活动介绍

cv2.imshow('original_img', img) cv2.imshow('new_img', newimg / 200) cv2.waitKey(0) cv2.destroyAllWindows()什么意思

时间: 2024-04-28 07:19:04 浏览: 70
这段代码是用于在屏幕上显示图像的。cv2.imshow()函数可以在一个窗口中显示图像,第一个参数是窗口名称,第二个参数是要显示的图像。cv2.waitKey()函数等待键盘事件,参数表示等待时间,单位为毫秒,0表示等待无限长的时间。cv2.destroyAllWindows()函数关闭所有打开的窗口。在这个程序中,'original_img'表示原始图像窗口的名称,img是原始图像;'new_img'表示处理后的图像窗口的名称,newimg / 200是将像素值除以200后的处理后的图像。运行程序后,将显示两个窗口,一个显示原始图像,一个显示处理后的图像。
相关问题

cv2.imshow('original_img', img) cv2.imshow('new_img', newimg / 200) cv2.waitKey(0) cv2.destroyAllWindows()怎么修改窗口大小

要修改窗口大小,可以在调用cv2.imshow()函数时,使用cv2.namedWindow()函数创建窗口,并通过cv2.resizeWindow()函数设置窗口大小。例如,以下代码创建一个名称为'original_img'的窗口,并将其大小设置为800x600像素: ```python cv2.namedWindow('original_img', cv2.WINDOW_NORMAL) cv2.resizeWindow('original_img', 800, 600) cv2.imshow('original_img', img) ``` 同样的,可以对'new_img'窗口进行相同的操作,例如: ```python cv2.namedWindow('new_img', cv2.WINDOW_NORMAL) cv2.resizeWindow('new_img', 800, 600) cv2.imshow('new_img', newimg / 200) ``` 这样,原始图像和处理后的图像将在大小为800x600的窗口中显示。

#!/usr/bin/env python # -*- coding:utf-8 -*- #This Python codes are created by Li hexi for undergraduate student course --maxhine learning #Any copy of the codes is illegal without the author' permission.2021-9-3 #--------This program uses to crawl and download images on some websites ------ import math import imghdr from distutils.command.clean import clean import cv2 import re import time,os import urllib import requests import numpy as np import tkinter as tk import tkinter.filedialog as file import threading as thread import tkinter.messagebox as mes import tkinter.simpledialog as simple from PIL import Image, ImageDraw, ImageFont from tkinter import scrolledtext as st import argostranslate.translate as Translate from h5py.h5a import delete from pypinyin import pinyin, Style from pypinyin import lazy_pinyin, Style from matplotlib import pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg#导入在tkinter 内嵌入的画布子窗口 from matplotlib.backend_bases import MouseEvent from tkinter import scrolledtext as st from tkinter import ttk from ultralytics import YOLO MainWin = tk.Tk() #常数列表 #FrameWidth=600 #FrameHeight=300 FileLength=0 TagFlag=False TargetVector=[] CrawlFlag=False #ObjectName = ['人','电脑', '手机', '鼠标', '键盘'] #ObjectName=['人','电脑', '键盘', '鼠标', '订书机', '手机', '书', '台灯','杯子','电水壶'] Name80 = ['人', '自行车', '轿车', '摩托', '飞机', '巴士', '火车', '卡车', '船', '交通灯', '消防栓', '停止标志', '咪表', '长凳', '鸟', '猫', '狗', '马', '羊', '奶牛', '象', '熊', '斑马', '长颈鹿', '背包', '伞', '手袋', '领带', '手提箱', '飞碟', '滑板', '滑雪板', '运动球', '风筝', '棒球杆', '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '酒杯', '杯子', '叉子', '刀', '勺子', '碗', '香蕉', '苹果', '三文治', '桔子', '西兰花', '胡萝卜', '热狗', '披萨', '甜甜圈', '蛋糕', '椅子', '沙发', '盆景', '床', '餐桌', '厕所', '监视器', '电脑', '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱', '烤面包机', '洗碗槽', '冰箱', '书', '钟', '花瓶', '剪刀', '泰迪熊', '干发器', '牙刷'] Name10=['人','电脑','鼠标', '键盘', '订书机', '手机', '书', '台灯','杯子','电水壶'] Name2=['人','电脑'] ObjectName=Name80.copy() MainWin.title('目标检测系统智能体平台') MainWin.geometry('1300x700') MainWin.resizable(width=False,height=False) #========函数区开始=========== def callback1(): filename = file.askopenfilename(title='打开文件名字', initialdir="\image", filetypes=[('jpg文件', '*.jpg'), ('png文件', '.png')]) picshow(filename) def callback2(): #import argostranslate.package #argostranslate.package.update_package_index() #available_packages = argostranslate.package.get_available_packages() #package_to_install = next(p for p in available_packages if p.from_code == "zh" and p.to_code == "en") #argostranslate.package.install_from_path(package_to_install.download()) #text = Translate.translate("蔬菜和水果", "zh", "en") #FileName=text.replace(" ","") text = '紫荆花' pinyin_str = ''.join(lazy_pinyin(text)) print(pinyin_str) # ni hao #print(FileName) def picshow(filename): global GI I1 = cv2.imread(filename) I2 = cv2.resize(I1, (WW, WH)) cv2.imwrite('ImageFile/temp.png', I2) I3 = tk.PhotoImage(file='ImageFile/temp.png') L1 = tk.Label(InputFrame, image=I3) L1.grid(row=1, column=0, columnspan=2, padx=40) GI = I2 MainWin.update() #******************************** #******************************** #以下下是文件操作代码区************* #******************************** #******************************** def LoadImage(): global TargetVector, GI path=os.getcwd() filename = file.askopenfilename(title='打开文件名字', initialdir=path, filetypes=[('jpg文件', '*.jpg'), ('png文件', '.png')]) if len(filename) == 0: return I1 = cv2.imread(filename) I2 = cv2.resize(I1, (WW, WH)) GI = I2 # print(np.shape(GI)) cv2.imwrite('image/temp.png', I2) I3 = tk.PhotoImage(file='image/temp.png') L1 = tk.Label(InputFrame, image=I3) L1.grid(row=1, column=0, columnspan=2, padx=40) s = np.shape(I1) MainWin.mainloop() return def SaveImage(): return #******************************** #******************************** #以下下是图像爬取代码区************* #******************************** #******************************** def StartCrawling(): global CrawlFlag if KeyStr.get()=="": return CrawlFlag=True Thd1 = thread.Thread(target=CrawlPicture, args=(300, 500,)) Thd1.setDaemon(True) Thd1.start() return PauseFlag=False def StopCrawling(): global CrawlFlag CrawlFlag = False return def Suspending(): return def Resuming(): return #******************************** #******************************** #以下下是图像清洗代码区************* #******************************** #******************************** std=None def CleanImage(): global img, recimg, sw, sh, FileLength, pathname, FileNum, filelist, std, ax if std != None: std.destroy() std = None fig.clear() draw_set.draw() OutputFrame.update() curpath = os.getcwd() pathname = file.askdirectory(title='图像文件目录', initialdir=curpath) if len(pathname) == 0: return filelist = os.listdir(pathname) FileLength = len(filelist) DeletFile=[] fig.clear() ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) for i in range(FileLength): fstr = pathname + '/' + filelist[i] if imghdr.what(fstr) is not None: #print(fstr) img = cv2.imread(fstr) if np.shape(img) == (): DeletFile.append(fstr) else: s = np.shape(img) sw = s[0] sh = s[1] if s[0] > 1024 or s[1] > 1024: sv = 1024.0 / max(s[0], s[1]) img = cv2.resize(img, (int(sv * s[1]), int(sv * s[0]))) cv2.imwrite(fstr, img) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) ax.imshow(img) draw_set.draw() OutputFrame.update() else: DeletFile.append(fstr) if len(DeletFile) !=0: for i in range(len(DeletFile)): fstr = DeletFile[i] os.remove(fstr) return def ScanImage(): global img, recimg, sw, sh, FileLength, pathname, FileNum, filelist, std, ax if std!=None: std.destroy() std=None fig.clear() draw_set.draw() OutputFrame.update() curpath = os.getcwd() pathname = file.askdirectory(title='图像文件目录', initialdir=curpath) if len(pathname) == 0: return filelist = os.listdir(pathname) FileLength = len(filelist) for i in range(FileLength): fstr = pathname + '/' + filelist[i] img = cv2.imread(fstr) if np.shape(img) == (): os.remove(fstr) filelist = os.listdir(pathname) FileLength = len(filelist) FileNum = 0 fstr = pathname + '/' + filelist[FileNum] img = cv2.imread(fstr) s = np.shape(img) sw = s[0] sh = s[1] if s[0] > 1024 or s[1] > 1024: sv = 1024.0 / max(s[0], s[1]) img = cv2.resize(img, (int(sv * s[1]), int(sv *s[0]))) recimg = np.zeros((sw, sh, 3), dtype=np.uint8) s = np.shape(img) sw = s[0] sh = s[1] img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) fig.clear() ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) ax.imshow(img) draw_set.draw() recimg = np.zeros((WH, WW, 3), dtype=np.uint8) fig.canvas.mpl_connect('scroll_event', on_ax_scroll) fig.canvas.mpl_connect('button_press_event', on_ax_click) fig.canvas.mpl_connect('motion_notify_event', on_ax_motion) OutputFrame.update() return def RenameImage(): return def NPZfile(): return #******************************** #******************************** #以下下是图像标注代码区************** #******************************** #******************************** def LoadClassName(): return #批量区域标定 def LabelBatch(): global img, recimg, sw, sh, FileLength, pathname, FileNum, filelist, std2,ax2 global Mflag fig2.clear() draw_set2.draw() InputFrame.update() Lab3.config(text="图片标注结果输出") std2=st.ScrolledText(InputFrame,width=60,height=22,foreground="blue", font=("隶书",12)) std2.grid(row=1, column=0,columnspan=2,padx=10) std2.config(foreground="black", relief="solid",font=("宋体", 12)) std2.delete(0.0, tk.END) InputFrame.update() cwd = os.getcwd() pathname = file.askdirectory(title='图像文件目录', initialdir=cwd) if len(pathname) == 0: return filelist = os.listdir(pathname) FileLength = len(filelist) FileNum = 0 DeletFile=[] for i in range(FileLength): fstr = pathname + '/' + filelist[i] if imghdr.what(fstr) is not None: #print(fstr) img = cv2.imread(fstr) if np.shape(img) == (): DeletFile.append(fstr) else: fstr = DeletFile[i] DeletFile.append(fstr) for i in range(len(DeletFile)): os.remove(fstr) filelist = os.listdir(pathname) FileLength = len(filelist) FileNum = 0 fstr = pathname + '/' + filelist[FileNum] img = cv2.imread(fstr) s = np.shape(img) if s[0] > 1024 or s[1] > 1024: sv = 1024.0 / max(s[0], s[1]) img = cv2.resize(img, (int(sv * s[1]), int(sv * s[0]))) img = cv2.resize(img, (WW, WH)) recimg = np.zeros(img.shape, dtype=np.uint8) s = np.shape(img) sh = s[0] sw = s[1] img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) fig.clear() ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) ax.imshow(img) draw_set.draw() recimg = np.zeros((WH, WW, 3), dtype=np.uint8) fig.canvas.mpl_connect('scroll_event', on_ax_scroll) fig.canvas.mpl_connect('button_press_event', on_ax_click) fig.canvas.mpl_connect('motion_notify_event', on_ax_motion) OutputFrame.update() but7.config(state=tk.DISABLED) but8.config(state=tk.DISABLED) Mflag=1 return def LabelEnd(): global LabelData, BoxData if len(BoxData) != 0: LabelData.append(BoxData.copy()) but8.config(state=tk.ACTIVE) return def LabelSave(): global ImageData, LabelData, BoxData cwd = os.getcwd() dir1 = cwd + "\image" if not os.path.exists(dir1): os.mkdir(dir1) startnum = len(os.listdir(dir1)) for i in range(len(ImageData)): fname = dir1 + "\myimage" + str(i + startnum) + ".jpg" myim = cv2.cvtColor(ImageData[i], cv2.COLOR_RGB2BGR) cv2.imwrite(fname, myim) dir1 = cwd + "\label" if not os.path.exists(dir1): os.mkdir(dir1) for i in range(len(ImageData)): fname = dir1 + "\myimage" + str(i + startnum) + ".txt" with open(fname, 'w', encoding='utf-8') as file: for j in range(len(LabelData[i])): txt = str(LabelData[i][j][0]) + " " + str(LabelData[i][j][1]) + " " + str( LabelData[i][j][2]) + " " + str(LabelData[i][j][3]) + " " + str(LabelData[i][j][4]) file.write(txt + '\n') # 添加换行符 file.close() ClearAnn() return #******************************** #******************************** #以下下是图像训练代码区************* #******************************** #******************************** def TrainSetting(): return def TrainStarting(): TrainYoloV8() return def TrainResultShow(): return def SaveTrainResult(): return #******************************** #******************************** #以下下是图像测试代码区************* #******************************** #******************************** def SelectImage(): LoadImage() return def SingleImageTest(): Yolov8SingleDetect() return def ObjectTracking(): Yolov8Detect() return def SaveTestResult(): return #******************************** #******************************** #以下下是操作帮助代码区************* #******************************** #******************************** def HelpPicCrawl(): global std if std != None: std.destroy() fig.clear() draw_set.draw() OutputFrame.update() std = st.ScrolledText(OutputFrame, width=60, height=22, foreground="blue", font=("隶书", 12)) std.grid(row=1, column=0, padx=10) std.config(relief="solid") #std.config(foreground="black", relief="solid", font=("宋体", 13)) std.delete(0.0, tk.END) Lab3.config(text="图片爬取操作指导") HelpStr1="图像爬取操作步骤:\r\n 1)在主题框输入要爬取的主题提示词" \ "\r\n 2)单击《开始爬取》按钮,开始爬取图片,并存在当前目录下" \ "\r\n 3)单击《停止爬取》按钮,停止爬取图片,但爬完当前页才结束"\ "\r\n 4)爬取的图像存在主题词拼音目录下" std.delete(0.0,tk.END) std.insert(tk.END,HelpStr1) return def HelpAnnSave(): return def HelpBatchAnn(): global std if std!=None: std.destroy() fig.clear() draw_set.draw() OutputFrame.update() std = st.ScrolledText(OutputFrame, width=60, height=22, foreground="blue", font=("隶书", 12)) std.config(relief="solid") std.grid(row=1, column=0, padx=10) std.delete(0.0, tk.END) Lab3.config(text="区域标注操作指导") HelpStr3 = "图像区域标注操作步骤:\r\n 1)单击《方框标注》按钮,弹出目录选择对话框,选择图片目录" \ "\r\n 2)计算机会对该目录的图像文件扫描,清洗掉一些格式不对的非图像文件,时间较长" \ "\r\n 3)显示目录下第1幅图像,通过鼠标滚轮,快速浏览目录下的所有图片" \ "\r\n 4)停在所选图片,在要标注的物体左上角按下鼠标左键,选择拉框起点" \ "\r\n 5)按下鼠标左键不放,拖动鼠标拉框,将要标注的物体画到矩形框内" \ "\r\n 6)点击鼠标右键,激活目标选项,滚动鼠标滚轮,浏览目标名称,并停在所选名称" \ "\r\n 7)点击鼠标左键,确认选项,并在文本框内显示类别ID和矩形几何参数" \ "\r\n 8)如果本张图片还有要标定的目标,则重复步骤4-7,继续标注" \ "\r\n 9)更换图片和浏览一样滚动鼠标滚轮,选择图片,然后重复步骤4-7" \ "\r\n 10)结束本次标定,单击《结束标注》按钮" \ "\r\n 11)保存标定结果,单击《保存标注》按钮"\ "\r\n 12)标定的图像保存在\image目录下,标签保存在\label目录下" std.delete(0.0, tk.END) #std.config(foreground="blue", font=("楷体", 12)) std.insert(tk.END, HelpStr3) ########################################## def TagPicture(): return def SpareBut(): global ImageData for i in range(len(ImageData)): cv2.imshow("ls",ImageData[i]) cv2.waitKey(200) return def GetPageURL(URLStr): #获取一个页面的所有图片的URL+下页的URL if not URLStr: print('现在是最后一页啦!爬取结束') return [], '' try: header = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.93 Safari/537.36"} html = requests.get(URLStr,headers=header)#,verify=False) html.encoding = 'utf-8' html = html.text except Exception as e: print("err=",str(e)) ImageURL = [] NextPageURL = '' return ImageURL, NextPageURL ImageURL = re.findall(r'"objURL":"(.*?)",', html, re.S) #print("ImageURL",ImageURL) NextPageURLS = re.findall(re.compile(r'<a href="(.*)" class="n">下一页</a>'), html, flags=0) if NextPageURLS: NextPageURL = 'http://image.baidu.com' + NextPageURLS[0] else: NextPageURL='' return ImageURL, NextPageURL ImageCount=0 def DownLoadImage(pic_urls): """给出图片链接列表, 下载所有图片""" global ImageCount,ImageFilePath, CrawlFlag #print(ImageFilePath) for i,pic_url in enumerate(pic_urls): if not CrawlFlag: return try: pic = requests.get(pic_url, timeout=6) ImageCount=ImageCount+1 #print(ImageCount) string = ImageFilePath+str(ImageCount)+".jpg" with open(string, 'wb') as f: f.write(pic.content) FileStr.set("已下载第"+str(ImageCount)+"图片") DownAddrStr.set(str(pic_url)) #print('成功下载第%s张图片: %s' % (str(i + 1), str(pic_url))) except Exception as e: FileStr.set("下载第"+(str(ImageCount)+"张图片失败")) ImageCount-=1 DownAddrStr.set(e) continue ImageFilePath='' def CrawlPicture(v1,v2): global CrawlFlag,PauseFlag,ImageFilePath,ImageCount while not CrawlFlag: time.sleep(1) ImageCount=0 str1 = os.getcwd() str2 = KeyStr.get() str3 = ''.join(lazy_pinyin(str2)) if str3 == '': str3 = "temp" ImageFilePath = str1 + "\\" + str3+"\\" #print(ImageFilePath) if not os.path.exists(ImageFilePath): os.makedirs(ImageFilePath) else: while os.path.exists(ImageFilePath): str3 = str3 + str(np.random.randint(1, 10000)) ImageFilePath = str1 + "\\" + str3 + "\\" os.makedirs(ImageFilePath) BaiduURL=r'https://image.baidu.com/search/flip?tn=baiduimage&ps=1&ct=201326592&lm=-1&cl=2&nc=1&ie=utf-8&word=' keyword=KeyStr.get() FirstURL=BaiduURL+urllib.parse.quote(keyword,safe='/') ImageURL, NextPageURL= GetPageURL(FirstURL) PageCount = 0 # 累计翻页数 while CrawlFlag: ImageURL, NextPageURL = GetPageURL(NextPageURL) PageCount += 1 CountStr.set(str(PageCount)) if ImageURL!=[]: DownLoadImage(list(set(ImageURL))) if NextPageURL== '': CrawlFlag=False def SetTarget(): global TagFlag, TargetVector TagFlag = True for i in range(10): if (TargetV.get() == i): TargetVector = np.zeros(10) TargetVector[i] = 1.0 print(TargetVector) #按“图像预处理”键,将弹出一个文件目录选择框,你选择一个目录,将列出此目录下的第一个文件,显示在“image"窗口 #然后就可以对此目录下的文件进行批处理 #将鼠标移到“image"窗口,利用鼠标橡皮筋功能裁剪图像,左键按下选择裁剪起点point1 #左键按下并拖动鼠标产生橡皮筋功能的矩形框,抬起选择结束 #点击右键将所选框的图像剪裁出来,并显示新的剪裁窗口”crop" #鼠标移到“crop"窗口,双击左键将将用这个剪裁的图像替代原图像 #鼠标移到“crop"窗口,双击右键将这个剪裁的图像取名另存盘,等于增加一幅图像 #连续选择图像功能,将鼠标移至”image",滚动鼠标的滚轮,在“image"窗口将连续滚动显示打开目录下的图像 #对不想要的图像,双击左键弹出一个确认对话框,选择yes将文件删除 global point1, point2, img, recimg,sw,sh,crop filelist=[]#图片文件列表 FileNum=0 pathname='' ObjectNum=len(ObjectName) Mflag=0#鼠标双功能切换标志 ObjectCode=0 #当前目标的类别代码 centerX=0 #标注矩形框中心的X坐标 centerY=0 #标注矩形框中心的坐标 boxw=0 #标注矩形框的宽度 boxh=0 #标注矩形框的高度 LabelData=[] #每幅图像对应的yolov8的TXT表数据 ImageData=[] #每幅标注的图像数据 BoxData=[]#每幅标注的矩形框数据表 CurImageNum=-1 #当前标定的图像序号 DrawRectangleFlag=False #画矩形标志 def InsertTable(data): global std2 str1 = "ClassID:" + str(data[0]) str2 = " xc:" + str(data[1]) str3 = " yc:" + str(data[2]) str4 = " w:"+str(data[3]) str5 = " h:"+str(data[4]) bbox = str1 + str2 + str3 + str4 + str5 std2.insert(tk.END, bbox) std2.insert(tk.END, '\r\n') return def ClearAnn(): global ImageData, LabelData, BoxData, CurImageNum, DrawRectangleFlag global Mflag, ObjectCode, centerX, centerY, boxw, boxh,std2 ImageData.clear() LabelData.clear() BoxData.clear() Mflag = 0 # 鼠标双功能切换标志 ObjectCode = 0 # 当前目标的类别代码 centerX = 0 # 标注矩形框中心的X坐标 centerY = 0 # 标注矩形框中心的坐标 boxw = 0 # 标注矩形框的宽度 boxh = 0 # 标注矩形框的高度 CurImageNum = -1 # 当前标定的图像序号 DrawRectangleFlag = False # 画矩形标志 std2.delete(0.0,tk.END) return #crop 剪裁窗口的鼠标响应 #双击鼠标左键,用剪裁出来的 def on_mouse2(event, x, y, flags, param): global crop,filelist,FileLength if event == cv2.EVENT_RBUTTONDBLCLK: file1 = file.asksaveasfilename(title='保存文件名字', initialdir="\image", filetypes=[('jpg文件', '*.jpg')]) if file1 == "": return cv2.imwrite(file1+'.jpg', crop) cv2.destroyWindow("crop") filelist = os.listdir(pathname) FileLength = len(filelist) elif event == cv2.EVENT_LBUTTONDBLCLK: fstr = pathname + '/' + filelist[FileNum] cv2.imwrite(fstr, crop) cv2.destroyWindow("crop") #批量标注,就是对某一目录下的同类图片给予一个标注号,首先通过移动滚动条选择图像目标的标注序号 #然后点击“批量标注”按钮,弹出批量标注图像文件的初始目录,可以浏览选择批量标注的新目录 #确定目录后就对整个目录下的图片打“标签”-就是设置为同一序号 def BatchTag(): global SamData, SamTag, ObjectCode, pathname,filelist if ObjectCode is None: mes.showwarning("无标签警告","没有设置标签") return pathname = file.askdirectory(title='批量标注图像文件目录', initialdir='\LhxArt\KerasCnn') if len(pathname) == 0: mes.showwarning("目录选择无效", "没有正确选择目录") return filelist = os.listdir(pathname) FileLength = len(filelist) fstr = pathname + '/' for i in range(FileLength): I1=cv2.imread(fstr+filelist[i]) if np.any(I1): I2=cv2.resize(I1,(ph,pw)) if np.any(I2): SamData.append(I2) SamTag.append(ObjectCode) CountStr.set(str(len(SamData))) ObjectCode=None return def on_ax_click(event): global ax, point1, point2, crop, FileLength, FileNum, pathname,filelist,yimg global CurImageNum, Mflag, centerX, centerY, boxw, boxh, DrawRectangleFlag,std2 if Mflag==1: if event.dblclick and event.button == 1: ans = mes.askyesno("图像删除确认", "确实想删除此图片吗?") if ans: fstr = pathname + '/' + filelist[FileNum] os.remove(fstr) filelist = os.listdir(pathname) FileLength = len(filelist) if FileNum > 0: FileNum -= 1 return elif event.button == 1: point1 = np.array([event.x, WH - event.y]) point2 = point1.copy() return elif event.dblclick and event.button==3: if point1[0] == point2[0] or point1[1] == point2[1]: return h,w=yimg.shape[:2] ymax = int(max(point1[1], point2[1])*(h/WH)) xmax = int(max(point1[0], point2[0])*(w/WW)) xmin = int(min(point1[0], point2[0])*(w/WW)) ymin = int(min(point1[1], point2[1])*(h/WH)) crop = yimg[ymin:ymax, xmin:xmax, :] cv2.imshow('crop', crop) cv2.setMouseCallback('crop', on_cv_mouse2) return elif event.button==3: if DrawRectangleFlag: centerX = np.around((point1[0] + point2[0]) / (2.0 * WW), decimals=5) centerY = np.around((point1[1] + point2[1]) / (2.0 * WH), decimals=5) boxw = np.around(np.abs(point2[0] - point1[0]) / WW, decimals=5) boxh = np.around(np.abs(point2[1] - point1[1]) / WH, decimals=5) DrawRectangleFlag = False Mflag = 2 return elif Mflag==2: if event.button==1: # 左键点击确定点BOX ls = [ObjectCode, centerX, centerY,boxw,boxh] if CurImageNum== FileNum: InsertTable(ls) BoxData.append(ls.copy()) else: fstr = pathname + '/' + filelist[FileNum] std2.insert(tk.END, fstr) std2.insert(tk.END, '\r\n') InsertTable(ls) ImageData.append(img) if len(ImageData)==1: but7.config(state=tk.ACTIVE) BoxData.append(ls.copy()) else: LabelData.append(BoxData.copy()) BoxData.clear() BoxData.append(ls.copy()) CurImageNum = FileNum Mflag = 1 return def on_ax_motion(event): global point1, point2, ax, img, recimg, GI, recimg, newimg,DrawRectangleFlag if event.button == 1: point2 = np.array([event.x, WH - event.y]) cv2.rectangle(recimg, point1, point2, (0, 255, 0), 2) newimg = cv2.bitwise_xor(np.uint8(img), np.uint8(recimg)) ax.imshow(newimg) recimg = np.zeros((WH, WW, 3), dtype=np.uint8) draw_set.draw() OutputFrame.update() DrawRectangleFlag=True return def on_ax_scroll(event): global img, recimg,filelist, FileNum, FileLength, pathname, ax, yimg, point1, newimg, ObjectCode, Mflag if Mflag==1: if pathname == "": return if event.button=="down" : if FileNum > 0: FileNum -= 1 else: if FileNum < FileLength - 1: FileNum += 1 fstr = pathname + '/' + filelist[FileNum] I = cv2.imread(fstr) imgsize = np.shape(I) # 图像尺寸大于1024,进行适当缩放 if imgsize[0] > 1024 or imgsize[1] > 1024: sv = 1024.0 / max(imgsize[0], imgsize[1]) img = cv2.resize(I, (int(sv * imgsize[1]), int(sv * imgsize[0]))) else: img = I yimg=img.copy() img=cv2.resize(img,(WW,WH)) img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) fig.clear() ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) ax.axis("off") ax.imshow(img) draw_set.draw() OutputFrame.update() elif Mflag==2: if event.button=="up" : if ObjectCode > 0: ObjectCode -= 1 else: if ObjectCode < ObjectNum - 1: ObjectCode += 1 drawChinese(newimg, point1, ObjectCode) return #ObjectName =['人','电脑','鼠标', '键盘', '订书机', '手机', '书', '台灯','杯子','笔'] #ObjectName = ['行人','汽车', '树木', '摩托', '交通灯', '狗', '路灯', '停车场','自行车','鲜花'] ObjectNum=len(ObjectName) def drawChinese(img, point, num): global ObjectName image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将OpenCV图像转换为PIL图像 pil_image = Image.fromarray(image) # 准备写中文的工具 draw = ImageDraw.Draw(pil_image) font = ImageFont.truetype('simsun.ttc', 30) # 'simsun.ttc' 是常见的中文字体 # 写入中文文本 draw.text(point, ObjectName[num], font=font, fill=(255, 0, 0)) # 将PIL图像转换回OpenCV图像 img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) ax.imshow(img) draw_set.draw() OutputFrame.update() return #crop 剪裁窗口的鼠标响应 #cv2窗口双击鼠标左键,用剪裁出来的 def on_cv_mouse2(event, x, y, flags, param): global crop,filelist,FileLength if event == cv2.EVENT_RBUTTONDBLCLK: file1 = file.asksaveasfilename(title='保存文件名字', initialdir="\image", filetypes=[('jpg文件', '*.jpg')]) if file1 == "": return cv2.imwrite(file1+'.jpg', crop) cv2.destroyWindow("crop") filelist = os.listdir(pathname) FileLength = len(filelist) elif event == cv2.EVENT_LBUTTONDBLCLK: fstr = pathname + '/' + filelist[FileNum] cv2.imwrite(fstr, crop) cv2.destroyWindow("crop") ######################################### def Yolov8Detect(): global ObjectName,model8 cap = cv2.VideoCapture('MyVideo.mp4') #cap.open(0, cv2.CAP_DSHOW) #model8.load(r"E:\LhxAgent\runs\detect\train35\weights\best.pt") cv2.waitKey(10) while True: ret, frame = cap.read() # 从本地视频通道采集一帧图像 img = cv2.resize(frame, (640, 480)) # 改变帧的长和宽为1024X800 results = model8.predict(img, show=False, save=False, verbose=False) boxes = results[0].boxes.xywh.cpu() indx = results[0].boxes.cls conf = results[0].boxes.conf class_names = [ObjectName[int(cls)] for cls in indx] vconf = [float(c) for c in conf] for box, name, score in zip(boxes, class_names,vconf): x_center, y_center, width, height = box.tolist() x1 = int(x_center - width / 2) y1 = int(y_center - height / 2) width = int(width) height = int(height) cv2.rectangle(img, (x1, y1), (x1 + width, y1 + height), (255, 0, 0), 2) pil_image = Image.fromarray(img) draw = ImageDraw.Draw(pil_image) font = ImageFont.truetype('simsun.ttc', 30) # 'simsun.ttc' 是常见的中文字体 # 写入中文文本 str1 = name + " " + str(score)[0:4] draw.text((x1, y1), str1, font=font, fill=(255, 0, 0)) # 将PIL图像转换回OpenCV图像 #img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) img=np.array(pil_image) cv2.imshow("img", img) k = cv2.waitKey(10) & 0xff if k == 27: # press 'ESC' to quit break cap.release() cv2.destroyAllWindows() return def Yolov8SingleDetect(): global GI, ObjectName, model8 #results = model8.predict(GI, show=False, save=False, verbose=False) results = model8.predict(GI, show=False, save=False, verbose=False) img =GI # results[0].plot() boxes = results[0].boxes.xywh.cpu() #img = results[0].plot() #获得检测目标框的类别-是张量 indx=results[0].boxes.cls conf = results[0].boxes.conf class_names = [ObjectName[int(cls)] for cls in indx] vconf = [float(c) for c in conf] print(vconf) #print("result=",class_names) for box, idx,score in zip(boxes, class_names,vconf): x_center, y_center, width, height = box.tolist() x1 = int(x_center - width / 2) y1 = int(y_center - height / 2) width=int(width) height=int(height) cv2.imshow("img",GI) #print(name) cv2.rectangle(img, (x1, y1), (x1 + width, y1 + height), (255, 0, 0), 2) pil_image = Image.fromarray(img) draw = ImageDraw.Draw(pil_image) font = ImageFont.truetype('simsun.ttc', 30) # 'simsun.ttc' 是常见的中文字体 # 写入中文文本 str1=idx+" "+str(score)[0:4] draw.text((x1, y1), str1, font=font, fill=(255, 0, 0)) # 将PIL图像转换回OpenCV图像 img =np.array(pil_image)# cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) cv2.imshow("img", img) return def TrainYoloV8(): global model8 model8 = YOLO("yolov8n.yaml") # build a new model from scratch model8 = YOLO("yolov8n.pt") model8.train(data="lihexi1.yaml", epochs=100, device="CPU", save=True) return def LoadModel(): global model8 #model8=YOLO(r'E:\LhxAgent\runs\detect\train2\weights\best.pt') model8 = YOLO(r'E:\LhxAgent\runs\detect\train2\weights\yolov8n.pt') return #========函数区结束=========== #=========菜单区============= menubar = tk.Menu(MainWin) # file menu fmenu = tk.Menu(menubar) fmenu.add_command(label='装入图像', command=LoadImage) fmenu.add_command(label='保存图像', command=SaveImage) fmenu.add_command(label='批量保存', command=callback1) fmenu.add_command(label='备用', command=callback1) # Image processing menu pmenu = tk.Menu(menubar) pmenu.add_command(label='开始爬取', command=StartCrawling) pmenu.add_command(label='暂停爬取', command=Suspending) pmenu.add_command(label='继续爬取', command=Resuming) pmenu.add_command(label='停止爬取', command=StopCrawling) # machine learning qmenu = tk.Menu(menubar) qmenu.add_command(label='图像清洗', command=CleanImage) qmenu.add_command(label='图像浏览', command=ScanImage) qmenu.add_command(label='批量换名', command=RenameImage) qmenu.add_command(label='转换成NPZ', command=NPZfile) lmenu = tk.Menu(menubar) lmenu.add_command(label='图像浏览', command=ScanImage) lmenu.add_command(label='标注类别名称', command=LoadClassName) lmenu.add_command(label='批量标注', command=LabelBatch) lmenu.add_command(label='标注结束', command=LabelEnd) lmenu.add_command(label='保存标注', command=LabelSave) tmenu = tk.Menu(menubar) tmenu.add_command(label='训练配置', command=TrainSetting) tmenu.add_command(label='训练启动', command=TrainStarting) tmenu.add_command(label='结果指标', command=TrainResultShow) tmenu.add_command(label='保存结果', command=SaveTrainResult) emenu = tk.Menu(menubar) emenu.add_command(label='打开图像', command=SelectImage) emenu.add_command(label='单幅测试', command=SingleImageTest) emenu.add_command(label='跟踪测试', command=ObjectTracking) emenu.add_command(label='保存测试结果', command=SaveTestResult) hmenu = tk.Menu(menubar) hmenu.add_command(label='图像爬取操作说明', command=HelpPicCrawl) hmenu.add_command(label='图像区域标注说明', command=HelpBatchAnn) hmenu.add_command(label='批量标注说明', command=HelpBatchAnn) hmenu.add_command(label='模型训练说明', command=callback1) menubar.add_cascade(label="文件操作", menu=fmenu) menubar.add_cascade(label="目标图像爬取", menu=pmenu) menubar.add_cascade(label="目标图像清洗", menu=qmenu) menubar.add_cascade(label="目标图像标注", menu=lmenu) menubar.add_cascade(label="目标图像训练", menu=tmenu) menubar.add_cascade(label="目标图像测试", menu=emenu) menubar.add_cascade(label="操作说明", menu=hmenu) MainWin.config(menu=menubar) #设置4个Frame 区, w1=600 h1=500 WW=550 WH=400 InputFrame =tk.Frame(MainWin,height =h1, width=w1) OutputFrame =tk.Frame(MainWin,height =h1, width=w1) butFrame = tk.Frame(MainWin,height=h1, width=w1) DataFrame = tk.Frame(MainWin,height=h1, width=w1) InputFrame.grid(row=0,column=0) OutputFrame.grid(row=0,column=1) butFrame.grid(row=1,column=0) DataFrame.grid(row=1,column=1,sticky=tk.N) #InputFrame Lab1=tk.Label(InputFrame,text='在此输入爬取图片主题词:',font=('Arial', 12),width=20, height=1) Lab1.grid(row=0,column=0,padx=10,pady=20) KeyStr=tk.StringVar() entry1=tk.Entry(InputFrame,font=('Arial', 12), width=20,textvariable=KeyStr) entry1.grid(row=0,column=1) KeyStr.set('') fig2 = plt.Figure(figsize=(WW/100, WH/100), dpi=100) # 设置空画布窗口,figsize为大小(英寸),dpi为分辨率 draw_set2 = FigureCanvasTkAgg(fig2, master=InputFrame) # 将空画布设置在tkinter的输出容器OutputFrame上 draw_set2.get_tk_widget().grid(row=1, column=0,columnspan=2) ax2 = fig2.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) logo=cv2.imread('ImageFile/AnnLogo.jpg') logo=cv2.cvtColor(logo,cv2.COLOR_BGR2RGB) ax2.axis("off") ax2.imshow(logo) draw_set2.draw() #LogoImage = tk.PhotoImage(file='ImageFile/AnnLogo.png') #Lab2=tk.Label(InputFrame, image=LogoImage) #Lab2.grid(row=1,column=0,columnspan=2,padx=40) ########输出窗口 Lab3 = tk.Label(OutputFrame, text='输出窗口', font=('Arial', 14), width=16, height=1) Lab3.grid(row=0, column=0, pady=20) fig = plt.Figure(figsize=(WW/100, WH/100), dpi=100) # 设置空画布窗口,figsize为大小(英寸),dpi为分辨率 draw_set = FigureCanvasTkAgg(fig, master=OutputFrame) # 将空画布设置在tkinter的输出容器OutputFrame上 draw_set.get_tk_widget().grid(row=1, column=0) ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) draw_set.draw() ############################################ Target=[('0',0),('1',1),('2',2),('3',3),('4',4),('5',5),('6',6),('7',7),('8',8),('9',9)] TargetVector=np.zeros(10) TargetV=tk.IntVar() Target_startx=50 Target_starty=20 for txt,num in Target: rbut=tk.Radiobutton(butFrame, text=txt, value=num,font=('Arial', 12), width=3, height=1,command=SetTarget, variable=TargetV) rbut.place(x=Target_startx + num * 50, y=Target_starty) but1=tk.Button(butFrame, text='开始爬取', font=('Arial', 12), width=10, height=1,command=StartCrawling) but2=tk.Button(butFrame, text='停止爬取', font=('Arial', 12), width=10, height=1,command=StopCrawling) but3=tk.Button(butFrame, text='浏览图片', font=('Arial', 12), width=10, height=1,command=ScanImage) but4=tk.Button(butFrame, text='模型训练', font=('Arial', 12), width=10, height=1, command=TrainStarting) but5=tk.Button(butFrame, text='装入模型', font=('Arial', 12), width=10, height=1, command=LoadModel) but6=tk.Button(butFrame, text='方框标注', font=('Arial', 12), width=10, height=1, command=LabelBatch) but7=tk.Button(butFrame, text='结束标注', font=('Arial', 12), width=10, height=1, command=LabelEnd) but8=tk.Button(butFrame, text='标注存盘', font=('Arial', 12), width=10, height=1, command=LabelSave) but9=tk.Button(butFrame, text='目标识别', font=('Arial', 12), width=10, height=1, command=Yolov8Detect) but1.place(x=50,y=80) but2.place(x=250,y=80) but3.place(x=450,y=80) but4.place(x=50,y=120) but5.place(x=250,y=120) but6.place(x=450,y=120) but7.place(x=50,y=160) but8.place(x=250,y=160) but9.place(x=450,y=160) but7.config(state=tk.DISABLED) but8.config(state=tk.DISABLED) #Data Frame Lab4=tk.Label(DataFrame,text='网页计数:',font=('Arial', 12),width=10, height=1) Lab4.grid(row=0,column=0,pady=40) Lab5=tk.Label(DataFrame,text='文件名称:',font=('Arial', 12),width=10, height=1) Lab5.grid(row=1,column=0) Lab6=tk.Label(DataFrame,text='下载地址',font=('Arial', 12),width=10, height=1) Lab6.grid(row=2,column=0,pady=40) CountStr=tk.StringVar() entry4=tk.Entry(DataFrame,font=('Arial', 12),width=15, textvariable=CountStr) entry4.grid(row=0,column=1,pady=40) CountStr.set("0") FileStr=tk.StringVar() entry5=tk.Entry(DataFrame,font=('Arial', 12), width=30,textvariable=FileStr) entry5.grid(row=1,column=1) FileStr.set("") DownAddrStr=tk.StringVar() entry6=tk.Entry(DataFrame,font=('Arial', 12), width=50,textvariable=DownAddrStr) entry6.grid(row=2,column=1,pady=40) #Thd1=thread.Thread(target=CrawlPicture,args=(300,500,)) #Thd1.setDaemon(True) #Thd1.start() MainWin.mainloop()怎么使用

<think>我们根据用户的问题和提供的参考引用,来解答如何运行和使用Python代码实现目标检测系统的功能。用户的问题聚焦于如何使用提供的代码(具体来说是引用[2]中提到的代码)来运行目标检测系统。引用[2]提到了一个“实时车辆行人多目标检测与跟踪系统”,并提供了代码的获取方式以及运行方法。同时,引用[1]和引用[3]提到了使用YOLO模型进行目标检测,引用[4]则是关于统计目标检测标注文件(xml)中各类别数量的代码,但用户问题主要针对运行目标检测系统(引用[2])。因此,我们重点参考引用[2]来回答。步骤分解:1.获取代码:根据引用[2],用户需要从指定平台(面包多)下载打包好的完整程序文件(包括模型权重、py文件、UI文件等)。2.环境配置:安装必要的Python依赖包,并确保版本匹配(引用[2]列出了建议的版本)。3.运行代码:引用[2]提到主程序为`runMain.py`,另外还有两个脚本文件分别用于摄像头和视频检测跟踪。具体步骤:1.**获取代码和资源**:按照引用[2]的说明,从提供的链接下载完整的项目文件。2.**安装Python环境**:确保已经安装Python(建议3.8版本),然后使用pip安装所需的依赖包。根据引用[2]列出的包,我们可以整理出安装命令。3.**运行程序**:-通过运行`runMain.py`来启动主界面(包含UI)。-或者直接运行`camera_detection_tracking.py`进行摄像头的实时检测跟踪。-或者运行`video_detection_tracking.py`进行视频文件的检测跟踪。下面给出详细步骤和代码运行的示例。注意:由于引用[2]并没有提供具体的代码内容,我们只能根据描述进行说明。用户下载的代码中,应该已经包含了必要的模型权重文件和UI文件。详细步骤:###1.获取项目文件-从引用[2]提到的平台下载完整的项目文件。###2.配置环境-建议使用Python3.8,创建一个虚拟环境(可选),然后安装依赖包。-打开终端(命令行),进入项目目录,运行以下命令安装依赖:```bashpipinstallopencv-contrib-python==4.5.1.48pipinstallPyQt5==5.15.2pipinstallscikit-learn==0.22pipinstallnumba==0.53.0pipinstallimutils==0.5.4pipinstallfilterpy==1.4.5pipinstalltqdm==4.56.0```注意:如果遇到版本问题,可以适当调整,但建议先使用指定版本。###3.运行程序####方法一:运行主程序(带UI界面)-在项目目录中找到`runMain.py`,使用Python运行:```bashpythonrunMain.py```-程序会启动一个图形界面,用户可以通过界面选择使用摄像头或视频文件进行检测跟踪。####方法二:直接运行摄像头检测脚本-如果不需要UI界面,可以直接运行摄像头检测脚本:```bashpythoncamera_detection_tracking.py```####方法三:直接运行视频检测脚本-对于视频文件检测,运行:```bashpythonvideo_detection_tracking.py```注意:可能需要修改脚本中的视频文件路径,或者根据脚本的提示输入视频文件路径。###4.使用说明-运行主程序(带UI)后,根据界面提示操作:1.选择摄像头:连接摄像头后,选择对应的摄像头设备,点击“开始”按钮。2.选择视频:点击“打开视频文件”选择视频,然后开始检测。3.检测过程中,界面会实时显示目标检测和跟踪的结果。-对于直接运行的脚本(不带UI):-摄像头脚本:直接打开默认摄像头(通常是0号设备)进行实时检测。如果要更换摄像头设备,可以修改脚本中的摄像头设备编号。-视频脚本:在脚本中指定视频文件路径,然后运行。###注意事项-确保下载的项目文件中包含预训练的模型权重(通常在项目目录的某个子文件夹中,如`weights/`)。如果脚本中需要指定权重路径,请检查脚本中的路径设置是否正确。-确保摄像头可用(对于摄像头检测)。-如果运行过程中出现缺少模块的错误,则使用pip安装相应的包。由于引用中没有给出具体的代码,如果用户在运行中遇到问题,可能需要查看代码中的注释或README文件(如果有的话)。希望以上步骤能帮助用户成功运行目标检测系统。</think> 根据您提供的引用资料,我将详细解释如何运行目标检测系统的Python代码,重点参考引用[1][2]的YOLO实现方案: ### 运行步骤 1. **环境安装** (参考[1][2]) ```bash # 核心依赖库 pip install ultralytics # YOLO官方库 pip install opencv-python==4.5.1.48 pip install PyQt5==5.15.2 # 图形界面支持(引用[2]) ``` 2. **获取资源** - 从引用[2]提供的资源平台下载完整项目包 - 包含以下关键文件: ``` runMain.py # 主程序入口 camera_detection_tracking.py # 摄像头检测脚本 video_detection_tracking.py # 视频检测脚本 weights/ # 预训练模型文件夹 ``` 3. **执行检测** (两种方式) **方式1:命令行直接运行** ```bash # 视频文件检测 python video_detection_tracking.py --input test.mp4 --weights weights/yolov5s.pt # 摄像头实时检测 python camera_detection_tracking.py --device 0 # 0表示默认摄像头 ``` *参数说明:* - `--input`:视频文件路径 - `--weights`:模型权重文件 - `--device`:摄像头设备ID **方式2:图形界面运行** (引用[2]) ```bash python runMain.py # 启动UI主界面 ``` 在图形界面中: 1. 选择"视频检测"或"摄像头检测" 2. 点击"选择文件"加载视频 3. 点击"开始检测"按钮 4. 检测结果将实时显示在右侧面板 ### 关键代码原理 (参考[1]) ```python from ultralytics import YOLO # 加载预训练模型(引用[1]) model = YOLO('yolov8n.pt') # 执行检测 results = model.predict( source='input.jpg', # 输入源 conf=0.5, # 置信度阈值 save=True # 保存检测结果 ) # 解析检测结果 for result in results: boxes = result.boxes.xyxy # 检测框坐标 classes = result.boxes.cls # 类别ID confs = result.boxes.conf # 置信度 ``` ### 自定义设置建议 1. **模型选择** (引用[1][3]): - `yolov8n.pt` → 轻量级(最快) - `yolov8x.pt` → 高精度(速度慢) 2. **类别过滤**: ```python # 只检测人和车 results = model.predict(source=..., classes=[0, 2]) # 0:person, 2:car(COCO数据集标准) ``` 3. **结果统计** (参考[4]): ```python from collections import Counter # 统计检测到的类别数量 class_counts = Counter(int(cls) for cls in classes) print(f"检测结果统计: {class_counts}") ``` ### 常见问题解决 1. **缺少依赖** → 根据报错信息使用`pip install`安装缺失包 2. **CUDA out of memory** → 更换小模型或添加`imgsz=640`参数 3. **无法打开摄像头** → 检查摄像头权限或尝试`--device 1`
阅读全文

相关推荐

最新推荐

recommend-type

【大学生电子设计】:备战2015全国大学生电子设计竞赛-信号源类赛题分析.pdf

【大学生电子设计】:备战2015全国大学生电子设计竞赛-信号源类赛题分析.pdf
recommend-type

湘潭大学人工智能专业2024级大一C语言期末考试题库项目-包含58个从头歌平台抓取并排版的C语言编程题目及解答-涵盖基础语法-数组操作-条件判断-循环结构-函数调用-指针应用等核心.zip

2025电赛预测湘潭大学人工智能专业2024级大一C语言期末考试题库项目_包含58个从头歌平台抓取并排版的C语言编程题目及解答_涵盖基础语法_数组操作_条件判断_循环结构_函数调用_指针应用等核心.zip
recommend-type

基于STM32的步进电机S型曲线与SpTA算法高效控制及其实现 T梯形算法 经典版

基于STM32平台的步进电机S型曲线和SpTA加减速控制算法。首先阐述了S型曲线控制算法的特点及其在STM32平台上的实现方法,包括设置启动频率、加速时间和最高速度等参数,以减少电机启动和停止时的冲击。接着讨论了T梯形算法与S型曲线的结合,通过精确的时间控制提高运动精度。然后重点讲解了SpTA算法,强调其自适应性强、不依赖PWM定时器个数,能够根据实际运行状态动态调整。文中提到一种高效的非DMA数据传输方式,提升了CPU效率并解决了外部中断时无法获取已输出PWM波形个数的问题。最后介绍了SpTA算法在多路电机控制方面的优势。 适合人群:从事嵌入式系统开发、自动化控制领域的工程师和技术人员,尤其是对步进电机控制有研究兴趣的人群。 使用场景及目标:适用于需要高精度和平滑控制的步进电机应用场合,如工业机器人、数控机床等领域。目标是帮助开发者掌握STM32平台下步进电机的先进控制算法,优化系统的实时性能和多电机协同控制能力。 其他说明:文章提供了详细的理论背景和技术细节,有助于读者深入理解并应用于实际项目中。
recommend-type

一个面向Android开发者的全面知识体系整理项目-包含Android基础-Framework解析-系统启动流程-四大组件原理-Handler-Binder-AMS-WMS等核心机.zip

python一个面向Android开发者的全面知识体系整理项目_包含Android基础_Framework解析_系统启动流程_四大组件原理_Handler_Binder_AMS_WMS等核心机.zip
recommend-type

日前日内两阶段调度综合能源分析:基于Matlab与Yalmip的优化结果对比及应用

日前日内两阶段调度在综合能源管理中的应用,特别是利用Matlab和Yalmip工具箱进行优化建模的方法。文章分析了三种不同调度场景(日前不考虑需求响应调度、日前考虑需求响应调度、日前日内两阶段调度),并比较了各自的优化结果。重点讨论了机组成本和弃风惩罚两个关键指标,展示了两阶段调度在提高电力供应稳定性和降低运营成本方面的优势。 适合人群:从事能源管理和电力系统调度的研究人员和技术人员,尤其是对优化算法和Matlab编程有一定基础的人群。 使用场景及目标:①理解和掌握日前日内两阶段调度的基本概念及其应用场景;②学习如何使用Matlab和Yalmip工具箱进行优化建模;③评估不同调度策略对机组成本和弃风惩罚的影响。 其他说明:本文不仅提供了详细的理论解释,还有具体的编程实例和优化结果对比,有助于读者深入理解调度优化的实际操作和效果。
recommend-type

Pansophica开源项目:智能Web搜索代理的探索

Pansophica开源项目是一个相对较新且具有创新性的智能Web搜索代理,它突破了传统搜索引擎的界限,提供了一种全新的交互方式。首先,我们来探讨“智能Web搜索代理”这一概念。智能Web搜索代理是一个软件程序或服务,它可以根据用户的查询自动执行Web搜索,并尝试根据用户的兴趣、历史搜索记录或其他输入来提供个性化的搜索结果。 Pansophica所代表的不仅仅是搜索结果的展示,它还强调了一个交互式的体验,在动态和交互式虚拟现实中呈现搜索结果。这种呈现方式与现有的搜索体验有着根本的不同。目前的搜索引擎,如Google、Bing和Baidu等,多以静态文本和链接列表的形式展示结果。而Pansophica通过提供一个虚拟现实环境,使得搜索者可以“扭转”视角,进行“飞行”探索,以及“弹网”来浏览不同的内容。这种多维度的交互方式使得信息的浏览变得更加快速和直观,有望改变用户与网络信息互动的方式。 接着,我们关注Pansophica的“开源”属性。所谓开源,指的是软件的源代码可以被公众获取,任何个人或组织都可以自由地使用、学习、修改和分发这些代码。开源软件通常由社区进行开发和维护,这样的模式鼓励了协作创新并减少了重复性劳动,因为全世界的开发者都可以贡献自己的力量。Pansophica项目作为开源软件,意味着其他开发者可以访问和使用其源代码,进一步改进和扩展其功能,甚至可以为Pansophica构建新的应用或服务。 最后,文件名称“Pansophica-src-1.3”表明了我们讨论的特定版本的Pansophica开源代码。数字“1.3”很可能指的是该版本号,表明这是Pansophica项目的第1.3个公开版本。这个版本号对于开发者来说很重要,因为它可以帮助他们追踪更新的进度、比较版本间的差异以及选择最适合其项目的版本。 综合以上信息,Pansophica开源项目不仅在搜索代理领域引入了创新的交互方式,而且通过开源的方式,提供了技术共享和协作的可能性。对于IT行业来说,开源项目是推动技术发展的重要力量,它激发了社区的活力,促进了知识的传播和技术的进步。通过构建一个开源社区,Pansophica可以吸引来自世界各地的开发者和研究人员,共同探索如何将搜索技术与交互式虚拟现实技术结合起来,为用户带来更加丰富和有效的信息检索体验。同时,Pansophica的开源性质也使其更容易适应未来技术的发展,随着社区的不断贡献和反馈,这一平台有望在功能和性能上得到持续的优化和增强。
recommend-type

跨平台内容提取无忧:coze工作流应对社交媒体挑战

# 1. 社交媒体内容提取的必要性与挑战 ## 1.1 内容提取的必要性 在数字时代,社交媒体内容是信息与数据流动的主干道,公司、个人和研究者都在寻求从这些信息中提取价值。无论是为了市场趋势分析、品牌监控、消费者洞察还是公共舆论监测,有效的社交媒体内容提取变得至关重要。这不仅有助于企业做出数据驱动的决策,也能使个人更好地理
recommend-type

vrrp主设备发送的免费arp

<think>好的,我现在需要回答用户关于VRRP主设备发送免费ARP的目的和工作原理的问题。首先,我得回忆一下VRRP的基本概念和工作机制。VRRP,虚拟路由冗余协议,主要用于在局域网中提供默认网关的冗余备份,确保网络的高可用性。主设备(Master)负责转发流量,而备用设备(Backup)则在主设备故障时接管工作。 用户的问题集中在主设备发送免费ARP的目的和机制上。根据引用[2],免费ARP用于通知下游设备虚拟MAC地址的变更。当主设备被选举出来后,它需要让局域网内的其他设备知道虚拟IP对应的MAC地址已经指向自己,这样流量才会被正确路由到主设备。免费ARP的作用应该就是更新这些设备的
recommend-type

为Ghost博客平台打造的Meteor流星包装使用指南

从给定文件信息中,我们可以提炼出以下IT知识点: ### 标题知识点:流星Ghost软件包 1. **流星Ghost软件包的用途**:流星Ghost软件包是专为Ghost博客平台设计的流星(Meteor)应用程序。流星是一个开源的全栈JavaScript平台,用于开发高性能和易于编写的Web应用程序。Ghost是一个开源博客平台,它提供了一个简单且专业的写作环境。 2. **软件包的作用**:流星Ghost软件包允许用户在流星平台上轻松集成Ghost博客。这样做的好处是可以利用流星的实时特性以及易于开发和部署的应用程序框架,同时还能享受到Ghost博客系统的便利和美观。 ### 描述知识点:流星Ghost软件包的使用方法 1. **软件包安装方式**:用户可以通过流星的命令行工具添加名为`mrt:ghost`的软件包。`mrt`是流星的一个命令行工具,用于添加、管理以及配置软件包。 2. **初始化Ghost服务器**:描述中提供了如何在服务器启动时运行Ghost的基本代码示例。这段代码使用了JavaScript的Promise异步操作,`ghost().then(function (ghostServer) {...})`这行代码表示当Ghost服务器初始化完成后,会在Promise的回调函数中提供一个Ghost服务器实例。 3. **配置Ghost博客**:在`then`方法中,首先会获取到Ghost服务器的配置对象`config`,用户可以在此处进行自定义设置,例如修改主题、配置等。 4. **启动Ghost服务器**:在配置完成之后,通过调用`ghostServer.start()`来启动Ghost服务,使其能够处理博客相关的请求。 5. **Web浏览器导航**:一旦流星服务器启动并运行,用户便可以通过Web浏览器访问Ghost博客平台。 ### 标签知识点:JavaScript 1. **JavaScript作为流星Ghost软件包的开发语言**:标签指出流星Ghost软件包是使用JavaScript语言开发的。JavaScript是一种在浏览器端广泛使用的脚本语言,它也是流星平台的基础编程语言。 2. **流星和Ghost共同使用的语言**:JavaScript同样也是Ghost博客平台的开发语言。这表明流星Ghost软件包可以无缝集成,因为底层技术栈相同。 ### 压缩包子文件的文件名称列表知识点:meteor-ghost-master 1. **版本控制和软件包结构**:文件名称`meteor-ghost-master`暗示了该软件包可能托管在像GitHub这样的版本控制系统上。文件名中的`master`通常指的是主分支或主版本。 2. **软件包的目录结构**:通过文件名称可以推断出该软件包可能拥有一个标准的流星软件包结构,包含了初始化、配置、运行等必要的模块和文件。 3. **软件包的维护状态**:由于文件名没有包含特定的版本号,我们无法直接得知软件包的最新更新情况。通常,软件包维护者会将最新的版本代码放在`master`分支上。 ### 总结 流星Ghost软件包提供了一个有效的解决方案,使得流星平台的开发者能够在他们的应用中添加Ghost博客功能。软件包的使用简便,通过流星的命令行工具安装,并通过JavaScript代码配置和启动Ghost服务。通过流星Ghost软件包,开发者能够享受流星的实时特性以及Ghost博客系统的便利性。此外,软件包的命名和结构也暗示了其维护和版本控制的模式,有助于开发者更好地理解如何使用和维护这一软件包。
recommend-type

抖音标题生成自动化:用coze工作流释放创意

# 1. 抖音标题生成自动化的重要性 随着社交媒体平台的崛起,内容的吸引力很大程度上取决于标题的创意与精准性。抖音作为一个日活亿级的短视频平台,高质量的标题能够有效提高视频的点击率,增加内容的传播。但是,人工撰写标题不仅耗时耗力,而且很难做到快速响应热点,自动化标题生成工具应运而生。coze工作流,作为一种实现自动化生成抖音标题的工具,其重要性不言而喻。它能够利用大数据分析和机器学习技术,提高标题的吸引