mpc 局部路径规划
时间: 2025-02-16 16:06:59 AIGC 浏览: 64
### 模型预测控制在局部路径规划中的应用
#### 局部路径规划概述
局部路径规划是指无人车或其他机器人根据当前环境感知的信息,在短时间内做出最优行驶决策的过程。对于无人驾驶车辆而言,选择有人乘坐的无人驾驶车辆的原因在于其运动学模型和动力学模型较为成熟,在仿真软件Carsim 和Adams 中有相应模型,这有助于深入探讨模型预测控制(MPC)理论的应用[^1]。
#### MPC 的基本原理及其优势
MPC 是一种先进的过程控制系统设计方法论,它利用系统的动态数学模型对未来一段时间内的行为作出预测,并通过优化目标函数来求解一系列输入序列以实现期望性能指标的最大化或最小化。具体到自动驾驶场景下:
- **实时性强**:能够快速响应外界变化并调整策略;
- **约束处理能力好**:可以方便地加入各种物理边界条件以及安全限制;
- **易于集成高级功能**:比如与其他传感器融合、考虑乘客舒适度等因素;
#### 应用实例分析
针对无人车上常见的两种任务——路径跟随(Path Following)与轨迹追踪(Trajectory Tracking),采用基于MPC的方法可以在保证稳定性的前提下提高跟踪精度和平顺性。例如,在面对复杂路况时,可以通过构建合适的成本项(如偏离程度、加速度大小等),使得控制器能够在满足一定规则的基础上灵活应对突发状况。
```python
import numpy as np
from scipy.optimize import minimize
def mpc_controller(state, ref_trajectory):
"""
A simple implementation of Model Predictive Control.
Parameters:
state (array): Current vehicle states [position_x, position_y, heading_angle].
ref_trajectory (list of arrays): Reference trajectory points [[pos_x0, pos_y0], ...].
Returns:
optimal_input (float): Optimal steering angle command calculated by MPC algorithm.
"""
N = len(ref_trajectory)-1 # Prediction horizon length
def cost_function(u):
J = 0.0
predicted_states = predict_future_states(state, u)
for i in range(N+1):
error = distance_between(predicted_states[i], ref_trajectory[i])
J += weight * error**2
return J
initial_guess = [0]*N
bounds = ((min_steering,-max_steering),)*N
result = minimize(cost_function, initial_guess,bounds=bounds)
optimal_input = result.x[0]
return optimal_input
def predict_future_states(initial_state, inputs_sequence):
"""Predict future states based on current state and input sequence."""
pass # Placeholder function; actual dynamics should be implemented here.
def distance_between(point_a, point_b):
"""Calculate Euclidean distance between two points"""
dx = point_a[0]-point_b[0]
dy = point_a[1]-point_b[1]
return np.sqrt(dx*dx + dy*dy)
# Example usage
current_vehicle_position = [-5., -7., 0.] # Initial guess at the start location
reference_path = [
(-4., -6.),(-3., -5.),(-2., -4.)
] # Desired waypoints along desired route
optimal_command = mpc_controller(current_vehicle_position, reference_path)
print(f"The first control action would be {np.degrees(optimal_command)} degrees.")
```
此代码片段展示了如何使用Python 实现一个简单的MPC 控制器框架,其中包含了状态预测模块`predict_future_states()`和代价计算部分`cost_function()`. 用户可以根据实际需求修改这些组件内部的具体逻辑,从而适应不同类型的移动平台特性。
阅读全文
相关推荐




















