活动介绍

C:\Users\27954\anaconda3\envs\pytorch_env\lib\site-packages\torch\_subclasses\functional_tensor.py:275: UserWarning: Failed to initialize NumPy: DLL load failed while importing _multiarray_umath: 找不到指定的模块。 (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu"))

时间: 2025-07-05 11:51:49 浏览: 28
<think>嗯,用户遇到了一个关于PyTorch和NumPy的DLL加载错误。这个错误信息显示在导入_multiarray_umath时找不到指定的模块。首先,我需要回想一下这类错误的常见原因。 首先,用户可能安装的NumPy版本与当前环境中的PyTorch或其他库不兼容。或者,可能是NumPy安装不完整或损坏。另一个可能性是环境变量的问题,导致系统找不到必要的DLL文件,比如那些属于Intel Math Kernel Library (MKL)的文件。此外,系统路径中缺少必要的依赖项,或者Python环境本身有问题,比如多个Python版本冲突。 接下来,我应该考虑用户之前询问过PyCharm创建Conda环境的问题,所以当前问题可能是在他们新创建的Conda环境中出现的。这可能意味着他们在安装PyTorch或NumPy时出现了问题,或者在环境配置过程中有遗漏的步骤。 常见的解决方法包括重新安装NumPy和PyTorch,确保版本兼容,并检查MKL库的存在。另外,使用Conda而不是pip安装这些包可能更可靠,因为Conda会处理依赖关系。如果问题仍然存在,可能需要手动添加DLL路径到系统环境变量,或者重新安装Anaconda/Miniconda来修复底层库的问题。 还要考虑用户的操作系统是Windows,因为错误路径中提到了C盘,而DLL问题在Windows上较为常见。可能需要检查Visual C++ Redistributable是否安装,或者是否存在权限问题导致DLL无法加载。 最后,用户可能需要更新Conda和所有包,或者创建一个全新的环境来避免潜在的配置冲突。确保用户按照正确的步骤安装PyTorch,比如通过官方推荐的Conda命令,而不是pip,特别是在Windows上。</think>您在运行PyTorch代码时遇到的警告提示与**NumPy初始化失败**相关(尤其是涉及`_multiarray_umath`模块的DLL加载问题),以下是逐步排查和解决方案: --- ### **原因分析** 1. **NumPy依赖的MKL库缺失** - NumPy需要Intel MKL(Math Kernel Library)的动态链接库(DLL),若环境中的MKL库损坏或版本冲突,会导致此错误。 2. **环境路径冲突** - 系统中可能存在多个Python环境或残留的旧版本NumPy,导致DLL加载混乱。 3. **PyTorch与NumPy版本不兼容** - 安装的PyTorch可能依赖特定版本的NumPy,版本不匹配会触发兼容性问题。 --- ### **解决方案** #### **方法1:强制重装NumPy + MKL** 1. 在Conda环境中执行以下命令: ```bash conda install -y numpy mkl=2023 --force-reinstall ``` - `mkl=2023` 指定兼容的MKL版本,避免默认安装最新版导致的冲突 - `--force-reinstall` 强制覆盖现有文件 2. 若仍报错,尝试通过PyPI安装: ```bash pip uninstall numpy -y pip install numpy --no-cache-dir --force-reinstall ``` --- #### **方法2:修复Conda环境依赖** 1. 更新Conda及基础工具: ```bash conda update -n base -c defaults conda conda install -y nomkl # 禁用MKL,改用OpenBLAS(可选) ``` 2. 重新创建PyTorch环境(推荐): ```bash conda create -n pytorch_new python=3.9 conda activate pytorch_new conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` --- #### **方法3:手动添加DLL路径(Windows专用)** 1. 找到Anaconda环境中的MKL DLL路径(例如): ``` C:\Users\27954\anaconda3\envs\pytorch_env\Library\bin ``` 2. 将此路径添加到系统环境变量: - 右键“此电脑” → 属性 → 高级系统设置 → 环境变量 → 编辑`Path` → 添加上述路径 3. 重启PyCharm或终端使配置生效。 --- #### **方法4:检查Python环境完整性** 1. 执行以下命令检查依赖冲突: ```bash conda list --show-channel-urls | findstr "numpy mkl" ``` 2. 若输出中同时存在`conda-forge`和`defaults`渠道的包,可能引发冲突。统一渠道: ```bash conda config --env --remove-key channels conda config --env --append channels conda-forge --append channels defaults ``` --- ### **验证修复** 运行以下Python代码测试NumPy和PyTorch: ```python import numpy as np import torch print(np.__version__) # 应输出版本号且无警告 print(torch.rand(3,3)) # 应生成随机张量 ``` --- ### **附:典型成功环境配置** - **Conda环境**: ```bash numpy=1.23.5 mkl=2023.2.0 pytorch=2.0.1 ``` - **安装命令**: ```bash conda install -y numpy=1.23 mkl=2023 pytorch=2.0.1 -c pytorch ``` --- 若问题仍未解决,建议彻底删除`pytorch_env`环境后重建,或尝试[Miniconda](https://docs.conda.io/en/latest/miniconda.html)替代Anaconda(避免预装包干扰)。
阅读全文

相关推荐

配置环境的时候出现意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_left_shift_meta.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_not_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_not_meta.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_or_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_or_meta.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_right_shift_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_right_shift_meta.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_xor_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bitwise_xor_meta.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/blackman_window_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/block_diag_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bmm_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bmm_meta.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/broadcast_tensors_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/broadcast_to_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\ATen/ops/bucketize_native.h 注意: 包含文件: E:\Anaconda\envs\pytorch2.3.0\Lib\site-packages\torch\include\

Traceback (most recent call last): File "D:\35433\Documents\pytorch项目\train\train_gpu_2.py", line 3, in <module> from torch.utils.tensorboard import SummaryWriter File "D:\anaconda\envs\pytorch\lib\site-packages\torch\utils\tensorboard\__init__.py", line 2, in <module> from tensorboard.summary.writer.record_writer import RecordWriter # noqa F401 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\summary\__init__.py", line 22, in <module> from tensorboard.summary import v1 # noqa: F401 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\summary\v1.py", line 23, in <module> from tensorboard.plugins.histogram import summary as _histogram_summary File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\plugins\histogram\summary.py", line 35, in <module> from tensorboard.plugins.histogram import summary_v2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\plugins\histogram\summary_v2.py", line 35, in <module> from tensorboard.util import tensor_util File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\util\tensor_util.py", line 20, in <module> from tensorboard.compat.tensorflow_stub import dtypes, compat, tensor_shape File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\tensorflow_stub\__init__.py", line 25, in <module> from . import app # noqa File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\tensorflow_stub\app.py", line 21, in <module> from . import flags File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\tensorflow_stub\flags.py", line 25, in <module> from absl.flags import * # pylint: disable=wildcard-import File "D:\anaconda\envs\pytorch\lib\site-packages\absl\flags\__init__.py", line 35, in <module> from absl.flags import _argument_parser File "D:\anaconda\envs\pytorch\lib\site-packages\absl\flags\_argument_parser.py", line 82, in <module> class ArgumentParser(Generic[_T], metaclass=_ArgumentParserCache): TypeError: metaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases

(pytorch) C:\Users\pc\OpenPCDet>pip install -r requirements.txt Requirement already satisfied: numpy in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 1)) (1.26.3) Requirement already satisfied: llvmlite in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 2)) (0.43.0) Requirement already satisfied: numba in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 3)) (0.60.0) Requirement already satisfied: torch>=1.1 in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 4)) (2.6.0+cu118) Requirement already satisfied: tensorboardX in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 5)) (2.6.2.2) Requirement already satisfied: easydict in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 6)) (1.13) Requirement already satisfied: pyyaml in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 7)) (6.0.2) Requirement already satisfied: scikit-image in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 8)) (0.24.0) Requirement already satisfied: tqdm in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 9)) (4.67.1) Requirement already satisfied: torchvision in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 10)) (0.21.0+cu118) Collecting SharedArray (from -r requirements.txt (line 11)) Using cached SharedArray-3.2.4.tar.gz (19 kB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Requirement already satisfied: opencv-python in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 12)) (4.11.0.86) Requirement already satisfied: pyquaternion in d:\anaconda3\envs\pytorch\lib\site-packages (from -r requirements.txt (line 13)) (0.9.9) Requirement already satisfied: filelock in d:\anaconda3\envs\pytorch\lib\site-package

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "C:\Users\31035\PycharmProjects\pythonProject1\main.py", line 1, in <module> from transformers import T5Tokenizer, T5ForConditionalGeneration File "C:\Anaconda\envs\pytorch\lib\site-packages\transformers\__init__.py", line 26, in <module> from . import dependency_versions_check File "C:\Anaconda\envs\pytorch\lib\site-packages\transformers\dependency_versions_check.py", line 16, in <module> from .utils.versions import require_version, require_version_core File "C:\Anaconda\envs\pytorch\lib\site-packages\transformers\utils\__init__.py", line 27, in <module> from .chat_template_utils import DocstringParsingException, TypeHintParsingException, get_json_schema File "C:\Anaconda\envs\pytorch\lib\site-packages\transformers\utils\chat_template_utils.py", line 40, in <module> from torch import Tensor File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\__init__.py", line 1477, in <module> from .functional import * # noqa: F403 File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\functional.py", line 9, in <module> import torch.nn.functional as F File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\transformer.py", line 20, in <module> devic

Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\__init__.py", line 2126, in <module> from torch import _VF as _VF, functional as functional # usort: skip File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\functional.py", line 8, in <module> import torch.nn.functional as F File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\nn\__init__.py", line 8, in <module> from torch.nn.modules import * # usort: skip # noqa: F403 File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\nn\modules\__init__.py", line 1, in <module> from .module import Module # usort: skip File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 17, in <module> from torch.utils._python_dispatch import is_traceable_wrapper_subclass File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\__init__.py", line 8, in <module> from torch.utils import ( File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\data\__init__.py", line 1, in <module> from torch.utils.data.dataloader import ( File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py", line 22, in <module> import torch.utils.data.graph_settings File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\data\graph_settings.py", line 8, in <module> from torch.utils.data.datapipes.iter.sharding import ( File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\data\datapipes\__init__.py", line 1, in <module> from torch.utils.data.datapipes import dataframe as dataframe, iter as iter, map as map File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\data\datapipes\iter\__init__.py", line 1, in <module> from torch.utils.data.datapipes.iter.callable import ( File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\data\datapipes\iter\callable.py", line 7, in <module> from torch.utils.data._utils.collate import default_collate File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\data\_utils\__init__.py", line 54, in <module> from . import collate, fetch, pin_memory, signal_handling, worker File "D:\Deeplearning\Anaconda_envs\pytorch\lib\site-packages\torch\utils\data\_utils\collate.py", line 327, in <module> default_collate_fn_map[np.ndarray] = collate_numpy_array_fn AttributeError: module 'numpy' has no attribute 'ndarray'

ERROR: Exception: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher yield File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read data = self._fp_read(amt) if not fp_closed else b"" File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read return self._fp.read(amt) if amt is not None else self._fp.read() File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 90, in read data = self.__fp.read(amt) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 463, in read n = self.readinto(b) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 507, in readinto n = self.fp.readinto(b) File "E:\Anaconda\envs\pytorch\lib\socket.py", line 704, in readinto return self._sock.recv_into(b) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1242, in recv_into return self.read(nbytes, buffer) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1100, in read return self._sslobj.read(len, buffer) socket.timeout: The read operation timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\cli\base_command.py", line 160, in exc_logging_wrapper status = run_func(*args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\cli\req_command.py", line 247, in wrapper return func(self, options, args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\commands\install.py", line 419, in run requirement_set = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 92, in resolve result = self._result = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py"

在pip install scikit-learn完事后出现以下报错,ERROR: Exception: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_vendor\urllib3\response.py", line 438, in _error_catcher yield File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_vendor\urllib3\response.py", line 561, in read data = self._fp_read(amt) if not fp_closed else b"" File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_vendor\urllib3\response.py", line 527, in _fp_read return self._fp.read(amt) if amt is not None else self._fp.read() File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_vendor\cachecontrol\filewrapper.py", line 90, in read data = self.__fp.read(amt) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 463, in read n = self.readinto(b) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 507, in readinto n = self.fp.readinto(b) File "E:\Anaconda\envs\pytorch\lib\socket.py", line 704, in readinto return self._sock.recv_into(b) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1242, in recv_into return self.read(nbytes, buffer) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1100, in read return self._sslobj.read(len, buffer) socket.timeout: The read operation timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_internal\cli\base_command.py", line 160, in exc_logging_wrapper status = run_func(*args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_internal\cli\req_command.py", line 247, in wrapper return func(self, options, args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_internal\commands\install.py", line 419, in run requirement_set = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_internal\resolution\resolvelib\resolver.py", line 92, in resolve result = self._result = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip_vendor\resolvelib\resolvers.py"这是什么原因

在pytorch环境里安装tensorflow出现这种情况是什么原因?ERROR: Exception: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher yield File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read data = self._fp_read(amt) if not fp_closed else b"" File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read return self._fp.read(amt) if amt is not None else self._fp.read() File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 90, in read data = self.__fp.read(amt) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 463, in read n = self.readinto(b) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 507, in readinto n = self.fp.readinto(b) File "E:\Anaconda\envs\pytorch\lib\socket.py", line 704, in readinto return self._sock.recv_into(b) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1242, in recv_into return self.read(nbytes, buffer) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1100, in read return self._sslobj.read(len, buffer) socket.timeout: The read operation timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\cli\base_command.py", line 160, in exc_logging_wrapper status = run_func(*args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\cli\req_command.py", line 247, in wrapper return func(self, options, args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\commands\install.py", line 419, in run requirement_set = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 92, in resolve result = self._result = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py"要怎么更正才对

D:\anaconda\envs\pytorch\python.exe C:\Users\23896\Desktop\bev-lane-det_dachaung-master\tools\train_openlane.py Traceback (most recent call last): File "C:\Users\23896\Desktop\bev-lane-det_dachaung-master\tools\train_openlane.py", line 18, in <module> from torch.utils.tensorboard import SummaryWriter File "D:\anaconda\envs\pytorch\lib\site-packages\torch\utils\tensorboard\__init__.py", line 13, in <module> from .writer import FileWriter, SummaryWriter # noqa: F401 File "D:\anaconda\envs\pytorch\lib\site-packages\torch\utils\tensorboard\writer.py", line 9, in <module> from tensorboard.compat.proto.event_pb2 import SessionLog File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\event_pb2.py", line 17, in <module> from tensorboard.compat.proto import summary_pb2 as tensorboard_dot_compat_dot_proto_dot_summary__pb2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\summary_pb2.py", line 17, in <module> from tensorboard.compat.proto import tensor_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__pb2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\tensor_pb2.py", line 16, in <module> from tensorboard.compat.proto import resource_handle_pb2 as tensorboard_dot_compat_dot_proto_dot_resource__handle__pb2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\resource_handle_pb2.py", line 16, in <module> from tensorboard.compat.proto import tensor_shape_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__shape__pb2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\tensor_shape_pb2.py", line 36, in <module> _descriptor.FieldDescriptor( File "D:\anaconda\envs\pytorch\lib\site-packages\google\protobuf\descriptor.py", line 561, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

报错1/3] cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /wd4624 /wd4067 /wd4068 /EH sc -DWITH_CUDA -IE:\dachuang\VL-Grasp-main\VL-Grasp-main\GraspNet\knn\src -IE:\Anaconda\envs\pytorch2.3.0\Include -IE:\Anaconda\envs\pytorch2.3 .0\lib\site-packages\torch\include -IE:\Anaconda\envs\pytorch2.3.0\lib\site-packages\torch\include\torch\csrc\api\include -IE:\Anaconda\envs\py torch2.3.0\lib\site-packages\torch\include\TH -IE:\Anaconda\envs\pytorch2.3.0\lib\site-packages\torch\include\THC -IE:\Anaconda\envs\pytorch2.3 .0\lib\site-packages\torch\include -IE:\Anaconda\envs\pytorch2.3.0\lib\site-packages\torch\include\torch\csrc\api\include -IE:\Anaconda\envs\py torch2.3.0\lib\site-packages\torch\include\TH -IE:\Anaconda\envs\pytorch2.3.0\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GP U Computing Toolkit\CUDA\v11.8\include" -IE:\Anaconda\envs\pytorch2.3.0\include -IE:\Anaconda\envs\pytorch2.3.0\Include "-IE:\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include" -c E:\dachuang\VL-Grasp-main\VL-Grasp-main\GraspNet\knn\src\cpu\knn_cpu.cpp /FoE:\dach uang\VL-Grasp-main\VL-Grasp-main\GraspNet\knn\build\temp.win-amd64-cpython-39\Release\dachuang\VL-Grasp-main\VL-Grasp-main\GraspNet\knn\src\cpu\knn_cpu.obj -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=knn_pytorch -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++17 FAILED: E:/dachuang/VL-Grasp-main/VL-Grasp-main/GraspNet/knn/build/temp.win-amd64-cpython-39/Release/dachuang/VL-Grasp-main/VL-Grasp-main/GraspNet/knn/src/cpu/knn_cpu.obj cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /wd4624 /wd4067 /wd4068 /EHsc -DW ITH_CUDA -IE:\dachuang\VL-Grasp-main\VL-Grasp-main\GraspNet\knn\src -IE:\Anaconda\envs\pytorch2.3.0\Include -IE:\Anaconda\envs\pytorch2.3.0\lib \site-packages\torch\include -IE:\Anaconda\envs\pytorch2.3.0\lib\site-packages\torch\include\torch\csrc\api\include -IE:\Anacon

RuntimeError Traceback (most recent call last) Cell In[19], line 2 1 # Train the model on the COCO8 example dataset for 100 epochs ----> 2 results = model.train(data="C:\\Users\\asus\\Downloads\\coco8.yaml", epochs=100, imgsz=640) File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\model.py:799, in Model.train(self, trainer, **kwargs) 796 self.model = self.trainer.model 798 self.trainer.hub_session = self.session # attach optional HUB session --> 799 self.trainer.train() 800 # Update model and cfg after training 801 if RANK in {-1, 0}: File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\trainer.py:227, in BaseTrainer.train(self) 224 ddp_cleanup(self, str(file)) 226 else: --> 227 self._do_train(world_size) File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\trainer.py:348, in BaseTrainer._do_train(self, world_size) 346 if world_size > 1: 347 self._setup_ddp(world_size) --> 348 self._setup_train(world_size) 350 nb = len(self.train_loader) # number of batches 351 nw = max(round(self.args.warmup_epochs * nb), 100) if self.args.warmup_epochs > 0 else -1 # warmup iterations File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\trainer.py:285, in BaseTrainer._setup_train(self, world_size) 283 if self.amp and RANK in {-1, 0}: # Single-GPU and DDP 284 callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them --> 285 self.amp = torch.tensor(check_amp(self.model), device=self.device) 286 callbacks.default_callbacks = callbacks_backup # restore callbacks 287 if RANK > -1 and world_size > 1: # DDP File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\utils\checks.py:782, in check_amp(model) 779 try: 780 from ultralytics import YOLO --> 782 assert amp_allclose(YOLO("yolo11n.pt"), im) 783 LOGGER.info(f"{prefix}checks passed ✅") 784 except ConnectionError: File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\utils\checks.py:770, in check_amp.<locals>.amp_allclose(m, im) 768 batch = [im] * 8 769 imgsz = max(256, int(model.stride.max() * 4)) # max stride P5-32 and P6-64 --> 770 a = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # FP32 inference 771 with autocast(enabled=True): 772 b = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # AMP inference File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\model.py:185, in Model.__call__(self, source, stream, **kwargs) 156 def __call__( 157 self, 158 source: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor] = None, 159 stream: bool = False, 160 **kwargs: Any, 161 ) -> list: 162 """ 163 Alias for the predict method, enabling the model instance to be callable for predictions. 164 (...) 183 ... print(f"Detected {len(r)} objects in image") 184 """ --> 185 return self.predict(source, stream, **kwargs) File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\model.py:555, in Model.predict(self, source, stream, predictor, **kwargs) 553 if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models 554 self.predictor.set_prompts(prompts) --> 555 return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\predictor.py:227, in BasePredictor.__call__(self, source, model, stream, *args, **kwargs) 225 return self.stream_inference(source, model, *args, **kwargs) 226 else: --> 227 return list(self.stream_inference(source, model, *args, **kwargs)) File D:\anaconda\envs\pytorch_env\lib\site-packages\torch\autograd\grad_mode.py:43, in _DecoratorContextManager._wrap_generator.<locals>.generator_context(*args, **kwargs) 40 try: 41 # Issuing None to a generator fires it up 42 with self.clone(): ---> 43 response = gen.send(None) 45 while True: 46 try: 47 # Forward the response to our caller and get its next request File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\predictor.py:326, in BasePredictor.stream_inference(self, source, model, *args, **kwargs) 324 # Preprocess 325 with profilers[0]: --> 326 im = self.preprocess(im0s) 328 # Inference 329 with profilers[1]: File D:\anaconda\envs\pytorch_env\lib\site-packages\ultralytics\engine\predictor.py:167, in BasePredictor.preprocess(self, im) 165 im = im.transpose((0, 3, 1, 2)) # BHWC to BCHW, (n, 3, h, w) 166 im = np.ascontiguousarray(im) # contiguous --> 167 im = torch.from_numpy(im) 169 im = im.to(self.device) 170 im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32 RuntimeError: Numpy is not available

最新推荐

recommend-type

APA多步垂直泊车与全局路径规划MPC控制算法联合仿真,开源版持续迭代更新

APA多步垂直泊车系统的仿真研究,重点探讨了Carsim与Matlab在自动泊车仿真中的联合应用。文章首先介绍了Carsim场景及车辆配置文件,展示了如何模拟车辆在不同道路条件下的行驶轨迹和碰撞风险。接着讨论了Simulink文件中的纵向逻辑控制,包括动力分配和刹车控制等。随后阐述了MPC横向控制算法文件的作用,即通过预测未来的系统状态来优化车辆的横向移动和控制。最后,文章讲解了路径规划算法及其全局规划方法,强调了基于规则和启发式的路径规划策略。文中提到的所有模型均开源,便于研究人员参考和学习。 适合人群:从事自动驾驶技术研发的研究人员和技术爱好者。 使用场景及目标:适用于希望深入了解自动泊车仿真技术的研究人员,特别是那些关注路径规划和MPC控制算法的人群。目标是帮助他们掌握Carsim与Matlab联合仿真的具体实现方法,从而应用于实际项目中。 其他说明:本文不仅提供了详细的理论解释,还附带了完整的开源模型,方便读者进行实践操作和进一步研究。
recommend-type

基于S7-300与组态王的污水处理厂沉淀池-V型滤池自动控制系统解析

基于西门子S7-300 PLC和组态王软件的污水处理厂沉淀池-V型滤池综合控制系统的设计与实现。主要内容涵盖梯形图程序逻辑(如液位联锁控制、定时排泥、手动急停)、接线图与IO分配细节(如超声波液位计、故障信号、急停按钮等),以及组态王的画面设计(如反冲洗流程动画)。此外,还分享了一些实际应用中的经验和教训,如硬件接线注意事项、定期维护措施等。 适用人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程和SCADA系统有研究的人士。 使用场景及目标:适用于需要理解和实施污水处理厂自动化控制系统的场合,帮助工程师掌握S7-300 PLC与组态王软件的具体应用方法,提高系统的可靠性和稳定性。 其他说明:文中提供的实例和经验有助于避免常见错误,提升项目的成功率。同时强调了硬件选型和日常维护的重要性,确保系统长期稳定运行。
recommend-type

Pansophica开源项目:智能Web搜索代理的探索

Pansophica开源项目是一个相对较新且具有创新性的智能Web搜索代理,它突破了传统搜索引擎的界限,提供了一种全新的交互方式。首先,我们来探讨“智能Web搜索代理”这一概念。智能Web搜索代理是一个软件程序或服务,它可以根据用户的查询自动执行Web搜索,并尝试根据用户的兴趣、历史搜索记录或其他输入来提供个性化的搜索结果。 Pansophica所代表的不仅仅是搜索结果的展示,它还强调了一个交互式的体验,在动态和交互式虚拟现实中呈现搜索结果。这种呈现方式与现有的搜索体验有着根本的不同。目前的搜索引擎,如Google、Bing和Baidu等,多以静态文本和链接列表的形式展示结果。而Pansophica通过提供一个虚拟现实环境,使得搜索者可以“扭转”视角,进行“飞行”探索,以及“弹网”来浏览不同的内容。这种多维度的交互方式使得信息的浏览变得更加快速和直观,有望改变用户与网络信息互动的方式。 接着,我们关注Pansophica的“开源”属性。所谓开源,指的是软件的源代码可以被公众获取,任何个人或组织都可以自由地使用、学习、修改和分发这些代码。开源软件通常由社区进行开发和维护,这样的模式鼓励了协作创新并减少了重复性劳动,因为全世界的开发者都可以贡献自己的力量。Pansophica项目作为开源软件,意味着其他开发者可以访问和使用其源代码,进一步改进和扩展其功能,甚至可以为Pansophica构建新的应用或服务。 最后,文件名称“Pansophica-src-1.3”表明了我们讨论的特定版本的Pansophica开源代码。数字“1.3”很可能指的是该版本号,表明这是Pansophica项目的第1.3个公开版本。这个版本号对于开发者来说很重要,因为它可以帮助他们追踪更新的进度、比较版本间的差异以及选择最适合其项目的版本。 综合以上信息,Pansophica开源项目不仅在搜索代理领域引入了创新的交互方式,而且通过开源的方式,提供了技术共享和协作的可能性。对于IT行业来说,开源项目是推动技术发展的重要力量,它激发了社区的活力,促进了知识的传播和技术的进步。通过构建一个开源社区,Pansophica可以吸引来自世界各地的开发者和研究人员,共同探索如何将搜索技术与交互式虚拟现实技术结合起来,为用户带来更加丰富和有效的信息检索体验。同时,Pansophica的开源性质也使其更容易适应未来技术的发展,随着社区的不断贡献和反馈,这一平台有望在功能和性能上得到持续的优化和增强。
recommend-type

跨平台内容提取无忧:coze工作流应对社交媒体挑战

# 1. 社交媒体内容提取的必要性与挑战 ## 1.1 内容提取的必要性 在数字时代,社交媒体内容是信息与数据流动的主干道,公司、个人和研究者都在寻求从这些信息中提取价值。无论是为了市场趋势分析、品牌监控、消费者洞察还是公共舆论监测,有效的社交媒体内容提取变得至关重要。这不仅有助于企业做出数据驱动的决策,也能使个人更好地理
recommend-type

vrrp主设备发送的免费arp

<think>好的,我现在需要回答用户关于VRRP主设备发送免费ARP的目的和工作原理的问题。首先,我得回忆一下VRRP的基本概念和工作机制。VRRP,虚拟路由冗余协议,主要用于在局域网中提供默认网关的冗余备份,确保网络的高可用性。主设备(Master)负责转发流量,而备用设备(Backup)则在主设备故障时接管工作。 用户的问题集中在主设备发送免费ARP的目的和机制上。根据引用[2],免费ARP用于通知下游设备虚拟MAC地址的变更。当主设备被选举出来后,它需要让局域网内的其他设备知道虚拟IP对应的MAC地址已经指向自己,这样流量才会被正确路由到主设备。免费ARP的作用应该就是更新这些设备的
recommend-type

为Ghost博客平台打造的Meteor流星包装使用指南

从给定文件信息中,我们可以提炼出以下IT知识点: ### 标题知识点:流星Ghost软件包 1. **流星Ghost软件包的用途**:流星Ghost软件包是专为Ghost博客平台设计的流星(Meteor)应用程序。流星是一个开源的全栈JavaScript平台,用于开发高性能和易于编写的Web应用程序。Ghost是一个开源博客平台,它提供了一个简单且专业的写作环境。 2. **软件包的作用**:流星Ghost软件包允许用户在流星平台上轻松集成Ghost博客。这样做的好处是可以利用流星的实时特性以及易于开发和部署的应用程序框架,同时还能享受到Ghost博客系统的便利和美观。 ### 描述知识点:流星Ghost软件包的使用方法 1. **软件包安装方式**:用户可以通过流星的命令行工具添加名为`mrt:ghost`的软件包。`mrt`是流星的一个命令行工具,用于添加、管理以及配置软件包。 2. **初始化Ghost服务器**:描述中提供了如何在服务器启动时运行Ghost的基本代码示例。这段代码使用了JavaScript的Promise异步操作,`ghost().then(function (ghostServer) {...})`这行代码表示当Ghost服务器初始化完成后,会在Promise的回调函数中提供一个Ghost服务器实例。 3. **配置Ghost博客**:在`then`方法中,首先会获取到Ghost服务器的配置对象`config`,用户可以在此处进行自定义设置,例如修改主题、配置等。 4. **启动Ghost服务器**:在配置完成之后,通过调用`ghostServer.start()`来启动Ghost服务,使其能够处理博客相关的请求。 5. **Web浏览器导航**:一旦流星服务器启动并运行,用户便可以通过Web浏览器访问Ghost博客平台。 ### 标签知识点:JavaScript 1. **JavaScript作为流星Ghost软件包的开发语言**:标签指出流星Ghost软件包是使用JavaScript语言开发的。JavaScript是一种在浏览器端广泛使用的脚本语言,它也是流星平台的基础编程语言。 2. **流星和Ghost共同使用的语言**:JavaScript同样也是Ghost博客平台的开发语言。这表明流星Ghost软件包可以无缝集成,因为底层技术栈相同。 ### 压缩包子文件的文件名称列表知识点:meteor-ghost-master 1. **版本控制和软件包结构**:文件名称`meteor-ghost-master`暗示了该软件包可能托管在像GitHub这样的版本控制系统上。文件名中的`master`通常指的是主分支或主版本。 2. **软件包的目录结构**:通过文件名称可以推断出该软件包可能拥有一个标准的流星软件包结构,包含了初始化、配置、运行等必要的模块和文件。 3. **软件包的维护状态**:由于文件名没有包含特定的版本号,我们无法直接得知软件包的最新更新情况。通常,软件包维护者会将最新的版本代码放在`master`分支上。 ### 总结 流星Ghost软件包提供了一个有效的解决方案,使得流星平台的开发者能够在他们的应用中添加Ghost博客功能。软件包的使用简便,通过流星的命令行工具安装,并通过JavaScript代码配置和启动Ghost服务。通过流星Ghost软件包,开发者能够享受流星的实时特性以及Ghost博客系统的便利性。此外,软件包的命名和结构也暗示了其维护和版本控制的模式,有助于开发者更好地理解如何使用和维护这一软件包。
recommend-type

抖音标题生成自动化:用coze工作流释放创意

# 1. 抖音标题生成自动化的重要性 随着社交媒体平台的崛起,内容的吸引力很大程度上取决于标题的创意与精准性。抖音作为一个日活亿级的短视频平台,高质量的标题能够有效提高视频的点击率,增加内容的传播。但是,人工撰写标题不仅耗时耗力,而且很难做到快速响应热点,自动化标题生成工具应运而生。coze工作流,作为一种实现自动化生成抖音标题的工具,其重要性不言而喻。它能够利用大数据分析和机器学习技术,提高标题的吸引
recommend-type

spss消费结构因子分析

<think>好的,我现在需要帮助用户在SPSS中进行消费结构的因子分析。首先,我要回忆一下因子分析的基本步骤和SPSS的操作流程。用户可能对SPSS不太熟悉,所以步骤要详细,同时需要结合他们提供的引用内容,特别是引用[2]中的适用条件和检验方法。 首先,用户提到了消费结构的数据,这可能包括多个变量,如食品、住房、交通等支出。因子分析适用于这种情况,可以降维并找出潜在因子。根据引用[2],需要检查样本量是否足够,变量间是否有相关性,以及KMO和Bartlett检验的结果。 接下来,我需要按照步骤组织回答:数据准备、适用性检验、因子提取、因子旋转、命名解释、计算得分。每个步骤都要简明扼要,说
recommend-type

OpenMediaVault的Docker映像:快速部署与管理指南

根据提供的文件信息,我们将详细讨论与标题和描述中提及的Docker、OpenMediaVault以及如何部署OpenMediaVault的Docker镜像相关的一系列知识点。 首先,Docker是一个开源的应用容器引擎,允许开发者打包应用及其依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口(类似 iPhone 的 app)。 OpenMediaVault是一个基于Debian的NAS(网络附加存储)解决方案。它专为家庭或小型办公室提供文件共享、网络附加存储以及打印服务。它提供了一个易用的Web界面,通过这个界面用户可以管理服务器配置、网络设置、用户权限、文件服务等。 在描述中提到了一些Docker命令行操作: 1. `git clone`:用于克隆仓库到本地,这里的仓库指的是“docker-images-openmedivault”。 2. `docker build -t omv`:这是一个构建Docker镜像的命令,其中`-t`参数用于标记镜像名称和标签,这里是标记为“omv”。 3. `docker run`:运行一个容器实例,`-t`参数用于分配一个伪终端,`-i`参数用于交互式操作,`-p 80:80`则是将容器的80端口映射到宿主机的80端口。 启动服务的部分涉及OpenMediaVault的配置和初始化: - ssh服务:用于远程登录到服务器的协议。 - php5-fpm:是PHP的一个FastCGI实现,用于加速PHP的运行。 - nginx:是一个高性能的HTTP和反向代理服务器,常用于优化静态内容的分发。 - openmediavault引擎:指的是OpenMediaVault的核心服务。 - rrdcached:用于收集和缓存性能数据,这些数据可以被rrdtool图形化工具读取。 - collectd:是一个守护进程,用于收集系统性能和提供各种存储方式和传输方式来存储所收集的数据。 为了访问服务,需要在浏览器中输入"http:// IP_OF_DOCKER",其中`IP_OF_DOCKER`指的是运行Docker容器的主机IP地址。 描述中还提到了一个步骤:“在System-> Network-> Interfaces中添加带有dhcp的eth0”,这指的是需要在OpenMediaVault的Web管理界面中配置网络接口。`eth0`是网络接口的名称,通常代表第一个以太网接口。DHCP(动态主机配置协议)是一种自动为网络中的设备分配IP地址的协议,这样设备就可以连接网络并开始通信,无需手动配置IP地址。 【压缩包子文件的文件名称列表】中的“docker-images-openmediavault-master”暗示了这是一个包含Docker镜像文件的代码仓库。通常,“master”分支是代码的主分支,包含了代码库中最新且通常是最稳定的版本。用户可以通过克隆该仓库到本地来获取所有相关的Dockerfile、配置脚本及依赖文件,以便能够自行构建和运行OpenMediaVault的Docker镜像。 综上所述,这些知识点涵盖了从基本的Docker概念、Docker命令行操作、OpenMediaVault服务启动和管理,到具体的网络配置及Docker仓库操作,都是进行Docker化OpenMediaVault部署的关键步骤。
recommend-type

小红书文案提取一步到位:coze工作流操作全攻略

# 1. coze工作流概述 工作流系统是企业信息化和数字化转型的核心组件之一,它通过自动化流程管理提升效率,确保业务流程的顺畅执行。coze工作流作为当前市场上较为先进的工作流解决方案,它不仅仅是一套软件工具,更是一个集成化的平台,旨在通过流程自动化和智能化提升企业运营效率。 coze工作流的引入不仅有助于标准化和优化企业的业务流程,还可以通过可配置的流程设计,满足不同部门的特定需求。在组织的业务流程中