(.venv) PS D:\PyCharm 2025.1.3.1\yolov8> pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126 Looking in indexes: https://download.pytorch.org/whl/cu126 Requirement already satisfied: torch in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (2.7.1+cu118) Requirement already satisfied: torchvision in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (0.22.1+cu118) Requirement already satisfied: torchaudio in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (2.7.1+cu118) Requirement already satisfied: filelock in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torch) (3.13.1) Requirement already satisfied: typing-extensions>=4.10.0 in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torch) (4.12.2) Requirement already satisfied: sympy>=1.13.3 in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torch) (1.13.3) Requirement already satisfied: networkx in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torch) (3.3) Requirement already satisfied: jinja2 in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torch) (3.1.4) Requirement already satisfied: fsspec in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torch) (2024.6.1) Requirement already satisfied: setuptools in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torch) (70.2.0) Requirement already satisfied: numpy in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torchvision) (2.1.2) Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from torchvision) (11.0.0) Requirement already satisfied: mpmath<1.4,>=1.1.0 in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from sympy>=1.13.3->torch) (1.3.0) Requirement already satisfied: MarkupSafe>=2.0 in d:\pycharm 2025.1.3.1\yolov8\.venv\lib\site-packages (from jinja2->torch) (2.1.5)

时间: 2025-07-29 20:24:32 AIGC 浏览: 29
<think>首先,用户的问题是关于PyTorch的:他们想安装PyTorch及相关库,并查看已安装的包信息,特别是torch、torchvision、torchaudio的版本信息以及相关依赖。 根据系统级指令: - 所有行内数学表达式必须使用$...$格式,但在这个上下文中,可能不涉及数学表达式,所以我可以忽略。 - 独立公式必须使用$$...$$格式,但同样,可能不适用。 - LaTeX语法正确:确保在需要时正确使用。 - 使用中文回答:整个回答必须用中文。 - 生成相关问题:在回答结束后,生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识:例如[^1]。我需要参考提供的引用内容。 提供的引用: - 引用[1]:讨论了PyTorch组件的安装顺序和版本兼容性,以及如何查看管理员账户等无关信息。 - 引用[2]:给出了特定CUDA版本的安装命令。 用户的需求: - 安装PyTorch及相关库(torch, torchvision, torchaudio)。 - 查看已安装的版本信息。 - 查看相关依赖。 我的回答需要结构清晰,帮助用户逐步解决问题,并保证真实可靠。 步骤分解: 1. **安装PyTorch及相关库**: - 首先,需要选择合适的版本。引用[2]提供了特定CUDA版本的安装命令。我应该建议用户根据他们的CUDA版本选择命令。 - 如果没有CUDA,可以使用CPU版本。 - 安装顺序:先安装torch,然后torchvision和torchaudio,因为它们依赖torch(来自引用[1])。 2. **查看已安装的包信息**: - 使用Python命令或pip命令查看版本。 - 在Python中:`import torch; print(torch.__version__)` - 使用pip:`pip show torch` 等。 - 查看依赖:pip show命令会显示依赖关系。 3. **整体结构**: - 用中文回答。 - 逐步引导:先安装,然后查看信息。 - 确保引用内容:在适当的地方添加引用标识。 4. **生成相关问题**: - 在回答结束后,添加"§§相关问题§§"部分,列出几个相关问题。 详细回答: - **安装步骤**: - 建议用户检查CUDA版本(如果需要GPU支持)。 - 提供安装命令。例如,对于CUDA 11.8:`pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118` - 或者CPU版本:`pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu` - 引用[2]提到CUDA 11.8和12.1,但用户可能没有指定CUDA版本,所以我应该给出通用建议。 - **查看版本信息**: - 方法1:在Python中运行代码: ```python import torch import torchvision import torchaudio print("torch version:", torch.__version__) print("torchvision version:", torchvision.__version__) print("torchaudio version:", torchaudio.__version__) ``` - 方法2:使用pip命令: ``` pip show torch pip show torchvision pip show torchaudio ``` 这将显示版本、依赖等详细信息。 - **查看依赖**: - pip show命令的输出包括"Requires"部分,列出依赖包。 - 例如,`pip show torchvision` 会显示它依赖torch。 添加引用: - 在提到安装顺序或版本兼容性时,添加引用[^1]。 - 在提到特定安装命令时,添加引用[^2]。 生成相关问题: - 基于用户查询,生成如: 1. 如何检查CUDA版本以安装兼容的PyTorch? 2. PyTorch安装后如何验证GPU支持? 3. 如果版本不兼容,如何解决依赖冲突? 确保回答真实可靠:我使用的信息来自标准PyTorch文档和pip命令。 最终回答结构: 1. 介绍:简要解释PyTorch组件。 2. 安装指南:如何安装,包括命令示例。 3. 查看版本信息:详细步骤。 4. 查看依赖:如何操作。 5. 相关问题。</think>### PyTorch安装及版本信息查看指南 PyTorch是一个开源的深度学习框架,其核心组件包括: - **torch**:提供张量计算和自动求导等基础功能(核心包)。 - **torchvision**:用于图像和视频数据处理(依赖torch)。 - **torchaudio**:用于音频数据处理(依赖torch)。 安装时需注意版本兼容性,例如torch 1.7需搭配torchvision 0.8.1和torchaudio 0.7.2[^1]。以下分步指导帮助您完成安装和版本信息查看。 --- #### 步骤1: 安装PyTorch及相关库 首先,根据您的CUDA版本或CPU环境选择兼容的安装命令(确保使用pip工具): - **如果使用CUDA 11.8**: ```bash pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118 ``` 此命令安装指定版本的兼容包(CUDA 11.8对应关系参考[^2])。 - **如果使用CUDA 12.1**: ```bash pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu121 ``` - **如果仅使用CPU**: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu ``` 安装顺序必须是先`torch`,再`torchvision`和`torchaudio`,因为后两者依赖`torch`包[^1]。 安装完成后,验证是否成功: ```bash python -c "import torch; print('PyTorch installed successfully')" ``` --- #### 步骤2: 查看已安装的版本信息 通过Python代码或命令行查看`torch`、`torchvision`和`torchaudio`的版本: - **方法1: 使用Python脚本**(推荐,直接显示版本): ```python import torch import torchvision import torchaudio print(f"torch版本: {torch.__version__}") print(f"torchvision版本: {torchvision.__version__}") print(f"torchaudio版本: {torchaudio.__version__}") ``` 运行后输出示例如下: ``` torch版本: 2.1.1 torchvision版本: 0.16.1 torchaudio版本: 2.1.1 ``` - **方法2: 使用pip命令**(显示详细包信息): ```bash pip show torch # 查看torch版本及元数据 pip show torchvision # 查看torchvision版本及元数据 pip show torchaudio # 查看torchaudio版本及元数据 ``` 输出包括版本号、安装路径和依赖关系。 --- #### 步骤3: 查看相关依赖信息 依赖关系可通过`pip show`命令获取: - **查看torch的依赖**: ```bash pip show torch ``` 输出中的`Requires`字段列出依赖项,例如可能包含`numpy`、`typing-extensions`等。 - **查看torchvision/torchaudio的依赖**: ```bash pip show torchvision # 输出会显示依赖torch包[^1] pip show torchaudio # 同样显示依赖torch包[^1] ``` 示例输出片段: ``` Name: torchvision Version: 0.16.1 Requires: torch, numpy, pillow ``` - **验证依赖兼容性**: 确保`torchvision`和`torchaudio`的版本与`torch`匹配。例如,torch 2.1.1需搭配torchvision 0.16.1[^2]。如果不匹配,使用`pip uninstall`移除旧包后重新安装兼容版本。 --- #### 注意事项 1. **CUDA版本检查**: 如果使用GPU,运行`nvidia-smi`查看CUDA版本,再选择对应PyTorch安装命令[^2]。 2. **依赖冲突处理**: 若安装失败,使用`pip check`扫描冲突(例如`pip check torch`),并根据提示解决。 3. **虚拟环境建议**: 推荐在虚拟环境(如`venv`或`conda`)中安装,避免系统包污染。
阅读全文

相关推荐

程序报错如下,怎么修改 C:\Users\QwQ\PyCharmMiscProject\.venv\Scripts\python.exe D:\funasr_test\main6-8b-5g.py Notice: ffmpeg is not installed. torchaudio is used to load audio If you want to use ffmpeg backend to load audio, please install it by: sudo apt install ffmpeg # ubuntu # brew install ffmpeg # mac funasr version: 1.2.4. Check update of funasr, and it would cost few times. You may disable it by set disable_update=True in AutoModel You are using the latest version of funasr-1.2.4 Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch 2025-03-06 17:41:06,099 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\speech_fsmn_vad_zh-cn-16k-common-pytorch 2025-03-06 17:41:08,717 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\punc_ct-transformer_cn-en-common-vocab471067-large 2025-03-06 17:41:09,440 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Building prefix dict from the default dictionary ... DEBUG:jieba:Building prefix dict from the default dictionary ... Loading model from cache C:\Users\QwQ\AppData\Local\Temp\jieba.cache DEBUG:jieba:Loading model from cache C:\Users\QwQ\AppData\Local\Temp\jieba.cache Loading model cost 0.350 seconds. DEBUG:jieba:Loading model cost 0.350 seconds. Prefix dict has been built successfully. DEBUG:jieba:Prefix dict has been built successfully. ERROR:root:模型初始化失败: 'device' 按Enter键退出...ERROR:root:处理过程中遇到错误

(env_name) PS F:\shuoshiceshi\PFCD-main\PFCD-main> python -c "import torch; print(f'PyTorch 版本: {torch.__version__}\nCUDA 版本: {torch.version.cuda}')" PyTorch 版本: 2.5.1+cu121 CUDA 版本: 12.1 (env_name) PS F:\shuoshiceshi\PFCD-main\PFCD-main> pip list Package Version --------------------- ------------ accelerate 1.9.0 aiofiles 23.2.1 aiohappyeyeballs 2.6.1 aiohttp 3.12.15 aiosignal 1.4.0 annotated-types 0.7.0 anyio 4.9.0 attrs 25.3.0 certifi 2025.8.3 charset-normalizer 3.4.2 click 8.2.1 colorama 0.4.6 contourpy 1.3.3 cycler 0.12.1 datasets 2.14.6 diffusers 0.34.0 dill 0.3.7 fastapi 0.116.1 ffmpy 0.6.1 filelock 3.18.0 fonttools 4.59.0 frozenlist 1.7.0 fsspec 2023.10.0 ftfy 6.3.1 gitdb 4.0.12 GitPython 3.1.45 gradio 4.44.1 gradio_client 1.3.0 gradio_image_prompter 0.1.0 h11 0.16.0 httpcore 1.0.9 httpx 0.28.1 huggingface-hub 0.34.3 idna 3.10 importlib_metadata 8.7.0 importlib_resources 6.5.2 intel-openmp 2021.4.0 Jinja2 3.1.6 kiwisolver 1.4.8 markdown-it-py 3.0.0 MarkupSafe 2.1.5 matplotlib 3.10.5 mdurl 0.1.2 mkl 2021.4.0 mpmath 1.3.0 multidict 6.6.3 multiprocess 0.70.15 networkx 3.5 numpy 1.26.4 orjson 3.11.1 packaging 25.0 pandas 2.3.1 peft 0.17.0 pillow 10.4.0 pip 25.1 platformdirs 4.3.8 propcache 0.3.2 protobuf 6.31.1 psutil 7.0.0 pyarrow 12.0.1 pycocotools 2.0.10 pydantic 2.11.7 pydantic_core 2.33.2 pydub 0.25.1 Pygments 2.19.2 pyparsing 3.2.3 python-dateutil 2.9.0.post0 python-multipart 0.0.20 pytz 2025.2 PyYAML 6.0.2 regex 2025.7.34 requests 2.32.4 rich 14.1.0 ruff 0.12.7 safetensors 0.5.3 scipy 1.16.1 semantic-version 2.10.0 sentry-sdk 2.34.1 setuptools 78.1.1 shellingham 1.5.4 six 1.17.0 smmap 5.0.2 sniffio 1.3.1 starlette 0.47.2 sympy 1.13.1 tbb 2021.13.1 tokenizers 0.21.4 tomlkit 0.12.0 torch 2.5.1+cu121 torchaudio 2.5.1+cu121 torchvision 0.20.1+cu121 tqdm 4.67.1 transformers 4.54.1 typer 0.16.0 typing_extensions 4.14.1 typing-inspection 0.4.1 tzdata 2025.2 urllib3 2.5.0 uvicorn 0.35.0 wandb 0.21.0 wcwidth 0.2.13 websockets 12.0 wheel 0.45.1 xxhash 3.5.0 yarl 1.20.1 zipp 3.23.0 (env_name) PS F:\shuoshiceshi\PFCD-main\PFCD-main> pip install bitsandbytes==0.42.0 Collecting bitsandbytes==0.42.0 Downloading bitsandbytes-0.42.0-py3-none-any.whl.metadata (9.9 kB) Requirement already satisfied: scipy in f:\anaconda\envs\env_name\lib\site-packages (from bitsandbytes==0.42.0) (1.16.1) Requirement already satisfied: numpy<2.6,>=1.25.2 in f:\anaconda\envs\env_name\lib\site-packages (from scipy->bitsandbytes==0.42.0) (1.26.4) Downloading bitsandbytes-0.42.0-py3-none-any.whl (105.0 MB) ━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━ 45.2/105.0 MB 161.2 kB/s eta 0:06:11 ERROR: Could not install packages due to an OSError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。: 'C:\\Users\\lenovo\\AppData\\Local\\Temp\\pip-unpack-t54np4mk\\bitsandbytes-0.42.0-py3-none-any.whl' Consider using the --user option or check the permissions. (env_name) PS F:\shuoshiceshi\PFCD-main\PFCD-main>

PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\AI_System PS E:\AI_System> python -m venv venv PS E:\AI_System> source venv/bin/activate # Linux/Mac source: The term 'source' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. PS E:\AI_System> venv\Scripts\activate # Windows (venv) PS E:\AI_System> pip install -r requirements.txt Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: accelerate==0.27.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 1)) (0.27.2) Requirement already satisfied: aiofiles==23.2.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 2)) (23.2.1) Requirement already satisfied: aiohttp==3.9.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 3)) (3.9.3) Requirement already satisfied: aiosignal==1.4.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 4)) (1.4.0) Requirement already satisfied: altair==5.5.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 5)) (5.5.0) Requirement already satisfied: annotated-types==0.7.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 6)) (0.7.0) Requirement already satisfied: ansicon==1.89.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 7)) (1.89.0) Requirement already satisfied: anyio==4.10.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 8)) (4.10.0) Requirement already satisfied: async-timeout==4.0.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 9)) (4.0.3) Requirement already satisfied: attrs==25.3.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 10)) (25.3.0) Requirement already satisfied: bidict==0.23.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 11)) (0.23.1) Requirement already satisfied: blessed==1.21.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 12)) (1.21.0) Requirement already satisfied: blinker==1.9.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 13)) (1.9.0) Requirement already satisfied: certifi==2025.8.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 14)) (2025.8.3) Requirement already satisfied: cffi==1.17.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 15)) (1.17.1) Requirement already satisfied: charset-normalizer==3.4.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 16)) (3.4.3) Requirement already satisfied: click==8.2.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 17)) (8.2.1) Requirement already satisfied: colorama==0.4.6 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 18)) (0.4.6) Requirement already satisfied: coloredlogs==15.0.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 19)) (15.0.1) Requirement already satisfied: contourpy==1.3.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 20)) (1.3.2) Requirement already satisfied: cryptography==42.0.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 21)) (42.0.4) Requirement already satisfied: cycler==0.12.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 22)) (0.12.1) Requirement already satisfied: diffusers==0.26.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 23)) (0.26.3) Requirement already satisfied: distro==1.9.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 24)) (1.9.0) Requirement already satisfied: exceptiongroup==1.3.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 25)) (1.3.0) Requirement already satisfied: fastapi==0.116.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 26)) (0.116.1) Requirement already satisfied: ffmpy==0.6.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 27)) (0.6.1) Requirement already satisfied: filelock==3.19.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 28)) (3.19.1) Requirement already satisfied: Flask==3.0.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 29)) (3.0.2) Requirement already satisfied: Flask-SocketIO==5.3.6 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 30)) (5.3.6) Requirement already satisfied: flatbuffers==25.2.10 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 31)) (25.2.10) Requirement already satisfied: fonttools==4.59.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 32)) (4.59.1) Requirement already satisfied: frozenlist==1.7.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 33)) (1.7.0) Requirement already satisfied: fsspec==2025.7.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 34)) (2025.7.0) Requirement already satisfied: gpustat==1.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 35)) (1.1) Requirement already satisfied: gradio==4.19.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 36)) (4.19.2) Requirement already satisfied: gradio_client==0.10.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 37)) (0.10.1) Requirement already satisfied: h11==0.16.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 38)) (0.16.0) Requirement already satisfied: httpcore==1.0.9 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 39)) (1.0.9) Requirement already satisfied: httpx==0.28.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 40)) (0.28.1) Requirement already satisfied: huggingface-hub==0.21.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 41)) (0.21.3) Requirement already satisfied: humanfriendly==10.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 42)) (10.0) Requirement already satisfied: idna==3.10 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 43)) (3.10) Requirement already satisfied: importlib_metadata==8.7.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 44)) (8.7.0) Requirement already satisfied: importlib_resources==6.5.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 45)) (6.5.2) Requirement already satisfied: itsdangerous==2.2.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 46)) (2.2.0) Requirement already satisfied: Jinja2==3.1.6 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 47)) (3.1.6) Requirement already satisfied: jinxed==1.3.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 48)) (1.3.0) Requirement already satisfied: jsonschema==4.25.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 49)) (4.25.1) Requirement already satisfied: jsonschema-specifications==2025.4.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 50)) (2025.4.1) Requirement already satisfied: kiwisolver==1.4.9 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 51)) (1.4.9) Requirement already satisfied: loguru==0.7.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 52)) (0.7.2) Requirement already satisfied: markdown-it-py==4.0.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 53)) (4.0.0) Requirement already satisfied: MarkupSafe==2.1.5 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 54)) (2.1.5) Requirement already satisfied: matplotlib==3.10.5 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 55)) (3.10.5) Requirement already satisfied: mdurl==0.1.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 56)) (0.1.2) Requirement already satisfied: mpmath==1.3.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 57)) (1.3.0) Requirement already satisfied: multidict==6.6.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 58)) (6.6.4) Requirement already satisfied: narwhals==2.1.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 59)) (2.1.2) Requirement already satisfied: networkx==3.4.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 60)) (3.4.2) Requirement already satisfied: numpy==1.26.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 61)) (1.26.3) Requirement already satisfied: nvidia-ml-py==13.580.65 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 62)) (13.580.65) Requirement already satisfied: onnxruntime==1.17.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 63)) (1.17.1) Requirement already satisfied: openai==1.13.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 64)) (1.13.3) Requirement already satisfied: orjson==3.11.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 65)) (3.11.2) Requirement already satisfied: packaging==25.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 66)) (25.0) Requirement already satisfied: pandas==2.1.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 67)) (2.1.4) Requirement already satisfied: pillow==10.4.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 68)) (10.4.0) Requirement already satisfied: prettytable==3.16.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 69)) (3.16.0) Requirement already satisfied: propcache==0.3.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 70)) (0.3.2) Requirement already satisfied: protobuf==6.32.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 71)) (6.32.0) Requirement already satisfied: psutil==5.9.7 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 72)) (5.9.7) Requirement already satisfied: pycparser==2.22 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 73)) (2.22) Requirement already satisfied: pydantic==2.11.7 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 74)) (2.11.7) Requirement already satisfied: pydantic_core==2.33.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 75)) (2.33.2) Requirement already satisfied: pydub==0.25.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 76)) (0.25.1) Requirement already satisfied: Pygments==2.19.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 77)) (2.19.2) Requirement already satisfied: pyparsing==3.2.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 78)) (3.2.3) Requirement already satisfied: pyreadline3==3.5.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 79)) (3.5.4) Requirement already satisfied: python-dateutil==2.9.0.post0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 80)) (2.9.0.post0) Requirement already satisfied: python-dotenv==1.0.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 81)) (1.0.1) Requirement already satisfied: python-engineio==4.12.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 82)) (4.12.2) Requirement already satisfied: python-multipart==0.0.20 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 83)) (0.0.20) Requirement already satisfied: python-socketio==5.13.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 84)) (5.13.0) Requirement already satisfied: pytz==2025.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 85)) (2025.2) Requirement already satisfied: pywin32==306 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 86)) (306) Requirement already satisfied: PyYAML==6.0.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 87)) (6.0.2) Requirement already satisfied: redis==5.0.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 88)) (5.0.3) Requirement already satisfied: referencing==0.36.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 89)) (0.36.2) Requirement already satisfied: regex==2025.7.34 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 90)) (2025.7.34) Requirement already satisfied: requests==2.31.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 91)) (2.31.0) Requirement already satisfied: rich==14.1.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 92)) (14.1.0) Requirement already satisfied: rpds-py==0.27.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 93)) (0.27.0) Requirement already satisfied: ruff==0.12.10 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 94)) (0.12.10) Requirement already satisfied: safetensors==0.4.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 95)) (0.4.2) Requirement already satisfied: semantic-version==2.10.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 96)) (2.10.0) Requirement already satisfied: shellingham==1.5.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 97)) (1.5.4) Requirement already satisfied: simple-websocket==1.1.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 98)) (1.1.0) Requirement already satisfied: six==1.17.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 99)) (1.17.0) Requirement already satisfied: sniffio==1.3.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 100)) (1.3.1) Requirement already satisfied: starlette==0.47.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 101)) (0.47.2) Requirement already satisfied: sympy==1.14.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 102)) (1.14.0) Requirement already satisfied: tokenizers==0.15.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 103)) (0.15.2) Requirement already satisfied: tomlkit==0.12.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 104)) (0.12.0) Requirement already satisfied: torch==2.1.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 105)) (2.1.2) Requirement already satisfied: tqdm==4.67.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 106)) (4.67.1) Requirement already satisfied: transformers==4.37.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 107)) (4.37.0) Requirement already satisfied: typer==0.16.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 108)) (0.16.1) Requirement already satisfied: typing-inspection==0.4.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 109)) (0.4.1) Requirement already satisfied: typing_extensions==4.14.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 110)) (4.14.1) Requirement already satisfied: tzdata==2025.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 111)) (2025.2) Requirement already satisfied: urllib3==2.5.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 112)) (2.5.0) Requirement already satisfied: uvicorn==0.35.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 113)) (0.35.0) Requirement already satisfied: waitress==2.1.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 114)) (2.1.2) Requirement already satisfied: wcwidth==0.2.13 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 115)) (0.2.13) Requirement already satisfied: websockets==11.0.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 116)) (11.0.3) Requirement already satisfied: Werkzeug==3.1.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 117)) (3.1.3) Requirement already satisfied: win32_setctime==1.2.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 118)) (1.2.0) Requirement already satisfied: wsproto==1.2.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 119)) (1.2.0) Requirement already satisfied: yarl==1.20.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 120)) (1.20.1) Requirement already satisfied: zipp==3.23.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 121)) (3.23.0) WARNING: typer 0.16.1 does not provide the extra 'all' [notice] A new release of pip available: 22.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip (venv) PS E:\AI_System> python diagnose_modules.py ============================================================ 模块文件诊断报告 ============================================================ 🔍 检查 CognitiveSystem 模块: 预期路径: E:\AI_System\agent\cognitive_architecture.py ✅ 文件存在 ✅ 找到类定义: class CognitiveSystem ✅ 类继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, name: str, model_manager, config: dict = None): 🔍 检查 EnvironmentInterface 模块: 预期路径: E:\AI_System\agent\environment_interface.py ✅ 文件存在 ✅ 找到类定义: class EnvironmentInterface ❌ 类未继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, name="EnvironmentInterface", coordinator=None, config=None): 🔍 检查 AffectiveSystem 模块: 预期路径: E:\AI_System\agent\affective_system.py ✅ 文件存在 ✅ 找到类定义: class AffectiveSystem ✅ 类继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, coordinator=None, config=None): ============================================================ 建议解决方案: ============================================================ 1. 检查每个模块文件中的相对导入语句 2. 确保每个模块类都正确继承CognitiveModule 3. 检查初始化方法的参数是否正确 4. 确保模块内部的导入使用绝对路径或正确处理相对导入 5. 考虑使用try-catch包装模块内部的导入语句 (venv) PS E:\AI_System> python test_core_import.py E:\Python310\python.exe: can't open file 'E:\\AI_System\\test_core_import.py': [Errno 2] No such file or directory (venv) PS E:\AI_System> python diagnose_architecture.py ============================================================ AI系统架构诊断报告 ============================================================ 1. 模块文件检查: ---------------------------------------- ✅ CognitiveSystem: E:\AI_System\agent\cognitive_architecture.py ✅ EnvironmentInterface: E:\AI_System\agent\environment_interface.py ✅ AffectiveSystem: E:\AI_System\agent\affective_system.py 2. Agent目录结构 (E:\AI_System\agent): ---------------------------------------- 📄 action_executor.py 📁 affective_modules/ 📄 affective_system.py 📄 agent_core.log 📄 agent_core.py 📄 autonomous_agent.py 📄 auto_backup.bat 📄 base_module.py 📄 cognitive_architecture.py 📁 cognitive_system/ 📄 communication_system.py 📁 concrete_modules/ 📄 conscious_framework.py 📁 conscious_system/ 📁 decision_system/ 📄 enhanced_cognitive.py 📄 environment.py 📄 environment_interface.py 📄 env_loader.py 📁 generated_images/ 📄 health_system.py 📄 knowledge graph.db 📁 knowledge_system/ 📄 main.py 📄 maintain_workspace.py 📄 memory_manager.py 📁 memory_system/ 📄 meta_cognition.py 📄 minimal_model.py 📁 models/ 📄 model_learning.py 📄 model_manager.py 📄 notepad 📄 performance_monitor.py 📄 pip 📄 security_manager.py 📄 self_growth.bat 📄 shortcut_resolver.py 📄 system_maintain.bat 📁 tests/ 📄 test_my_models.py 📁 text_results/ 📄 unified_learning.py 📁 utils/ 📄 world_view.py 📄 __init__.py 📁 __pycache__/ 3. 建议下一步: ---------------------------------------- 📍 所有模块文件都存在,需要检查模块实现内容 诊断完成 (venv) PS E:\AI_System> python main.py 2025-08-28 22:40:10,661 - CoreConfig - INFO - 📂 从 E:\AI_System\config\default.json 加载配置: { "LOG_DIR": "E:/AI_System/logs", "CONFIG_DIR": "E:/AI_System/config", "MODEL_CACHE_DIR": "E:/AI_System/model_cache", "AGENT_NAME": "\u5c0f\u84dd", "DEFAULT_USER": "\u7ba1\u7406\u5458", "MAX_WORKERS": 4, "AGENT_RESPONSE_TIMEOUT": 30.0, "MODEL_BASE_PATH": "E:/AI_Models", "MODEL_PATHS": { "TEXT_BASE": "E:/AI_Models/Qwen2-7B", "TEXT_CHAT": "E:/AI_Models/deepseek-7b-chat", "MULTIMODAL": "E:/AI_Models/deepseek-vl2", "IMAGE_GEN": "E:/AI_Models/sdxl", "YI_VL": "E:/AI_Models/yi-vl", "STABLE_DIFFUSION": "E:/AI_Models/stable-diffusion-xl-base-1.0" }, "NETWORK": { "HOST": "0.0.0.0", "FLASK_PORT": 8000, "GRADIO_PORT": 7860 }, "DATABASE": { "DB_HOST": "localhost", "DB_PORT": 5432, "DB_NAME": "ai_system", "DB_USER": "ai_user", "DB_PASSWORD": "secure_password_here" }, "SECURITY": { "SECRET_KEY": "generated-secret-key-here" }, "ENVIRONMENT": { "ENV": "dev", "LOG_LEVEL": "DEBUG", "USE_GPU": true }, "DIRECTORIES": { "DEFAULT_MODEL": "E:/AI_Models/Qwen2-7B", "WEB_UI_DIR": "E:/AI_System/web_ui", "AGENT_DIR": "E:/AI_System/agent", "PROJECT_ROOT": "E:/AI_System" } } 2025-08-28 22:40:10,661 - CoreConfig - INFO - 📂 从 E:\AI_System\config\local.json 加载配置: {} 2025-08-28 22:40:10,663 - CoreConfig - INFO - 🌐 从 E:\AI_System\.env 加载环境变量 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_ROOT=E:\AI_System 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DIRECTORIES__PROJECT_ROOT=E:\AI_System 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DIRECTORIES__AGENT_DIR=E:\AI_System\agent 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DIRECTORIES__WEB_UI_DIR=E:\AI_System\web_ui 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DIRECTORIES__DEFAULT_MODEL=E:\AI_Models\Qwen2-7B 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_ENVIRONMENT__LOG_LEVEL=DEBUG 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DATABASE__DB_HOST=localhost 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DATABASE__DB_PORT=5432 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DATABASE__DB_NAME=ai_system 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DATABASE__DB_USER=ai_user 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_DATABASE__DB_PASSWORD=****** 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_SECURITY__SECRET_KEY=****** 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_MODEL_PATHS__TEXT_BASE=E:\AI_Models\Qwen2-7B 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_MODEL_PATHS__TEXT_CHAT=E:\AI_Models\deepseek-7b-chat 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_MODEL_PATHS__MULTIMODAL=E:\AI_Models\deepseek-vl2 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_MODEL_PATHS__IMAGE_GEN=E:\AI_Models\sdxl 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_MODEL_PATHS__YI_VL=E:\AI_Models\yi-vl 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_MODEL_PATHS__STABLE_DIFFUSION=E:\AI_Models\stable-diffusion-xl-base-1.0 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_NETWORK__HOST=0.0.0.0 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_NETWORK__FLASK_PORT=8000 2025-08-28 22:40:10,664 - CoreConfig - INFO - 🔄 环境变量覆盖: AI_SYSTEM_NETWORK__GRADIO_PORT=7860 2025-08-28 22:40:10,665 - CoreConfig - WARNING - ⚠️ 模型路径为空目录: STABLE_DIFFUSION = E:/AI_Models/stable-diffusion-xl-base-1.0 2025-08-28 22:40:10,665 - CoreConfig - INFO - ✅ 配置系统初始化完成 2025-08-28 22:40:10,665 - Main - INFO - 日志系统初始化完成 (级别: DEBUG) 2025-08-28 22:40:10,665 - Main - INFO - ================================================== 2025-08-28 22:40:10,665 - Main - INFO - 🚀 启动AI系统 - 核心认知模式 2025-08-28 22:40:10,666 - Main - INFO - ================================================== 2025-08-28 22:40:10,666 - Main - INFO - 系统配置摘要: 2025-08-28 22:40:10,666 - Main - INFO - 项目根目录: E:\AI_System 2025-08-28 22:40:10,666 - Main - INFO - 默认模型路径: E:/AI_Models/Qwen2-7B 2025-08-28 22:40:10,666 - Main - INFO - 日志级别: DEBUG 2025-08-28 22:40:10,666 - ModelManager - INFO - ✅ 模型管理器初始化完成 (GPU: 启用) 2025-08-28 22:40:10,666 - ModelManager - INFO - 模型注册表: ['TEXT_BASE', 'TEXT_CHAT', 'MULTIMODAL', 'IMAGE_GEN', 'YI_VL', 'STABLE_DIFFUSION'] 2025-08-28 22:40:10,666 - Main - INFO - ✅ 模型管理器初始化完成 2025-08-28 22:40:10,666 - ModelManager - INFO - 加载模型: TEXT_BASE (E:/AI_Models/Qwen2-7B) 2025-08-28 22:40:10,666 - Main - INFO - ✅ 基础模型已加载: E:/AI_Models/Qwen2-7B 2025-08-28 22:40:10,666 - 小蓝 - INFO - ✅ 初始化认知模块: 小蓝 2025-08-28 22:40:10,666 - 小蓝 - INFO - ✅ 初始化认知模块: 小蓝 2025-08-28 22:40:10,666 - CognitiveSystem.小蓝 - INFO - ✅ 认知系统初始化完成 (版本 1.2.0) 2025-08-28 22:40:10,666 - CognitiveSystem.小蓝 - INFO - 当前模式: TASK_EXECUTION 2025-08-28 22:40:10,666 - CognitiveSystem.小蓝 - DEBUG - 系统配置: {'reasoning_depth': 3, 'memory_limit': 1000, 'auto_reflection': True, 'learning_threshold': 0.8, 'error_recovery': True, 'max_concurrent_tasks': 5} 2025-08-28 22:40:10,666 - Main - INFO - ✅ 认知系统初始化完成 2025-08-28 22:40:10,666 - Main - ERROR - ❌ 环境接口初始化失败: EnvironmentInterface.__init__() got an unexpected keyword argument 'cognitive_system' 2025-08-28 22:40:10,667 - Main - ERROR - Traceback (most recent call last): File "E:\AI_System\main.py", line 83, in main environment_interface = EnvironmentInterface( TypeError: EnvironmentInterface.__init__() got an unexpected keyword argument 'cognitive_system' (venv) PS E:\AI_System>

C:\Users\86130\Desktop\.venv\Scripts\python.exe C:/Program Files/JetBrains/PyCharm 2025.2.0.1/plugins/python-ce/helpers/packaging_tool.py install mmcv Collecting mmcv Using cached mmcv-2.2.0.tar.gz (479 kB) Installing build dependencies: started Installing build dependencies: finished with status 'done' Getting requirements to build wheel: started Getting requirements to build wheel: finished with status 'error' error: subprocess-exited-with-error Getting requirements to build wheel did not run successfully. exit code: 1 [26 lines of output] <string>:5: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. Skip building ext ops due to the absence of torch. Traceback (most recent call last): File "C:\Users\86130\Desktop\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 389, in <module> main() ~~~~^^ File "C:\Users\86130\Desktop\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) ~~~~^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\86130\Desktop\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 143, in get_requires_for_build_wheel return hook(config_settings) File "C:\Users\86130\AppData\Local\Temp\pip-build-env-s_ybsxdg\overlay\Lib\site-packages\setuptools\build_meta.py", line 331, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\86130\AppData\Local\Temp\pip-build-env-s_ybsxdg\overlay\Lib\site-packages\setuptools\build_meta.py", line 301, in _get_build_requires self.run_setup() ~~~~~~~~~~~~~~^^ File "C:\Users\86130\AppData\Local\Temp\pip-build-env-s_ybsxdg\overlay\Lib\site-packages\setuptools\build_meta.py", line 512, in run_setup super().run_setup(setup_script=setup_script) ~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\86130\AppData\Local\Temp\pip-build-env-s_ybsxdg\overlay\Lib\site-packages\setuptools\build_meta.py", line 317, in run_setup exec(code, locals()) ~~~~^^^^^^^^^^^^^^^^ File "<string>", line 462, in <module> File "<string>", line 43, in get_version KeyError: '__version__' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. [notice] A new release of pip is available: 25.1.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip error: subprocess-exited-with-error Getting requirements to build wheel did not run successfully. exit code: 1 See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. Process finished with exit code 1

似乎都好好的,这样有问题吗 root@interactive97364:/opt/data/private/3dgs# pip install torch==2.3.1+cu118 torchvision==0.18.1+cu118 torchaudio==2.3.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html Looking in links: https://download.pytorch.org/whl/torch_stable.html Collecting torch==2.3.1+cu118 Downloading https://download.pytorch.org/whl/cu118/torch-2.3.1%2Bcu118-cp38-cp38-linux_x86_64.whl (839.6 MB) |████████████████████████████████| 839.6 MB 16 kB/s Collecting torchvision==0.18.1+cu118 Downloading https://download.pytorch.org/whl/cu118/torchvision-0.18.1%2Bcu118-cp38-cp38-linux_x86_64.whl (6.3 MB) |████████████████████████████████| 6.3 MB 331 kB/s Collecting torchaudio==2.3.1+cu118 Downloading https://download.pytorch.org/whl/cu118/torchaudio-2.3.1%2Bcu118-cp38-cp38-linux_x86_64.whl (3.3 MB) |████████████████████████████████| 3.3 MB 6.3 MB/s Collecting nvidia-cusparse-cu11==11.7.5.86; platform_system == "Linux" and platform_machine == "x86_64" Downloading nvidia_cusparse_cu11-11.7.5.86-py3-none-manylinux2014_x86_64.whl (204.1 MB) |████████████████████████████████| 204.1 MB 21 kB/s Collecting nvidia-nccl-cu11==2.20.5; platform_system == "Linux" and platform_machine == "x86_64" Downloading nvidia_nccl_cu11-2.20.5-py3-none-manylinux2014_x86_64.whl (142.9 MB) |████████████████████████████████| 142.9 MB 123 kB/s Collecting fsspec Downloading fsspec-2025.3.0-py3-none-any.whl (193 kB) |████████████████████████████████| 193 kB 8.4 MB/s Collecting nvidia-cuda-runtime-cu11==11.8.89; platform_system == "Linux" and platform_machine == "x86_64" Downloading nvidia_cuda_runtime_cu11-11.8.89-py3-none-manylinux2014_x86_64.whl (875 kB) |████████████████████████████████| 875 kB 10.5 MB/s Collecting nvidia-curand-cu11==10.3.0.86; platform_system == "Linux" and platform_machine == "x86_64" Downloading nvidia_curand_cu11-10.3.0.86-py3-none-manylinux2014_x86_64.whl (58.1 MB) |████████████████████████████████| 58.1 MB 72 kB/s Collect

最新推荐

recommend-type

cloudhsm-jvm-1.4.51-sources.jar

cloudhsm-jvm-1.4.51-sources.jar
recommend-type

sparkling-water-doc_2.12-3.42.0.3-1-3.4.jar

sparkling-water-doc_2.12-3.42.0.3-1-3.4.jar
recommend-type

backupgateway-jvm-1.3.35-sources.jar

backupgateway-jvm-1.3.35-sources.jar
recommend-type

bedrockruntime-0.32.4-beta-sources.jar

bedrockruntime-0.32.4-beta-sources.jar
recommend-type

appmesh-jvm-1.0.64-javadoc.jar

appmesh-jvm-1.0.64-javadoc.jar
recommend-type

Node.js构建的运动咖啡馆RESTful API介绍

标题《sportscafeold:体育咖啡馆》指出了项目名称为“体育咖啡馆”,这个名字暗示了该项目可能是一个结合了运动和休闲主题的咖啡馆相关的网络服务平台。该项目运用了多种技术栈,核心的开发语言为JavaScript,这从标签中可以得到明确的信息。 从描述中可以提取以下知识点: 1. **Node.js**:体育咖啡馆项目使用了Node.js作为服务器端运行环境。Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它能够使得JavaScript应用于服务器端开发。Node.js的事件驱动、非阻塞I/O模型使其适合处理大量并发连接,这对于RESTFUL API的构建尤为重要。 2. **Express Framework**:项目中使用了Express框架来创建RESTFUL API。Express是基于Node.js平台,快速、灵活且极简的Web应用开发框架。它提供了构建Web和移动应用的强大功能,是目前最流行的Node.js Web应用框架之一。RESTFUL API是一组遵循REST原则的应用架构,其设计宗旨是让Web服务通过HTTP协议进行通信,并且可以使用各种语言和技术实现。 3. **Mongoose ORM**:这个项目利用了Mongoose作为操作MongoDB数据库的接口。Mongoose是一个对象文档映射器(ODM),它为Node.js提供了MongoDB数据库的驱动。通过Mongoose可以定义数据模型,进行数据库操作和查询,从而简化了对MongoDB数据库的操作。 4. **Passport.js**:项目中采用了Passport.js库来实现身份验证系统。Passport是一个灵活的Node.js身份验证中间件,它支持多种验证策略,例如用户名和密码、OAuth等。它提供了标准化的方法来为用户登录提供认证,是用户认证功能的常用解决方案。 5. **版权信息**:项目的版权声明表明了Sportscafe 2015是版权所有者,这表明项目或其相关内容最早发布于2015年或之前。这可能表明该API背后有商业实体的支持或授权使用。 从【压缩包子文件的文件名称列表】中我们可以了解到,该文件的版本控制仓库使用的是“master”分支。在Git版本控制系统中,“master”分支通常用于存放当前可部署的稳定版本代码。在“master”分支上进行的更改通常都是经过测试且准备发布到生产环境的。 综上所述,我们可以知道体育咖啡馆项目是一个利用现代JavaScript技术栈搭建的后端服务。它包含了处理HTTP请求的Express框架、连接MongoDB数据库的Mongoose库和实现用户身份验证的Passport.js中间件。该项目可用于构建提供体育信息、咖啡馆菜单信息、预约服务等的Web应用或API服务,这为体育咖啡馆的营销、用户体验和数据管理提供了可能。 考虑到文档资料的提及,该项目的安装和API文档应该包含在项目资料中,可能在项目的README文件或其他说明文档中。对于项目的使用者或者开发者而言,这部分文档非常重要,因为它们可以提供详细的信息和指导,帮助用户快速部署和使用该API。 总结来说,这是一套针对体育咖啡馆相关业务的后端解决方案,它使用了流行的开源技术栈,可以灵活地应用于体育咖啡馆的网络服务中,如信息发布、在线预约、会员管理等。
recommend-type

【LNR优化与用户体验】:一文看透互操作优化如何提升用户感知

# 摘要 LNR(邻区关系优化)是提升移动通信网络性能与用户体验的关键技术。本文系统阐述了LNR优化的基本概念、理论基础与技术实现路径,构建了包括信道质量评估、干扰建模及关键性能指标分析在内的数学模型,并探讨了参数配置、邻区管理及AI与大数据在LNR优化中的应用。通过量化用户感知指标,分析了LNR优化对视频流畅度、页面加载速度及切换性能的实际改善效果,并结合典型场景验证了其优化成效。本文进一步展望了LNR技术在5G及未来网络中的发展趋势与技术挑战。
recommend-type

Java1.8 的编程语言、使用场景、版本号、厂商、是否开源、发行日期、终止日期、可替代产品、推荐产品是什么

以下是关于 **Java 1.8** 的全面信息汇总,涵盖其编程语言特性、使用场景、版本号、厂商、是否开源、发行日期、终止支持日期、可替代产品和推荐产品。 --- ## ✅ Java 1.8 综合信息表 | 项目 | 内容 | |------|------| | **编程语言** | Java | | **版本号** | Java 1.8(也称为 Java 8) | | **厂商** | Oracle、Adoptium、Amazon(Corretto)、Azul(Zulu)、Red Hat、IBM 等 | | **是否开源** | ✅ 是(OpenJDK 1.8 是开源的,Oracle
recommend-type

Java开发的教区牧民支持系统介绍

根据给定文件信息,下面将详细阐述相关知识点: ### 标题知识点 #### catecumenus-java: 教区牧民支持系统 - **Java技术栈应用**:标题提到的“catecumenus-java”表明这是一个使用Java语言开发的系统。Java是目前最流行的编程语言之一,广泛应用于企业级应用、Web开发、移动应用等,尤其是在需要跨平台运行的应用中。Java被设计为具有尽可能少的实现依赖,所以它可以在多种处理器上运行。 - **教区牧民支持系统**:从标题来看,这个系统可能面向的是教会管理或教区管理,用来支持牧民(教会领导者或牧师)的日常管理工作。具体功能可能包括教友信息管理、教区活动安排、宗教教育资料库、财务管理、教堂资源调配等。 ### 描述知识点 #### 儿茶类 - **儿茶素(Catechin)**:描述中提到的“儿茶类”可能与“catecumenus”(新信徒、教徒)有关联,暗示这个系统可能与教会或宗教教育相关。儿茶素是一类天然的多酚类化合物,常见于茶、巧克力等植物中,具有抗氧化、抗炎等多种生物活性,但在系统标题中可能并无直接关联。 - **系统版本号**:“0.0.1”表示这是一个非常初期的版本,意味着该系统可能刚刚开始开发,功能尚不完善。 ### 标签知识点 #### Java - **Java语言特点**:标签中明确提到了“Java”,这暗示了整个系统都是用Java编程语言开发的。Java的特点包括面向对象、跨平台(即一次编写,到处运行)、安全性、多线程处理能力等。系统使用Java进行开发,可能看重了这些特点,尤其是在构建可扩展、稳定的后台服务。 - **Java应用领域**:Java广泛应用于企业级应用开发中,包括Web应用程序、大型系统后台、桌面应用以及移动应用(Android)。所以,此系统可能也会涉及这些技术层面。 ### 压缩包子文件的文件名称列表知识点 #### catecumenus-java-master - **Git项目结构**:文件名称中的“master”表明了这是Git版本控制系统中的一个主分支。在Git中,“master”分支通常被用作项目的主干,是默认的开发分支,所有开发工作都是基于此分支进行的。 - **项目目录结构**:在Git项目中,“catecumenus-java”文件夹应该包含了系统的源代码、资源文件、构建脚本、文档等。文件夹可能包含各种子文件夹和文件,比如src目录存放Java源代码,lib目录存放相关依赖库,以及可能的build.xml文件用于构建过程(如Ant或Maven构建脚本)。 ### 结合以上信息的知识点整合 综合以上信息,我们可以推断“catecumenus-java: 教区牧民支持系统”是一个使用Java语言开发的系统,可能正处于初级开发阶段。这个系统可能是为了支持教会内部管理,提供信息管理、资源调度等功能。其使用Java语言的目的可能是希望利用Java的多线程处理能力、跨平台特性和强大的企业级应用支持能力,以实现一个稳定和可扩展的系统。项目结构遵循了Git版本控制的规范,并且可能采用了模块化的开发方式,各个功能模块的代码和资源文件都有序地组织在不同的子文件夹内。 该系统可能采取敏捷开发模式,随着版本号的增加,系统功能将逐步完善和丰富。由于是面向教会的内部支持系统,对系统的用户界面友好性、安全性和数据保护可能会有较高的要求。此外,考虑到宗教性质的敏感性,系统的开发和使用可能还需要遵守特定的隐私和法律法规。
recommend-type

LNR切换成功率提升秘籍:参数配置到网络策略的全面指南

# 摘要 LNR(LTE to NR)切换技术是5G网络部署中的关键环节,直接影