解释代码def cvshow(name, img): cv.imshow(name, img) cv.waitKey(0) cv.destroyAllWindows()
时间: 2024-04-03 19:30:58 浏览: 60
这段代码是定义了一个函数,函数名为cvshow,有两个参数:name和img。它的作用是将一个名为name,内容为img的图像显示出来,等待用户任意按键后关闭所有窗口。其中cv.imshow()函数用于显示图像,cv.waitKey()函数用于等待用户按键,cv.destroyAllWindows()函数用于关闭所有窗口。
相关问题
输入上述代码之后仍报错显示:Traceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/untitled1/12.py", line 9, in <module> avg_img += np.float32(img) / len(img1) NameError: name 'avg_img' is not defined,该如何处理
非常抱歉,我之前的回答有误。在您的代码中,错误是因为 `avg_img` 变量未定义,导致无法进行 `+=` 操作。为了解决这个问题,您需要在函数开始时定义 `avg_img` 变量并初始化为一个全零数组,如下所示:
```
import cv2
import numpy as np
def denoise(images, ksize):
avg_img = np.zeros_like(images[0], dtype=np.float32)
for img in images:
blur_img = cv2.GaussianBlur(img, ksize, 0)
avg_img += blur_img
avg_img /= len(images)
avg_img = np.round(avg_img).astype(np.uint8)
return avg_img
img1 = cv2.imread('C:/Users/Administrator/PycharmProjects/untitled1/text.png')
img2 = cv2.imread('C:/Users/Administrator/PycharmProjects/untitled1/R-C.png')
img3 = cv2.imread('C:/Users/Administrator/PycharmProjects/untitled1/R-C(1).png')
images = [img1, img2, img3]
ksize = (5, 5)
denoised_img = denoise(images, ksize)
cv2.imshow('Denoised Image', denoised_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在修改后的代码中,`avg_img` 变量在函数开始时定义为全零数组,并且类型为 `np.float32`。在循环中,每个图像都进行高斯模糊并累加到 `avg_img` 中。最后,`avg_img` 被除以图像数,舍入并转换为 `uint8` 类型。函数返回 `avg_img` 变量的值,并在主程序中显示去噪后的图像。
import numpy as np import cv2 class ColorMeter(object): color_hsv = { # HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255) # "orange": [np.array([11, 115, 70]), np.array([25, 255, 245])], "yellow": [np.array([11, 115, 70]), np.array([34, 255, 245])], "green": [np.array([35, 115, 70]), np.array([77, 255, 245])], "lightblue": [np.array([78, 115, 70]), np.array([99, 255, 245])], "blue": [np.array([100, 115, 70]), np.array([124, 255, 245])], "purple": [np.array([125, 115, 70]), np.array([155, 255, 245])], "red": [np.array([156, 115, 70]), np.array([179, 255, 245])], } def __init__(self, is_show=False): self.is_show = is_show self.img_shape = None def detect_color(self, frame): self.img_shape = frame.shape res = {} # 将图像转化为HSV格式 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) for text, range_ in self.color_hsv.items(): # 去除颜色范围外的其余颜色 mask = cv2.inRange(hsv, range_[0], range_[1]) erosion = cv2.erode(mask, np.ones((1, 1), np.uint8), iterations=2) dilation = cv2.dilate(erosion, np.ones((1, 1), np.uint8), iterations=2) target = cv2.bitwise_and(frame, frame, mask=dilation) # 将滤波后的图像变成二值图像放在binary中 ret, binary = cv2.threshold(dilation, 127, 255, cv2.THRESH_BINARY) # 在binary中发现轮廓,轮廓按照面积从小到大排列 contours, hierarchy = cv2.findContours( binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) if len(contours) > 0: # cv2.boundingRect()返回轮廓矩阵的坐标值,四个值为x, y, w, h, 其中x, y为左上角坐标,w,h为矩阵的宽和高 boxes = [ box for box in [cv2.boundingRect(c) for c in contours] if min(frame.shape[0], frame.shape[1]) / 10 < min(box[2], box[3]) < min(frame.shape[0], frame.shape[1]) / 1 ] if boxes: res[text] = boxes if self.is_show: for box in boxes: x, y, w, h = box # 绘制矩形框对轮廓进行定位 cv2.rectangle( frame, (x, y), (x + w, y + h), (153, 153, 0), 2 ) # 将绘制的图像保存并展示 # cv2.imwrite(save_image, img) cv2.putText( frame, # image text, # text (x, y), # literal direction cv2.FONT_HERSHEY_SIMPLEX, # dot font 0.9, # scale (255, 255, 0), # color 2, # border ) if self.is_show: cv2.imshow("image", frame) cv2.waitKey(1) # cv2.destroyAllWindows() return res if __name__ == "__main__": cap = cv2.VideoCapture(0) m = ColorMeter(is_show=True) while True: success, frame = cap.read() res = m.detect_color(frame) print(res) if cv2.waitKey(1) & 0xFF == ord('q'): break
"red": (0, 255, 255),
"green": (85, 255, 128),
"blue": (170, 255, 128) } 你好!我能够理解你正在询问的是如何使用HSV色彩空间来表示不同的颜色。例如,红色的HSV值为(0,255,255),绿色的HSV值为(85,255,128),蓝色的HSV值为(170,255,128)。
阅读全文
相关推荐


















