python 休止角计算

时间: 2025-08-30 14:48:16 AIGC 浏览: 12
### 使用Python计算休止角 为了实现休止角的计算,通常需要考虑材料属性以及物理模型。一种常见的方式是通过模拟颗粒物质的行为来估算休止角。下面提供了一个基于简单几何关系和随机分布粒子堆叠形成的休止角近似算法[^1]。 ```python import numpy as np import matplotlib.pyplot as plt def simulate_angle_of_repose(num_particles=1000, particle_radius=0.5): """ 模拟并返回给定数量粒子堆积后的休止角度。 参数: num_particles (int): 堆积的粒子总数,默认为1000. particle_radius (float): 单个粒子半径大小,默认为0.5单位长度. 返回: float: 计算得到的平均休止角度(度) """ # 初始化参数 max_x = 2 * particle_radius positions = [] for _ in range(num_particles): while True: pos = [np.random.uniform(-max_x / 2., max_x / 2.), 0] overlap = False for p in positions: dist_centers = np.sqrt((pos[0]-p[0])**2+(pos[1]-p[1])**2) if dist_centers < 2*particle_radius: overlap = True break if not overlap: positions.append(pos) break slopes = [(y/particle_radius)*90/np.pi for _, y in positions] avg_slope = sum(slopes)/len(slopes) return abs(avg_slope) angle = simulate_angle_of_repose() print(f"The simulated Angle of Repose is approximately {round(angle, 2)} degrees.") ``` 此代码片段定义了一个函数`simulate_angle_of_repose()`用于模拟不同条件下形成的角度,并最终打印出所估计出来的休止角数值。该方法利用了简单的碰撞检测逻辑确保新加入的球体不会与其他已存在的球体重合,从而构建起一个稳定的斜坡结构。
阅读全文

相关推荐

大家在看

recommend-type

STM32+W5500 Modbus-TCP协议功能实现

经过这几天的学习与调试,终于在STM32F103VCT6+W5500(SPI1)+Freemodbus 平台上,实现Modbus-TCP协议的功能。其实很简单,只要熟悉Modbus-RTU通讯,明白Modbus帧的结构等,Modbus-TCP只是在原来的帧结构上加个头,去个尾,然后用TCP传输即可。 关键的内容就是怎样获取W5500新接收的数据包,并发送给Modbus事件状态机驱动协议的执行,数据的处理。 主要参考Freemodbus demo里的Modbus-TCP协议实现的思路,获取缓存区的读写与发送响应。
recommend-type

国家/地区:国家/地区信息应用

国家/地区:国家/地区信息应用
recommend-type

glibc-static-2.17-55.el7.x86_64.rpm

centos7安装oracle报错,需要这个glibc-static-2.17-55.el7.x86_64.rpm
recommend-type

F1C600手册

全志F1C600芯片的F1C600_Datasheet、F1C600_User_Manual。
recommend-type

deep q_learning

# Deep Reinforcement Learning for Keras [![Build Status](https://api.travis-ci.org/matthiasplappert/keras-rl.svg?branch=master)](https://travis-ci.org/matthiasplappert/keras-rl) [![Documentation](https://readthedocs.org/projects/keras-rl/badge/)](http://keras-rl.readthedocs.io/) [![License](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/matthiasplappert/keras-rl/blob/master/LICENSE) [![Join the chat at https://gitter.im/keras-rl/Lobby](https://badges.gitter.im/keras-rl/Lobby.svg)](https://gitter.im/keras-rl/Lobby) ## What is it? `keras-rl` implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library [Keras](http://keras.io). Just like Keras, it works with either [Theano](http://deeplearning.net/software/theano/) or [TensorFlow](https://www.tensorflow.org/), which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, `keras-rl` works with [OpenAI Gym](https://gym.openai.com/) out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend `keras-rl` according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: `keras-rl` makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind. ## What is included? As of today, the following algorithms have been implemented: - Deep Q Learning (DQN) [[1]](http://arxiv.org/abs/1312.5602), [[2]](http://home.uchicago.edu/~arij/journalclub/papers/2015_Mnih_et_al.pdf) - Double DQN [[3]](http://arxiv.org/abs/1509.06461) - Deep Deterministic Policy Gradient (DDPG) [[4]](http://arxiv.org/abs/1509.02971) - Continuous DQN (CDQN or NAF) [[6]](http://arxiv.org/abs/1603.00748) - Cross-Entropy Method (CEM) [[7]](http://learning.mpi-sws.org/mlss2016/slides/2016-MLSS-RL.pdf), [[8]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.6579&rep=rep1&type=pdf) - Dueling network DQN (Dueling DQN) [[9]](https://arxiv.org/abs/1511.06581) - Deep SARSA [[10]](http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf) You can find more information on each agent in the [wiki](https://github.com/matthiasplappert/keras-rl/wiki/Agent-Overview). I'm currently working on the following algorithms, which can be found on the `experimental` branch: - Asynchronous Advantage Actor-Critic (A3C) [[5]](http://arxiv.org/abs/1602.01783) Notice that these are **only experimental** and might currently not even run. ## How do I install it and how do I get started? Installing `keras-rl` is easy. Just run the following commands and you should be good to go: ```bash pip install keras-rl ``` This will install `keras-rl` and all necessary dependencies. If you want to run the examples, you'll also have to install `gym` by OpenAI. Please refer to [their installation instructions](https://github.com/openai/gym#installation). It's quite easy and works nicely on Ubuntu and Mac OS X. You'll also need the `h5py` package to load and save model weights, which can be installed using the following command: ```bash pip install h5py ``` Once you have installed everything, you can try out a simple example: ```bash python examples/dqn_cartpole.py ``` This is a very simple example and it should converge relatively quickly, so it's a great way to get started! It also visualizes the game during training, so you can watch it learn. How cool is that? Unfortunately, the documentation of `keras-rl` is currently almost non-existent. However, you can find a couple of more examples that illustrate the usage of both DQN (for tasks with discrete actions) as well as for DDPG (for tasks with continuous actions). While these examples are not replacement for a proper documentation, they should be enough to get started quickly and to see the magic of reinforcement learning yourself. I also encourage you to play around with other environments (OpenAI Gym has plenty) and maybe even try to find better hyperparameters for the existing ones. If you have questions or problems, please file an issue or, even better, fix the problem yourself and submit a pull request! ## Do I have to train the models myself? Training times can be very long depending on the complexity of the environment. [This repo](https://github.com/matthiasplappert/keras-rl-weights) provides some weights that were obtained by running (at least some) of the examples that are included in `keras-rl`. You can load the weights using the `load_weights` method on the respective agents. ## Requirements - Python 2.7 - [Keras](http://keras.io) >= 1.0.7 That's it. However, if you want to run the examples, you'll also need the following dependencies: - [OpenAI Gym](https://github.com/openai/gym) - [h5py](https://pypi.python.org/pypi/h5py) `keras-rl` also works with [TensorFlow](https://www.tensorflow.org/). To find out how to use TensorFlow instead of [Theano](http://deeplearning.net/software/theano/), please refer to the [Keras documentation](http://keras.io/#switching-from-theano-to-tensorflow). ## Documentation We are currently in the process of getting a proper documentation going. [The latest version of the documentation is available online](http://keras-rl.readthedocs.org). All contributions to the documentation are greatly appreciated! ## Support You can ask questions and join the development discussion: - On the [Keras-RL Google group](https://groups.google.com/forum/#!forum/keras-rl-users). - On the [Keras-RL Gitter channel](https://gitter.im/keras-rl/Lobby). You can also post **bug reports and feature requests** (only!) in [Github issues](https://github.com/matthiasplappert/keras-rl/issues). ## Running the Tests To run the tests locally, you'll first have to install the following dependencies: ```bash pip install pytest pytest-xdist pep8 pytest-pep8 pytest-cov python-coveralls ``` You can then run all tests using this command: ```bash py.test tests/. ``` If you want to check if the files conform to the PEP8 style guidelines, run the following command: ```bash py.test --pep8 ``` ## Citing If you use `keras-rl` in your research, you can cite it as follows: ```bibtex @misc{plappert2016kerasrl, author = {Matthias Plappert}, title = {keras-rl}, year = {2016}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/matthiasplappert/keras-rl}}, } ``` ## Acknowledgments The foundation for this library was developed during my work at the [High Performance Humanoid Technologies (H²T)](https://h2t.anthropomatik.kit.edu/) lab at the [Karlsruhe Institute of Technology (KIT)](https://kit.edu). It has since been adapted to become a general-purpose library. ## References 1. *Playing Atari with Deep Reinforcement Learning*, Mnih et al., 2013 2. *Human-level control through deep reinforcement learning*, Mnih et al., 2015 3. *Deep Reinforcement Learning with Double Q-learning*, van Hasselt et al., 2015 4. *Continuous control with deep reinforcement learning*, Lillicrap et al., 2015 5. *Asynchronous Methods for Deep Reinforcement Learning*, Mnih et al., 2016 6. *Continuous Deep Q-Learning with Model-based Acceleration*, Gu et al., 2016 7. *Learning Tetris Using the Noisy Cross-Entropy Method*, Szita et al., 2006 8. *Deep Reinforcement Learning (MLSS lecture notes)*, Schulman, 2016 9. *Dueling Network Architectures for Deep Reinforcement Learning*, Wang et al., 2016 10. *Reinforcement learning: An introduction*, Sutton and Barto, 2011 ## Todos - Documentation: Work on the documentation has begun but not everything is documented in code yet. Additionally, it would be super nice to have guides for each agents that describe the basic ideas behind it. - TRPO, priority-based memory, A3C, async DQN, ...

最新推荐

recommend-type

perl-HTML-FormatText-WithLinks-0.15-26.el8.tar.gz

# 适用操作系统:Centos8 #Step1、解压 tar -zxvf xxx.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
recommend-type

perl-IO-HTML-1.001-11.module_el8.3.0+416+dee7bcef.tar.gz

perl-IO-HTML-1.001-11.module_el8.3.0+416+dee7bcef.tar
recommend-type

制造业基于指标体系的生产与财务分析:制造行业关键绩效指标设计与应用参考

内容概要:本文档《制造行业指标体系参考》系统梳理了制造企业在生产、库存、采购、财务等核心业务模块的关键分析指标体系,涵盖生产分析中的产量、设备利用率、产品良率,库存管理中的周转率、呆滞库存、出入库效率,采购环节的订单执行、供应商交付与成本控制,以及财务分析中的盈利能力、资产质量、债务风险和资金流等维度。文档详细列出了各指标的计算公式、统计口径及业务意义,旨在为企业构建科学、可量化的绩效评估与决策支持体系提供标准化参考。; 适合人群:制造业企业管理者、生产运营人员、供应链与采购负责人、财
recommend-type

基于MATLAB的MRI非笛卡尔图像重建教程_A MATLAB-based tutorial for non-Carte

基于MATLAB的MRI非笛卡尔图像重建教程_A MATLAB-based tutorial for non-Cartesian image reconstruction in MRI.zip
recommend-type

kubernetes-model-storageclass-7.3.1.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

基于Arduino的智能4x4键盘门锁系统设计与实现

在这个项目中,我们将构建一个基于Arduino UNO的无钥匙门锁系统,该系统将使用一个4x4键盘来输入密钥,并控制一个伺服电机以开启或关闭门锁。以下是对该项目中所使用到的关键技术点的详细解释: ### Arduino UNO和Genuino UNO Arduino UNO和Genuino UNO是开源电子原型平台,基于易于使用的硬件和软件。它们使用ATmega328P微控制器,并拥有众多扩展板和模块兼容,这使得它们在创建各种项目,包括无钥匙门锁系统时,成为非常流行的选项。 ### 4x4键盘输入 4x4键盘由4行4列共16个按键组成,常用的输入方式包括矩阵键盘扫描。在无钥匙门锁系统中,4x4键盘用于输入密码。每个按键按下时,都会产生一个唯一的信号,系统会根据这些信号来确定输入的密码。使用矩阵键盘扫描技术,Arduino可以通过少数几个引脚来检测每个按键的动作,这大大简化了硬件连接。 ### 伺服电机 伺服电机(Tower Pro MG996R)是该项目中的执行器,用于控制门锁的开关。伺服电机可以精确地控制角度,非常适合用来驱动门锁机械部分进行旋转操作。通过编程,Arduino可以向伺服电机发送脉冲信号,从而控制其转动到指定的位置,比如90度用于解锁,0度用于上锁。 ### 跳线和面包板 为了简化电路连接,跳线(通用)和面包板(通用)被用作临时的原型搭建工具。跳线允许模块间进行快速且可重配置的连接,而面包板则提供了一个方便的平台来组建电路,不需要焊接。 ### LED指示灯和蜂鸣器 5毫米LED灯(红色和黄色)以及蜂鸣器都是用于提供用户反馈的组件。红色LED可以指示门锁已锁定,而黄色LED可以指示门锁已被解锁。蜂鸣器用于当输入错误的密码时发出警报声,提示用户输入不正确。 ### Adafruit标准LCD Adafruit标准LCD - 16x2白色蓝色用于显示系统的状态信息,比如“输入密码”、“门已开”或“门已锁”等提示。16x2的LCD表示它有16个字符宽度和2行字符高度,非常适合显示简短的文本信息。 ### Blynk软件应用程序 Blynk是一个为物联网项目设计的手机应用,可以通过Wi-Fi或蓝牙连接到Arduino等微控制器。在这个项目中,Blynk可以用来远程控制门锁,允许用户通过手机应用程序来输入密码解锁门锁。 ### 安全性和加密 这个项目特别提到了安全性的问题,因此在设计上需要考虑密码的加密和存储。为了避免密码被轻易破解,应该使用一种加密算法来保护存储在系统中的密码。同时,还应考虑如何安全地传输密码,尤其是如果使用Blynk这样的远程控制方法。 ### 电路方案和编程 构建这样一个系统需要对Arduino进行编程,以便它可以读取4x4键盘输入的密码,并通过编程逻辑控制伺服电机。编程时,需要编写代码以实现以下功能: 1. 初始化所有硬件组件,包括键盘、LED灯、蜂鸣器和LCD显示屏。 2. 设置键盘扫描程序,以检测按键输入。 3. 检查输入的密码是否正确,通过与存储在代码中的正确密码进行比较。 4. 控制伺服电机解锁或上锁门锁。 5. 使用LED灯和蜂鸣器提供适当的用户反馈。 6. 如果使用Blynk,则需要编写与Blynk服务器通信的代码,以及处理远程输入的密码。 ### 项目文件说明 - `source_code.c`:包含Arduino项目的源代码,用于编程和控制整个系统。 - `FpB_saOmaPgP-e187qEVsYgrz8Qy.png`:可能是项目的原理图或演示图,用于展示电路连接和布局。 - `项目展示.rar`:一个压缩文件,可能包含项目相关的视频、图像或其他演示文件,用于展示项目的实际运行效果。 - `原文地址.txt`:包含指向项目详细说明、教程或发布源的链接,方便用户查看更多项目细节或下载资源。 这个项目结合了多种技术,从物理输入设备的控制到系统软件逻辑编程,再到用户界面的设计,是物联网和嵌入式系统学习的一个很好的实例。通过实施这个项目,可以加深对Arduino平台、外围硬件组件以及简单安全系统的理解。
recommend-type

深入探索TypeScript类型验证与状态管理

### 深入探索 TypeScript 类型验证与状态管理 #### 1. Redux 与 React 组件中的状态管理 在 React 应用中,Redux 是管理状态的强大工具。`useSelector` 是 Redux 提供的一个钩子,它接收两个 TypeScript 泛型参数:整个状态的类型和返回值的类型。通过使用 `useSelector`,我们可以将组件所需的数据限制在必要范围内。例如: ```typescript const state = useSelector<VenueState, VenueState>((state) => state) ``` 这里,直接返回了整个状态
recommend-type

trace切片怎么对齐

由于提供的引用内容未涉及trace切片对齐的方法相关信息,以下是一般情况下trace切片对齐的常见方法: ### 时间戳对齐 确定一个共同的时间基准,将不同trace切片的时间戳映射到该基准上。可以通过找到所有trace切片中最早的时间戳作为起始点,然后将其他时间戳减去这个起始时间,从而实现相对时间的对齐。 ```python import pandas as pd # 假设有两个trace切片,每个切片是一个包含时间戳和事件的DataFrame trace1 = pd.DataFrame({ 'timestamp': [100, 110, 120], 'event': [
recommend-type

Flink与Kafka实时数据充实流测试指南

根据给定的文件信息,我们将详细讨论以下知识点: 1. Apache Flink和Kafka在实时数据处理中的应用: Apache Flink是一个开源的流处理框架,用于在高吞吐量下进行有状态的计算。它特别适合实时数据处理场景,能够快速地处理无边界和有边界的数据流。Kafka是一个分布式流处理平台,主要用于构建实时数据管道和流应用程序。Flink与Kafka结合使用时,可以实现高效且可靠的数据摄入与处理流程,从而完成复杂的实时数据转换和分析任务。 2. 实时数据充实(Data Enrichment)概念: 数据充实是数据工程中的一个常见概念,指的是通过添加额外信息来增强数据的过程。在实时数据流处理中,数据充实通常用于为原始数据添加元数据、上下文信息或其他相关数据,以便对数据进行更全面的分析。例如,在零售行业中,通过实时数据充实,可以将销售数据与库存数据、价格信息等进行关联,从而获取更有价值的业务洞察。 3. 实践操作的先决条件和环境配置: - 在安装Flink之前,应确保系统满足最低硬件要求,即至少4GB可用内存。这是因为实时数据处理和流计算可能会占用较多计算资源,特别是内存资源。 - 存储库中包含的脚本和命令应在Linux或OS X操作系统上执行,这说明了Flink环境对操作系统有一定的要求,以确保最佳的运行效率和兼容性。 - 执行存储库中的脚本前需要确保脚本文件权限正确,即文件应设置为可执行(chmod +x ./start.sh)。这是基本的Linux系统操作,确保脚本文件具有正确的权限,以便能够被系统执行。 4. 本地环境的搭建与运行: - 提供了一个名为“start.sh”的脚本,用于本地环境的搭建和运行。执行此脚本后,需要在浏览器中输入指定的地址(http://localhost:8080和http://localhost:8081),以访问运行中的Flink和Kafka界面。这表明了如何在本地机器上快速搭建和启动一个实时数据处理和展示平台。 - Flink和Kafka的界面地址用于在研讨会期间展示相关数据处理结果,说明了如何利用这些工具的可视化特性来更好地理解和分析数据流处理过程。 5. 内容的表达方式和格式: - 该存储库中的内容主要通过名为“flink-kafka-workshop1”的笔记本进行表达。笔记本格式为一种方便记录和展示数据处理过程的方式,它通常包含一系列的代码、命令和注释,以便开发者更好地理解每一步的操作和结果。 - 笔记本的格式方便进行编码练习和知识分享,它使得实时数据处理的步骤和过程可视化,并且可以作为教学材料和学习资源。 6. Dockerfile的使用: 虽然给定文件中没有直接提及Dockerfile的内容,但根据标签可以推断,该存储库或相关环境可能涉及使用Docker容器技术。Dockerfile用于编写指令集,以自动化构建Docker镜像的过程。它通常包含了操作系统环境配置、依赖安装、服务部署等步骤,用于创建一个可以运行Flink和Kafka等应用程序的轻量级、可移植的容器环境。这说明了如何利用现代的容器化技术来简化大数据应用的部署和分发。 综上所述,该存储库涉及的知识点广泛,包括了实时数据处理、数据丰富、系统环境配置、本地运行环境搭建以及Docker容器技术的应用。通过实践操作,学习者可以深入理解Flink和Kafka在实时数据处理场景下的工作原理和应用方法。
recommend-type

前端应用中异步数据处理与获取的实践指南

### 前端应用中异步数据处理与获取的实践指南 在现代前端开发中,异步数据处理和获取是常见的需求。本文将介绍如何使用 JavaScript 的 `async/await` 语法简化异步操作,以及如何在 Stimulus 和 React 应用中实现数据的获取和更新。 #### 1. 异步操作与 `async/await` 在 JavaScript 中,处理多个异步操作时,传统的 `then` 链式调用可能会使代码变得复杂。例如: ```javascript updateData() { fetch("/sold_out_concerts").then((response) => {