib\multiprocessing\process.py", line 121, in start self._popen = self._Popen(self) File "D:\ANACONDA\envs\yolov5_new\lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "D:\ANACONDA\envs\yolov5_new\lib\multiprocessing\context.py", line 327, in _Popen return Popen(process_obj) File "D:\ANACONDA\envs\yolov5_new\lib\multiprocessing\popen_spawn_win32.py", line 93, in __init__ reduction.dump(process_obj, to_child) File "D:\ANA

<think>好的,我现在要解决用户遇到的YOLOv5训练中的EOFError: Ran out of input问题。用户提到是在Windows下使用PyTorch的DataLoader时出现的,而且可能和多线程有关。我需要根据提供的引用内容来找出解决方法。 首先,我需要理解这个错误的原因。根据引用[2]和[3],这个错误通常出现在Windows系统中,当DataLoader的num_workers参数大于0时。Windows的多进程实现和Unix系统不同,可能在数据加载时出现序列化问题,导致子进程无法正确读取数据,从而引发EOFError。 接下来,用户提供的引用中多次提到将num_workers设为0可以解决问题,比如引用[3]和[4]。但这样会影响数据加载速度,因为主进程需要自己处理数据加载,可能成为瓶颈。但这是最直接的解决方法。 另外,引用[5]提到num_workers的设置需要根据机器性能调整,可能逐渐增加直到性能不再提升。但用户可能是在Windows环境下,所以可能需要其他优化方法,比如确保数据集路径正确、检查数据格式是否正确,或者使用更小的batch size减少内存压力。 可能的解决步骤应该是先尝试将num_workers设为0,看看问题是否解决。如果可行,再考虑其他优化。同时需要检查数据集是否有问题,比如损坏的文件或路径错误,这些也可能导致数据加载失败。此外,确保所有依赖库的版本兼容,比如PyTorch和YOLOv5的版本是否匹配,避免因版本问题导致的多进程错误。 另外,用户可能没有正确设置数据集路径,或者数据加载过程中出现异常,比如文件读取失败。需要检查数据集的路径是否正确,图像文件是否完整,标签文件是否存在且格式正确。YOLOv5的数据加载部分可能涉及自定义的Dataset类,如果其中有错误,也可能导致多进程下的问题。 还有一个可能是共享内存的问题,在Windows中,如果共享内存不足,可能导致多进程数据加载失败。可以尝试减少batch size或者num_workers的数量,但根据引用[3],设为0是最直接的解决方法。 总结下来,解决方案的步骤应该是: 1. 修改num_workers为0,这是最快的解决方法。 2. 检查数据集路径和完整性,确保数据正确加载。 3. 考虑其他优化方法,比如升级PyTorch版本,调整batch size,或者使用更高效的数据预处理方式。 4. 如果必须使用多进程,可能需要切换到Linux系统,或者在Windows中寻找替代方案,比如使用更稳定的多进程库。 同时,需要提醒用户,将num_workers设为0可能会影响训练速度,但可以暂时解决问题。在可能的情况下,建议在Linux环境下进行训练,以避免此类问题。</think>针对YOLOv5训练时出现的`EOFError: Ran out of input`问题,以下是逐步解决方法: --- ### **步骤1:修改`num_workers`参数** 这是Windows系统下最常见且直接的解决方案。在YOLOv5的DataLoader配置中,将`num_workers`设为`0`,强制使用主进程加载数据,避免多进程问题。 **修改方法**: 在YOLOv5的训练脚本(如`train.py`)中,找到`--workers`参数并设为`0`: ```bash python train.py --workers 0 ``` 或在代码中直接指定: ```python # data_loader配置示例 train_loader = DataLoader(..., num_workers=0, ...) ``` **原因**:Windows的多进程实现(`spawn`方式)与Unix(`fork`方式)不同,容易因进程间通信问题导致数据加载失败[^3][^4]。 --- ### **步骤2:检查数据集路径和格式** 若`num_workers=0`仍报错,需排查数据集问题: 1. **路径合法性**:确保数据集的`train.txt`/`val.txt`中的文件路径无空格或特殊字符(如`#`, `&`)。 2. **标签文件完整性**:检查标签文件(`.txt`)是否为空或损坏。 3. **图像文件完整性**:确认图像文件未被破坏,可用工具(如PIL)批量验证: ```python from PIL import Image for img_path in dataset_files: try: Image.open(img_path).verify() except Exception as e: print(f"损坏文件:{img_path}") ``` --- ### **步骤3:调整其他参数优化性能** 虽然`num_workers=0`会降低数据加载速度,但可通过以下方式缓解: 1. **增大`batch_size`**:减少数据加载频率。 2. **启用`pin_memory=True`**:加速CPU到GPU的数据传输。 3. **升级硬件**:使用SSD硬盘替代机械硬盘,提升I/O速度。 --- ### **步骤4:尝试升级PyTorch和YOLOv5** 某些版本兼容性问题可能导致多进程异常。升级到最新版本: ```bash pip install --upgrade torch torchvision yolov5 ``` --- ### **步骤5(可选):切换到Linux环境** Linux对多进程支持更稳定。若需保留`num_workers>0`,建议在Linux下训练[^5]。 --- ### **总结** - **直接方案**:`num_workers=0`[^3] - **根本方案**:检查数据集完整性或切换至Linux环境。 - **性能平衡**:通过调整`batch_size`和`pin_memory`弥补单进程加载的劣势。 ---
阅读全文

相关推荐

D:\42\yolov5-mask-42-master\yolov5-mask-42-master>conda create -n py14 python==3.8 Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 4.4.10 latest version: 25.1.1 Please update conda by running $ conda update -n base conda ## Package Plan ## environment location: D:\Anaconda\envs\py14 added / updated specs: - python==3.8 The following packages will be downloaded: package | build ---------------------------|----------------- python-3.8.0 | hff0d562_2 19.6 MB https://mirrors.ustc.edu.cn/anaconda/pkgs/main sqlite-3.45.3 | h2bbff1b_0 1.4 MB https://mirrors.ustc.edu.cn/anaconda/pkgs/main setuptools-75.1.0 | py38haa95532_0 1.7 MB https://mirrors.ustc.edu.cn/anaconda/pkgs/main openssl-1.1.1w | h2bbff1b_0 5.8 MB https://mirrors.ustc.edu.cn/anaconda/pkgs/main vs2015_runtime-14.42.34433 | he0abc0d_4 2.3 MB https://mirrors.ustc.edu.cn/anaconda/pkgs/main vc-14.42 | haa95532_4 10 KB https://mirrors.ustc.edu.cn/anaconda/pkgs/main pip-24.2 | py38haa95532_0 2.4 MB https://mirrors.ustc.edu.cn/anaconda/pkgs/main ca-certificates-2025.2.25 | haa95532_0 171 KB https://mirrors.ustc.edu.cn/anaconda/pkgs/main wheel-0.44.0 | py38haa95532_0 132 KB https://mirrors.ustc.edu.cn/anaconda/pkgs/main ------------------------------------------------------------ Total: 33.5 MB The following NEW packages will be INSTALLED: ca-certificates: 2025.2.25-haa95532_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main openssl: 1.1.1w-h2bbff1b_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main pip: 24.2-py38haa95532_0 https://mirrors.ustc.edu.cn/anaconda/pkgs

F:\Anaconda\anaconda\envs\yolov8_pytorch\python.exe F:\Anaconda\anaconda\envs\yolov8_pytorch\训练脚本.py Traceback (most recent call last): File "F:\Anaconda\anaconda\envs\yolov8_pytorch\训练脚本.py", line 7, in <module> from ultralytics import YOLO File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\__init__.py", line 11, in <module> from ultralytics.models import NAS, RTDETR, SAM, YOLO, YOLOE, FastSAM, YOLOWorld File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\models\__init__.py", line 3, in <module> from .fastsam import FastSAM File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\models\fastsam\__init__.py", line 3, in <module> from .model import FastSAM File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\models\fastsam\model.py", line 5, in <module> from ultralytics.engine.model import Model File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\engine\model.py", line 12, in <module> from ultralytics.engine.results import Results File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\engine\results.py", line 15, in <module> from ultralytics.data.augment import LetterBox File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\data\__init__.py", line 3, in <module> from .base import BaseDataset File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\data\base.py", line 16, in <module> from ultralytics.data.utils import FORMATS_HELP_MSG, HELP_URL, IMG_FORMATS, check_file_speeds File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\data\utils.py", line 17, in <module> from ultralytics.nn.autobackend import check_class_names File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\nn\__init__.py", line 3, in <module> from .tasks import ( File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\nn\tasks.py", line 15, in <module> from ultralytics.nn.modules import CBAM #自己修改 File "F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\nn\modules\__init__.py", line 106, in <module> from .cbam import RepulsionLoss#自己添加 ImportError: cannot import name 'RepulsionLoss' from 'ultralytics.nn.modules.cbam' (F:\Anaconda\anaconda\envs\yolov8_pytorch\lib\site-packages\ultralytics\nn\modules\cbam.py) 进程已结束,退出代码为 1 什么意思?

Traceback (most recent call last): File "F:\project\YOLOV8\ultralytics-8.1.0\ultralytics\train.py", line 1, in <module> from ultralytics import YOLO File "F:\Anaconda\envs\yolov8_env\lib\site-packages\ultralytics\__init__.py", line 11, in <module> from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld File "F:\Anaconda\envs\yolov8_env\lib\site-packages\ultralytics\models\__init__.py", line 3, in <module> from .fastsam import FastSAM File "F:\Anaconda\envs\yolov8_env\lib\site-packages\ultralytics\models\fastsam\__init__.py", line 3, in <module> from .model import FastSAM File "F:\Anaconda\envs\yolov8_env\lib\site-packages\ultralytics\models\fastsam\model.py", line 5, in <module> from ultralytics.engine.model import Model File "F:\Anaconda\envs\yolov8_env\lib\site-packages\ultralytics\engine\model.py", line 8, in <module> import torch File "F:\Anaconda\envs\yolov8_env\lib\site-packages\torch\__init__.py", line 2016, in <module> from torch import _VF as _VF, functional as functional # usort: skip File "F:\Anaconda\envs\yolov8_env\lib\site-packages\torch\functional.py", line 7, in <module> import torch.nn.functional as F File "F:\Anaconda\envs\yolov8_env\lib\site-packages\torch\nn\__init__.py", line 8, in <module> from torch.nn.modules import * # usort: skip # noqa: F403 File "F:\Anaconda\envs\yolov8_env\lib\site-packages\torch\nn\modules\__init__.py", line 1, in <module> from .module import Module # usort: skip File "F:\Anaconda\envs\yolov8_env\lib\site-packages\torch\nn\modules\module.py", line 29, in <module> from torch.utils._python_dispatch import is_traceable_wrapper_subclass File "F:\Anaconda\envs\yolov8_env\lib\site-packages\torch\utils\__init__.py", line 8, in <module> from torch.utils import ( File "F:\Anaconda\envs\yolov8_env\lib\site-packages\torch\utils\data\__init__.py", line 1, in <module> from torch.utils.data.dataloader import ( File "F:\Anaconda\envs\y

PS C:\Users\钱肖海\Desktop\yolov5-7.0> & D:/anaconda/envs/yolov5/python.exe c:/Users/钱肖海/Desktop/yolov5-7.0/train.py Traceback (most recent call last): File "D:\anaconda\envs\yolov5\lib\site-packages\git\__init__.py", line 296, in <module> refresh() File "D:\anaconda\envs\yolov5\lib\site-packages\git\__init__.py", line 287, in refresh if not Git.refresh(path=path): File "D:\anaconda\envs\yolov5\lib\site-packages\git\cmd.py", line 631, in refresh raise ImportError(err) ImportError: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh(<full-path-to-git-executable>) All git commands will error until this is rectified. This initial message can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|silent|none|n|0: for no message or exception - warn|w|warning|log|l|1: for a warning message (logging level CRITICAL, displayed by default) - error|e|exception|raise|r|2: for a raised exception Example: export GIT_PYTHON_REFRESH=quiet The above exception was the direct cause of the following exception: Traceback (most recent call last): File "c:/Users/钱肖海/Desktop/yolov5-7.0/train.py", line 66, in <module> GIT_INFO = check_git_info() File "D:\anaconda\envs\yolov5\lib\contextlib.py", line 75, in inner return func(*args, **kwds) File "c:\Users\钱肖海\Desktop\yolov5-7.0\utils\general.py", line 350, in check_git_info import git File "D:\anaconda\envs\yolov5\lib\site-packages\git\__init__.py", line 298, in <module> raise ImportError("Failed to initialize: {0}".format(_exc)) from _exc ImportError: Failed to initialize: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - expl

(li) lenovo@lenovo-ThinkStation-P920:/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan$ pip install -v --no-cache-dir --force-reinstall . 2>&1 | tee build.log Using pip 25.1 from /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/pip (python 3.10) Looking in indexes: https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple Processing /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan Preparing metadata (setup.py): started Running command python setup.py egg_info A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running egg_info creating /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info writing /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/PKG-INFO writing dependency_links to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/dependency_links.txt writing requirements to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/requires.txt writing top-level names to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/top_level.txt writing manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' reading manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' writing manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' Preparing metadata (setup.py): finished with status 'done' Collecting torch (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0a/7c/0a5b3aee977596459ec45be2220370fde8e017f651fecc40522fd478cb1e/torch-2.7.1-cp310-cp310-manylinux_2_28_x86_64.whl (821.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 821.2/821.2 MB 1.1 MB/s eta 0:00:00 Collecting packaging (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl (66 kB) Collecting ninja (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/eb/7a/455d2877fe6cf99886849c7f9755d897df32eaf3a0fba47b56e615f880f7/ninja-1.11.1.4-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (422 kB) Collecting einops (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/87/62/9773de14fe6c45c23649e98b83231fffd7b9892b6cf863251dc2afa73643/einops-0.8.1-py3-none-any.whl (64 kB) Collecting filelock (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4d/36/2a115987e2d8c300a974597416d9de88f2444426de9571f4b59b2cca3acc/filelock-3.18.0-py3-none-any.whl (16 kB) Collecting typing-extensions>=4.10.0 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/69/e0/552843e0d356fbb5256d21449fa957fa4eff3bbc135a74a691ee70c7c5da/typing_extensions-4.14.0-py3-none-any.whl (43 kB) Collecting sympy>=1.13.3 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl (6.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.3/6.3 MB 946.1 kB/s eta 0:00:00 Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/eb/8d/776adee7bbf76365fdd7f2552710282c79a4ead5d2a46408c9043a2b70ba/networkx-3.5-py3-none-any.whl (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6c/4f/ccdb8ad3a38e583f214547fd2f7ff1fc160c43a75af88e6aec213404b96a/networkx-3.5.tar.gz (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3f/a1/46c1b6e202e3109d2a035b21a7e5534c5bb233ee30752d7f16a0bd4c3989/networkx-3.5rc0-py3-none-any.whl (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/90/7e/0319606a20ced20730806b9f7fe91d8a92f7da63d76a5c388f87d3f7d294/networkx-3.5rc0.tar.gz (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Collecting networkx (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl (1.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 883.3 kB/s eta 0:00:00 Collecting jinja2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl (134 kB) Collecting fsspec (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bb/61/78c7b3851add1481b048b5fdc29067397a1784e2910592bc81bb3f608635/fsspec-2025.5.1-py3-none-any.whl (199 kB) Collecting nvidia-cuda-nvrtc-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/75/2e/46030320b5a80661e88039f59060d1790298b4718944a65a7f2aeda3d9e9/nvidia_cuda_nvrtc_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl (23.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cuda-runtime-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e1/23/e717c5ac26d26cf39a27fbc076240fad2e3b817e5889d671b67f4f9f49c5/nvidia_cuda_runtime_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (897 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 897.7/897.7 kB 1.7 MB/s eta 0:00:00 Collecting nvidia-cuda-cupti-cu12==12.6.80 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/49/60/7b6497946d74bcf1de852a21824d63baad12cd417db4195fc1bfe59db953/nvidia_cuda_cupti_cu12-12.6.80-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.9/8.9 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cudnn-cu12==9.5.1.17 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/2a/78/4535c9c7f859a64781e43c969a3a7e84c54634e319a996d43ef32ce46f83/nvidia_cudnn_cu12-9.5.1.17-py3-none-manylinux_2_28_x86_64.whl (571.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 571.0/571.0 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cublas-cu12==12.6.4.1 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/af/eb/ff4b8c503fa1f1796679dce648854d58751982426e4e4b37d6fce49d259c/nvidia_cublas_cu12-12.6.4.1-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (393.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 393.1/393.1 MB 889.2 kB/s eta 0:00:00 Collecting nvidia-cufft-cu12==11.3.0.4 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8f/16/73727675941ab8e6ffd86ca3a4b7b47065edcca7a997920b831f8147c99d/nvidia_cufft_cu12-11.3.0.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (200.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 200.2/200.2 MB 761.5 kB/s eta 0:00:00 Collecting nvidia-curand-cu12==10.3.7.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/73/1b/44a01c4e70933637c93e6e1a8063d1e998b50213a6b65ac5a9169c47e98e/nvidia_curand_cu12-10.3.7.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (56.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.3/56.3 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cusolver-cu12==11.7.1.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f0/6e/c2cf12c9ff8b872e92b4a5740701e51ff17689c4d726fca91875b07f655d/nvidia_cusolver_cu12-11.7.1.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (158.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.2/158.2 MB 881.4 kB/s eta 0:00:00 Collecting nvidia-cusparse-cu12==12.5.4.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/06/1e/b8b7c2f4099a37b96af5c9bb158632ea9e5d9d27d7391d7eb8fc45236674/nvidia_cusparse_cu12-12.5.4.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (216.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 216.6/216.6 MB 1.4 MB/s eta 0:00:00 Collecting nvidia-cusparselt-cu12==0.6.3 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3b/9a/72ef35b399b0e183bc2e8f6f558036922d453c4d8237dab26c666a04244b/nvidia_cusparselt_cu12-0.6.3-py3-none-manylinux2014_x86_64.whl (156.8 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 156.8/156.8 MB 887.6 kB/s eta 0:00:00 Collecting nvidia-nccl-cu12==2.26.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/67/ca/f42388aed0fddd64ade7493dbba36e1f534d4e6fdbdd355c6a90030ae028/nvidia_nccl_cu12-2.26.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (201.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 201.3/201.3 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-nvtx-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/56/9a/fff8376f8e3d084cd1530e1ef7b879bb7d6d265620c95c1b322725c694f4/nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89 kB) Collecting nvidia-nvjitlink-cu12==12.6.85 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9d/d7/c5383e47c7e9bf1c99d5bd2a8c935af2b6d705ad831a7ec5c97db4d82f4f/nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl (19.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 19.7/19.7 MB 1.9 MB/s eta 0:00:00 Collecting nvidia-cufile-cu12==1.11.1.6 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b2/66/cc9876340ac68ae71b15c743ddb13f8b30d5244af344ec8322b449e35426/nvidia_cufile_cu12-1.11.1.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 1.9 MB/s eta 0:00:00 Collecting triton==3.3.1 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8d/a9/549e51e9b1b2c9b854fd761a1d23df0ba2fbc60bd0c13b489ffa518cfcb7/triton-3.3.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (155.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 155.6/155.6 MB 758.4 kB/s eta 0:00:00 Collecting setuptools>=40.8.0 (from triton==3.3.1->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 872.9 kB/s eta 0:00:00 Collecting mpmath<1.4,>=1.1.0 (from sympy>=1.13.3->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl (536 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 919.5 kB/s eta 0:00:00 Collecting MarkupSafe>=2.0 (from jinja2->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/22/35/137da042dfb4720b638d2937c38a9c2df83fe32d20e8c8f3185dbfef05f7/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20 kB) Building wheels for collected packages: selective_scan DEPRECATION: Building 'selective_scan' using the legacy setup.py bdist_wheel mechanism, which will be removed in a future version. pip 25.3 will enforce this behaviour change. A possible replacement is to use the standardized build interface by setting the --use-pep517 option, (possibly combined with --no-build-isolation), or adding a pyproject.toml file to the source tree of 'selective_scan'. Discussion can be found at https://github.com/pypa/pip/issues/6334 Building wheel for selective_scan (setup.py): started Running command python setup.py bdist_wheel A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel running build running build_ext /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py:425: UserWarning: There are no g++ version bounds defined for CUDA version 11.8 warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}') building 'selective_scan_cuda_core' extension creating /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus Emitting ninja build file /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/3] c++ -MMD -MF '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o'.d -pthread -B /home/lenovo/anaconda3/envs/li/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o' -O3 -std=c++17 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o c++ -MMD -MF '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o'.d -pthread -B /home/lenovo/anaconda3/envs/li/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o' -O3 -std=c++17 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 In file included from /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContext.h:3, from /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp:5: /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContextLight.h:6:10: fatal error: cuda_runtime_api.h: 没有那个文件或目录 6 | #include <cuda_runtime_api.h> | ^~~~~~~~~~~~~~~~~~~~ compilation terminated. [2/3] /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_fwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_fwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. fatal : Could not open input file /tmp/tmpxft_00005756_00000000-7_selective_scan_core_fwd.cpp1.ii [3/3] /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_bwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_bwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. fatal : Could not open input file /tmp/tmpxft_00005755_00000000-7_selective_scan_core_bwd.cpp1.ii ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2096, in _run_ninja_build subprocess.run( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/subprocess.py", line 526, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 146, in <module> setup( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 186, in setup return run_commands(dist) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 202, in run_commands dist.run_commands() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands self.run_command(cmd) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/bdist_wheel.py", line 370, in run self.run_command("build") File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 99, in run _build_ext.run(self) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 368, in run self.build_extensions() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 871, in build_extensions build_ext.build_extensions(self) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 484, in build_extensions self._build_extensions_serial() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 510, in _build_extensions_serial self.build_extension(ext) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 264, in build_extension _build_ext.build_extension(self, ext) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 565, in build_extension objects = self.compiler.compile( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 684, in unix_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 1774, in _write_ninja_file_and_compile_objects _run_ninja_build( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2112, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. full command: /home/lenovo/anaconda3/envs/li/bin/python3.10 -u -c ' exec(compile('"'"''"'"''"'"' # This is -- a caller that pip uses to run setup.py # # - It imports setuptools before invoking setup.py, to enable projects that directly # import from distutils.core to work with newer packaging standards. # - It provides a clear error message when setuptools is not installed. # - It sets sys.argv[0] to the underlying setup.py, when invoking setup.py so # setuptools doesn'"'"'t think the script is -c. This avoids the following warning: # manifest_maker: standard file '"'"'-c'"'"' not found". # - It generates a shim setup.py, for handling setup.cfg-only projects. import os, sys, tokenize, traceback try: import setuptools except ImportError: print( "ERROR: Can not execute setup.py since setuptools failed to import in " "the build environment with exception:", file=sys.stderr, ) traceback.print_exc() sys.exit(1) __file__ = %r sys.argv[0] = __file__ if os.path.exists(__file__): filename = __file__ with tokenize.open(__file__) as f: setup_py_code = f.read() else: filename = "<auto-generated setuptools caller>" setup_py_code = "from setuptools import setup; setup()" exec(compile(setup_py_code, filename, "exec")) '"'"''"'"''"'"' % ('"'"'/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py'"'"',), "", "exec"))' bdist_wheel -d /tmp/pip-wheel-fm2tmb40 cwd: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/ Building wheel for selective_scan (setup.py): finished with status 'error' ERROR: Failed building wheel for selective_scan Running setup.py clean for selective_scan Running command python setup.py clean A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running clean removing 'build/temp.linux-x86_64-cpython-310' (and everything under it) 'build/lib.linux-x86_64-cpython-310' does not exist -- can't clean it 'build/bdist.linux-x86_64' does not exist -- can't clean it 'build/scripts-3.10' does not exist -- can't clean it removing 'build' Failed to build selective_scan ERROR: Failed to build installable wheels for some pyproject.toml based projects (selective_scan)

(base) PS G:\medical_image> conda config --show add_anaconda_token: True add_pip_as_python_dependency: True aggressive_update_packages: - ca-certificates - certifi - openssl allow_conda_downgrades: False allow_cycles: True allow_non_channel_urls: False allow_softlinks: False allowlist_channels: [] always_copy: False always_softlink: False always_yes: None anaconda_upload: None auto_activate_base: True auto_stack: 0 auto_update_conda: True bld_path: changeps1: True channel_alias: https://conda.anaconda.org channel_priority: flexible channels: - defaults client_ssl_cert: None client_ssl_cert_key: None clobber: False conda_build: {} create_default_packages: [] croot: C:\Users\lenovo\conda-bld custom_channels: anaconda/pkgs/main: https://mirrors.tuna.tsinghua.edu.cn anaconda/pkgs/r: https://mirrors.tuna.tsinghua.edu.cn anaconda/pkgs/msys2: https://mirrors.tuna.tsinghua.edu.cn conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud custom_multichannels: defaults: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 local: debug: False default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 default_python: 3.9 default_threads: None deps_modifier: not_set dev: False disallowed_packages: [] download_only: False dry_run: False enable_private_envs: False env_prompt: ({default_env}) envs_dirs: - C:\Users\lenovo\.conda\envs - G:\miniconda\envs - C:\Users\lenovo\AppData\Local\conda\conda\envs error_upload_url: https://conda.io/conda-post/unexpected-error execute_threads: 1 extra_safety_checks: False fetch_threads: 5 force: False force_32bit: False force_reinstall: False force_remove: False ignore_pinned: False json: False local_repodata_ttl: 1 migrated_channel_aliases: [] migrated_custom_channels: {} non_admin_enabled: True notify_outdated_conda: True number_channel_notices: 5 offline: False override_channels_enabled: True path_conflict: clobber pinned_packages: [] pip_interop_enabled: False pkgs_dirs: - G:\miniconda\pkgs - C:\Users\lenovo\.conda\pkgs - C:\Users\lenovo\AppData\Local\conda\conda\pkgs proxy_servers: {} quiet: False remote_backoff_factor: 1 remote_connect_timeout_secs: 9.15 remote_max_retries: 3 remote_read_timeout_secs: 60.0 repodata_fns: - current_repodata.json - repodata.json repodata_threads: None report_errors: None restore_free_channel: False rollback_enabled: True root_prefix: G:\miniconda safety_checks: warn sat_solver: pycosat separate_format_cache: False shortcuts: True show_channel_urls: True signing_metadata_url_base: None solver: classic solver_ignore_timestamps: False ssl_verify: True subdir: win-64 subdirs: - win-64 - noarch target_prefix_override: track_features: [] unsatisfiable_hints: True unsatisfiable_hints_check_depth: 2 update_modifier: update_specs use_index_cache: False use_local: False use_only_tar_bz2: False verbosity: 0 verify_threads: 1 这是什么意思,清华源配置成功了吗

pip install lightning Collecting lightning Downloading lightning-2.5.2-py3-none-any.whl (821 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 821.1/821.1 kB 12.8 kB/s eta 0:00:00 Requirement already satisfied: tqdm<6.0,>=4.57.0 in d:\anaconda\envs\sdsd_torch\lib\site-packages (from lightning) (4.62.2) Requirement already satisfied: typing-extensions<6.0,>=4.4.0 in d:\anaconda\envs\sdsd_torch\lib\site-packages (from lightning) (4.12.2) Collecting lightning-utilities<2.0,>=0.10.0 Downloading lightning_utilities-0.14.3-py3-none-any.whl (28 kB) Collecting pytorch-lightning Downloading pytorch_lightning-2.5.2-py3-none-any.whl (825 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 825.4/825.4 kB 13.7 kB/s eta 0:00:00 Collecting torch<4.0,>=2.1.0 Downloading torch-2.7.1-cp39-cp39-win_amd64.whl (216.0 MB) ━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 41.7/216.0 MB ? eta -:--:-- ERROR: Exception: Traceback (most recent call last): File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher yield File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read data = self._fp_read(amt) if not fp_closed else b"" File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read return self._fp.read(amt) if amt is not None else self._fp.read() File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 90, in read data = self.__fp.read(amt) File "D:\anaconda\envs\sdsd_torch\lib\http\client.py", line 463, in read n = self.readinto(b) File "D:\anaconda\envs\sdsd_torch\lib\http\client.py", line 507, in readinto n = self.fp.readinto(b) File "D:\anaconda\envs\sdsd_torch\lib\socket.py", line 704, in readinto return self._sock.recv_into(b) File "D:\anaconda\envs\sdsd_torch\lib\ssl.py", line 1242, in recv_into return self.read(nbytes, buffer) File "D:\anaconda\envs\sdsd_torch\lib\ssl.py", line 1100, in read return self._sslobj.read(len, buffer) socket.timeout: The read operation timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\cli\base_command.py", line 160, in exc_logging_wrapper status = run_func(*args) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\cli\req_command.py", line 247, in wrapper return func(self, options, args) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\commands\install.py", line 419, in run requirement_set = resolver.resolve( File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 92, in resolve result = self._result = resolver.resolve( File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 481, in resolve state = resolution.resolve(requirements, max_rounds=max_rounds) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 373, in resolve failure_causes = self._attempt_to_pin_criterion(name) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 213, in _attempt_to_pin_criterion criteria = self._get_updated_criteria(candidate) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 204, in _get_updated_criteria self._add_to_criteria(criteria, requirement, parent=candidate) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 172, in _add_to_criteria if not criterion.candidates: File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\resolvelib\structs.py", line 151, in __bool__ return bool(self._sequence) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 155, in __bool__ return any(self) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 143, in <genexpr> return (c for c in iterator if id(c) not in self._incompatible_ids) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 47, in _iter_built candidate = func() File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 206, in _make_candidate_from_link self._link_candidate_cache[link] = LinkCandidate( File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 297, in __init__ super().__init__( File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 162, in __init__ self.dist = self._prepare() File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 231, in _prepare dist = self._prepare_distribution() File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 308, in _prepare_distribution return preparer.prepare_linked_requirement(self._ireq, parallel_builds=True) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\operations\prepare.py", line 491, in prepare_linked_requirement return self._prepare_linked_requirement(req, parallel_builds) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\operations\prepare.py", line 536, in _prepare_linked_requirement local_file = unpack_url( File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\operations\prepare.py", line 166, in unpack_url file = get_http_url( File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\operations\prepare.py", line 107, in get_http_url from_path, content_type = download(link, temp_dir.path) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\network\download.py", line 147, in __call__ for chunk in chunks: File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\cli\progress_bars.py", line 53, in _rich_progress_bar for chunk in iterable: File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_internal\network\utils.py", line 63, in response_chunks for chunk in response.raw.stream( File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\urllib3\response.py", line 622, in stream data = self.read(amt=amt, decode_content=decode_content) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\urllib3\response.py", line 587, in read raise IncompleteRead(self._fp_bytes_read, self.length_remaining) File "D:\anaconda\envs\sdsd_torch\lib\contextlib.py", line 137, in __exit__ self.gen.throw(typ, value, traceback) File "D:\anaconda\envs\sdsd_torch\lib\site-packages\pip\_vendor\urllib3\response.py", line 443, in _error_catcher raise ReadTimeoutError(self._pool, None, "Read timed out.") pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.

(py37) C:\Users\wang\Desktop>python gym.py Compiling D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\cymj.pyx because it changed. [1/1] Cythonizing D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\cymj.pyx warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:99:4: 'mjtDisableBit' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:114:4: 'mjtEnableBit' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:121:4: 'mjtJoint' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:127:4: 'mjtGeom' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:149:4: 'mjtCamLight' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:157:4: 'mjtTexture' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:163:4: 'mjtIntegrator' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:168:4: 'mjtCollision' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:174:4: 'mjtCone' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:179:4: 'mjtJacobian' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../pxd\mjmodel.pxd:185:4: 'mjtSolver' redeclared warning: D:\anaconda\envs\py37\lib\site-packages\mujoco_py-1.50.1.0-py3.7.egg\mujoco_py\generated\../px

最新推荐

recommend-type

基于Debian Jessie的Kibana Docker容器部署指南

Docker是一种开源的容器化平台,它允许开发者将应用及其依赖打包进一个可移植的容器中。Kibana则是由Elastic公司开发的一款开源数据可视化插件,主要用于对Elasticsearch中的数据进行可视化分析。Kibana与Elasticsearch以及Logstash一起通常被称为“ELK Stack”,广泛应用于日志管理和数据分析领域。 在本篇文档中,我们看到了关于Kibana的Docker容器化部署方案。文档提到的“Docker-kibana:Kibana 作为基于 Debian Jessie 的Docker 容器”实际上涉及了两个版本的Kibana,即Kibana 3和Kibana 4,并且重点介绍了它们如何被部署在Docker容器中。 Kibana 3 Kibana 3是一个基于HTML和JavaScript构建的前端应用,这意味着它不需要复杂的服务器后端支持。在Docker容器中运行Kibana 3时,容器实际上充当了一个nginx服务器的角色,用以服务Kibana 3的静态资源。在文档中提及的配置选项,建议用户将自定义的config.js文件挂载到容器的/kibana/config.js路径。这一步骤使得用户能够将修改后的配置文件应用到容器中,以便根据自己的需求调整Kibana 3的行为。 Kibana 4 Kibana 4相较于Kibana 3,有了一个质的飞跃,它基于Java服务器应用程序。这使得Kibana 4能够处理更复杂的请求和任务。文档中指出,要通过挂载自定义的kibana.yml文件到容器的/kibana/config/kibana.yml路径来配置Kibana 4。kibana.yml是Kibana的主要配置文件,它允许用户配置各种参数,比如Elasticsearch服务器的地址,数据索引名称等等。通过Docker容器部署Kibana 4,用户可以很轻松地利用Docker提供的环境隔离和可复制性特点,使得Kibana应用的部署和运维更为简洁高效。 Docker容器化的优势 使用Docker容器化技术部署Kibana,有几个显著的优势: - **一致性**:Docker容器确保应用在开发、测试和生产环境中的行为保持一致。 - **轻量级**:相比传统虚拟机,Docker容器更加轻量,启动快速,资源占用更少。 - **隔离性**:容器之间的环境隔离,确保应用之间互不干扰。 - **可移植性**:容器可以在任何支持Docker的环境中运行,提高了应用的可移植性。 - **易于维护**:通过Dockerfile可以轻松构建和分发应用镜像,便于维护和升级。 在文档中,我们还看到了文件名“docker-kibana-master”。这个名称很可能是指向了存放Docker相关文件的源代码仓库,其中可能包含Dockerfile、构建和运行脚本以及可能的配置模板文件等。开发者可以从这个仓库中克隆或下载所需的Docker相关文件,并根据这些文件来构建和部署Kibana的Docker容器。 根据以上信息,对于希望利用Docker容器部署和管理Kibana应用的用户,需要掌握Docker的基本使用方法,包括Docker的安装、镜像管理、容器的创建和配置等。同时,还需要了解Kibana的基本原理和配置方法,这样才能充分利用Docker容器化带来的便利,优化Kibana应用的部署和管理流程。
recommend-type

Coze智能体工作流:打造钦天监视频内容的创新与实践

# 1. Coze智能体工作流概述 Coze智能体工作流是业界领先的智能工作流程管理系统,它通过整合最新的智能技术与人工智能算法,旨在为视频内容创造与优化带来革命性的变革。本章将对Coze智能体工作流进行全面的概述,揭示其在IT行业中的应用范围、流程结构以及技术基础。通过了解Coze智能体工作流,读者将能够把握它在当前和未
recommend-type

使用git仓库的利与弊

<think>好的,我需要分析Git仓库的优缺点。首先,根据用户提供的引用,看看有哪些点需要覆盖。引用[1]提到了Git有本地和远程仓库,需要push命令来更新远程,这应该属于优点还是缺点呢?可能优点在于本地操作灵活,缺点是需要额外命令。 引用[2]指出Git的权限管理薄弱,学习曲线陡峭,这显然是缺点。另外,引用[4]提到Git使用SHA-1哈希,内容完整性更好,属于优点。引用[5]比较了Git的分支管理简单,而缺少全局版本号,这可以作为优点和缺点分别说明。 现在需要将这些信息整理成结构化的优缺点,可能分点列出。同时,用户要求回答结构清晰,逐步解决问题,所以可能需要先介绍Git的基本概念,
recommend-type

TextWorld:基于文本游戏的强化学习环境沙箱

在给出的文件信息中,我们可以提取到以下IT知识点: ### 知识点一:TextWorld环境沙箱 **标题**中提到的“TextWorld”是一个专用的学习环境沙箱,专为强化学习(Reinforcement Learning,简称RL)代理的训练和测试而设计。在IT领域中,尤其是在机器学习的子领域中,环境沙箱是指一个受控的计算环境,允许实验者在隔离的条件下进行软件开发和测试。强化学习是一种机器学习方法,其中智能体(agent)通过与环境进行交互来学习如何在某个特定环境中执行任务,以最大化某种累积奖励。 ### 知识点二:基于文本的游戏生成器 **描述**中说明了TextWorld是一个基于文本的游戏生成器。在计算机科学中,基于文本的游戏(通常被称为文字冒险游戏)是一种游戏类型,玩家通过在文本界面输入文字指令来与游戏世界互动。TextWorld生成器能够创建这类游戏环境,为RL代理提供训练和测试的场景。 ### 知识点三:强化学习(RL) 强化学习是**描述**中提及的关键词,这是一种机器学习范式,用于训练智能体通过尝试和错误来学习在给定环境中如何采取行动。在强化学习中,智能体在环境中探索并执行动作,环境对每个动作做出响应并提供一个奖励或惩罚,智能体的目标是学习一个策略,以最大化长期累积奖励。 ### 知识点四:安装与支持的操作系统 **描述**提到TextWorld的安装需要Python 3,并且当前仅支持Linux和macOS系统。对于Windows用户,提供了使用Docker作为解决方案的信息。这里涉及几个IT知识点: - **Python 3**:一种广泛使用的高级编程语言,适用于快速开发,是进行机器学习研究和开发的常用语言。 - **Linux**和**macOS**:两种流行的操作系统,分别基于Unix系统和类Unix系统。 - **Windows**:另一种广泛使用的操作系统,具有不同的软件兼容性。 - **Docker**:一个开源的应用容器引擎,允许开发者打包应用及其依赖环境为一个轻量级、可移植的容器,使得在任何支持Docker的平台上一致地运行。 ### 知识点五:系统库和依赖 **描述**提到在基于Debian/Ubuntu的系统上,可以安装一些系统库来支持TextWorld的本机组件。这里涉及的知识点包括: - **Debian/Ubuntu**:基于Debian的Linux发行版,是目前最流行的Linux发行版之一。 - **系统库**:操作系统中包含的一系列预编译的软件包和库,供应用程序在运行时使用。 - **包管理工具**,如**apt**(Advanced Package Tool),它是一个在Debian及其衍生系统中用于安装、删除和管理软件包的命令行工具。 ### 知识点六:与创建者联系方式 **描述**提供了与TextWorld创建者的联系方式,包括电子邮件地址和一个Gitter频道。这说明了如何与开源项目的维护者进行沟通与反馈: - **电子邮件**是常见的沟通方式,允许用户与开发者直接交流。 - **Gitter**是一个基于GitHub的即时消息工具,通常用于开源项目中的实时协作和交流。 ### 结语 综合以上信息,我们可以了解到TextWorld是一个专为强化学习设计的学习环境沙箱,它通过创建基于文本的游戏环境,让研究者和开发者训练和测试RL代理。它主要针对Linux和macOS系统,不过也有适合Windows用户的替代方案。此外,了解如何安装和配置TextWorld,以及如何与创建者沟通,对于开发者来说是十分重要的基础技能。
recommend-type

Coze智能体工作流全攻略

# 1. Coze智能体工作流概述 在现代企业中,工作流管理不仅是提高效率的关键因素,而且
recommend-type

64位小端转大端c语言函数起名

<think>好的,用户需要找一个C语言函数的名字,用来将64位小端格式转换为大端格式。首先,我得回顾一下C语言中字节序转换函数的命名惯例。通常,像htonl和htons这样的函数用于将主机字节序转换到网络字节序(大端)。其中,htonl处理32位,htons处理16位。不过,对于64位的情况,可能没有标准函数,所以需要自己实现,并且命名也要符合惯例。 接下来,用户提到的是64位的小端转大端。这时候,可能需要类似htonll这样的名字,因为htonl是host to network long(32位),那么htonll可能就是host to network long long(64位)。不过
recommend-type

upReveal.js: 利用鼠标移动揭示图像的创新技术

根据提供的文件信息,我们可以分析并生成以下知识点: ### upReveal.js技术知识点 #### 标题分析 标题 "upReveal.js:upReveal.js 通过鼠标在图像上的移动来显示图像!" 明确告诉我们,该技术是一个JavaScript库,它的核心功能是允许用户通过在图像上移动鼠标来揭示隐藏在图像下面的其他图像或内容。这样的功能特别适合用于创建富有互动性的网页设计。 #### 描述分析 描述中提到的“向上揭示 upReveal 效果”表明upReveal.js使用了一种特定的视觉效果来显示图像。这种效果可以让用户感觉到图像好像是从底层“向上”显现出来的,从而产生一种动态和引人入胜的视觉体验。描述还提到了版权信息,指出upReveal.js拥有版权所有,且该许可证伴随源代码提供。这表明开发者或公司可以使用这个库,但需要注意其许可证条款,以确保合法合规使用。 #### 标签分析 标签“HTML”意味着这个JavaScript库需要与HTML配合使用,具体可能涉及对HTML的img标签或其他元素进行操作,以实现图像揭示的效果。HTML是构建网页内容的基础,而JavaScript则是用来增加交互性和动态效果的脚本语言,upReveal.js正是在这个层面上发挥作用。 #### 压缩包子文件的文件名称列表分析 文件名称列表 "upReveal.js-master" 表明该JavaScript库可以通过一个名为“upReveal.js”的主文件来引入和使用。文件名中的“master”通常意味着这是主版本或主要代码分支,用户可以使用该文件作为起点来集成和应用这个效果。 ### upReveal.js的具体知识点 1. **图像揭示技术:** upReveal.js利用鼠标悬停(hover)事件来实现图像揭示效果。当用户将鼠标移动到指定图像上时,底层图像或内容会被逐渐显示出来。 2. **CSS和JavaScript交互:** 要实现这种效果,upReveal.js可能会结合使用CSS来设计图像覆盖层和动画效果,同时利用JavaScript来监听鼠标事件并控制图像的显示逻辑。 3. **跨浏览器兼容性:** 一个成功的JavaScript库应该能够在不同的浏览器上一致地工作。upReveal.js可能包含跨浏览器兼容性的代码,确保所有用户都能体验到相同的效果。 4. **许可证使用:** 虽然upReveal.js允许用户使用,但开发者需要阅读并理解伴随源代码提供的许可证条款。通常这会涉及对源代码的使用、修改和重新分发的限制。 5. **HTML集成:** 为了使用upReveal.js,开发者需要在HTML文件中通过脚本标签引入JavaScript文件。同时,可能需要准备相应的HTML结构来展示图像。 6. **自定义和配置:** upReveal.js很可能会提供一些配置选项,允许开发者调整效果的动画速度、触发区域大小等,以适应不同的设计需求。 7. **性能和优化:** 在设计交互式图像效果时,性能优化是一个关键考虑因素。upReveal.js可能会通过优化代码和资源使用,减少对页面加载和交互性能的影响。 8. **可访问性考虑:** 虽然描述中未提及,但在开发类似JavaScript库时,考虑可访问性是一个好的实践,确保所有用户,包括那些有视觉障碍的用户,都能够受益于这种技术。 通过上述分析,我们可以看到upReveal.js作为一个JavaScript库,不仅提供了动态的交互效果,还涉及到了前端开发的多个方面,包括但不限于HTML结构设计、CSS样式应用、JavaScript事件处理、跨浏览器兼容性、性能优化以及许可证协议的遵守等。开发者在使用upReveal.js时,应该综合考虑这些知识点,以实现最佳的用户体验。
recommend-type

金融服务中AI Agent的崛起:智能投资顾问与风险管理

# 1. 金融服务中的AI Agent概述 金融服务行业正经历数字化转型,其中AI Agent(人工智能代理)扮演着越来越重要的角色。AI Agent,一种能够通过学习和适应来执行复杂任务的软件代理,已经广泛应用于金融服务的多个领域,如智能投资顾问、风险管理和合规性监控等。 在这一章,
recommend-type

小端转大端c语言函数起名

<think>好的,我需要帮用户找到一个合适的C语言函数名,用于将小端模式转换为大端模式。首先,我应该回顾一下关于大小端的基本知识,确保自己理解正确。根据引用[1]和[3],大端模式是高位字节存储在低地址,小端则是低位字节在高地址。转换函数通常涉及字节顺序的调整。 接下来,考虑命名规范。C语言中,函数名通常使用小写字母和下划线组合,具有描述性。需要明确函数的作用是转换字节序,所以名称中应包含类似“endian”、“swap”或“convert”的关键词。例如,像htonl(host to network long)这样的标准函数,网络字节序是大端,所以类似的命名可能适用。 用户提供的引用中
recommend-type

Nodejs实现的MyRss简易RSS阅读器教程

根据提供的文件信息,我们可以得知这是一个使用Node.js编写的RSS(简易信息聚合)应用程序。以下是对标题、描述、标签和文件名称列表中所包含知识点的详细介绍: 1. **Node.js的应用与优势:** Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它使用事件驱动、非阻塞I/O模型,这使得Node.js非常擅长处理高并发场景,非常适合开发网络应用。Node.js的模块化和包管理器npm(Node Package Manager)能够使开发者轻松安装和管理项目所需依赖。 2. **RSS技术原理与应用:** RSS(Really Simple Syndication)是一种用于共享网站更新(例如博客文章、新闻标题、音频、视频等)的技术。RSS文件是XML(可扩展标记语言)格式的,用于列出网站上最新的内容。RSS订阅器可以解析这些文件,并展示给用户最新内容的摘要和链接。在Node.js中实现RSS,通常会涉及到读取和解析RSS源,然后将其转换为用户可以订阅和阅读的格式。 3. **项目依赖与环境搭建:** 在文件描述中提到的项目依赖安装步骤包括了以下内容: - 使用`npm install`命令在项目根目录安装Node.js的依赖包。这一步通常会根据项目中的`package.json`文件来下载和安装相应的模块和包。 - 进入`public`目录,执行`bower install`命令安装前端框架。虽然现在前端开发逐渐转向了npm等包管理器,但`bower`在历史上是一个流行的前端包管理工具,用于管理和安装前端库,例如jQuery、Bootstrap等。 - 执行`npm start`启动程序。这表示项目的启动命令已经被定义在`package.json`文件中的`scripts.start`字段里。 4. **版本迭代的变更日志:** 版本变更日志(Change log)是软件开发中记录版本更新内容的重要部分,通常用于向用户说明每个版本所包含的新功能、改进和修复。在本项目中: - 0.3.0版本引入了在服务启动后自动打开默认浏览器访问首页的功能。这可能涉及到操作系统级别的自动化操作,例如使用Node.js的`child_process`模块执行系统命令。 - 0.2.0版本提到了同一条数据支持多个Sizzle,这里的“Sizzle”应该是指对CSS选择器引擎Sizzle的支持,这意味着RSS项目可以处理更复杂的条件匹配。 - 0.1.0版本表示了项目的初始功能实现完成。 5. **项目标签:** 标签“JavaScript”说明该项目的开发主要使用了JavaScript语言。由于Node.js能够运行JavaScript代码,因此开发者可以使用相同的语言在服务器端和客户端进行开发。 6. **文件名称列表:** 从文件名称“`MyRss-master`”中我们可以推测,这是一个源代码托管在如GitHub这样的版本控制系统中的项目,并且这个项目拥有多个版本,因为它使用了版本控制系统中常见的“-master”后缀来表示主分支。 总的来说,这个项目是使用Node.js技术栈开发的RSS应用,它能够让用户方便地获取和订阅来自不同源的RSS信息。通过掌握Node.js和RSS技术,开发者能够更好地处理网络数据的聚合与展示,满足现代信息社会的需求。