cv2.imshow('original_img', img) cv2.imshow('new_img', newimg / 200) cv2.waitKey(0) cv2.destroyAllWindows()什么意思
时间: 2024-04-28 07:19:04 浏览: 70
这段代码是用于在屏幕上显示图像的。cv2.imshow()函数可以在一个窗口中显示图像,第一个参数是窗口名称,第二个参数是要显示的图像。cv2.waitKey()函数等待键盘事件,参数表示等待时间,单位为毫秒,0表示等待无限长的时间。cv2.destroyAllWindows()函数关闭所有打开的窗口。在这个程序中,'original_img'表示原始图像窗口的名称,img是原始图像;'new_img'表示处理后的图像窗口的名称,newimg / 200是将像素值除以200后的处理后的图像。运行程序后,将显示两个窗口,一个显示原始图像,一个显示处理后的图像。
相关问题
cv2.imshow('original_img', img) cv2.imshow('new_img', newimg / 200) cv2.waitKey(0) cv2.destroyAllWindows()怎么修改窗口大小
要修改窗口大小,可以在调用cv2.imshow()函数时,使用cv2.namedWindow()函数创建窗口,并通过cv2.resizeWindow()函数设置窗口大小。例如,以下代码创建一个名称为'original_img'的窗口,并将其大小设置为800x600像素:
```python
cv2.namedWindow('original_img', cv2.WINDOW_NORMAL)
cv2.resizeWindow('original_img', 800, 600)
cv2.imshow('original_img', img)
```
同样的,可以对'new_img'窗口进行相同的操作,例如:
```python
cv2.namedWindow('new_img', cv2.WINDOW_NORMAL)
cv2.resizeWindow('new_img', 800, 600)
cv2.imshow('new_img', newimg / 200)
```
这样,原始图像和处理后的图像将在大小为800x600的窗口中显示。
#!/usr/bin/env python # -*- coding:utf-8 -*- #This Python codes are created by Li hexi for undergraduate student course --maxhine learning #Any copy of the codes is illegal without the author' permission.2021-9-3 #--------This program uses to crawl and download images on some websites ------ import math import imghdr from distutils.command.clean import clean import cv2 import re import time,os import urllib import requests import numpy as np import tkinter as tk import tkinter.filedialog as file import threading as thread import tkinter.messagebox as mes import tkinter.simpledialog as simple from PIL import Image, ImageDraw, ImageFont from tkinter import scrolledtext as st import argostranslate.translate as Translate from h5py.h5a import delete from pypinyin import pinyin, Style from pypinyin import lazy_pinyin, Style from matplotlib import pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg#导入在tkinter 内嵌入的画布子窗口 from matplotlib.backend_bases import MouseEvent from tkinter import scrolledtext as st from tkinter import ttk from ultralytics import YOLO MainWin = tk.Tk() #常数列表 #FrameWidth=600 #FrameHeight=300 FileLength=0 TagFlag=False TargetVector=[] CrawlFlag=False #ObjectName = ['人','电脑', '手机', '鼠标', '键盘'] #ObjectName=['人','电脑', '键盘', '鼠标', '订书机', '手机', '书', '台灯','杯子','电水壶'] Name80 = ['人', '自行车', '轿车', '摩托', '飞机', '巴士', '火车', '卡车', '船', '交通灯', '消防栓', '停止标志', '咪表', '长凳', '鸟', '猫', '狗', '马', '羊', '奶牛', '象', '熊', '斑马', '长颈鹿', '背包', '伞', '手袋', '领带', '手提箱', '飞碟', '滑板', '滑雪板', '运动球', '风筝', '棒球杆', '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '酒杯', '杯子', '叉子', '刀', '勺子', '碗', '香蕉', '苹果', '三文治', '桔子', '西兰花', '胡萝卜', '热狗', '披萨', '甜甜圈', '蛋糕', '椅子', '沙发', '盆景', '床', '餐桌', '厕所', '监视器', '电脑', '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱', '烤面包机', '洗碗槽', '冰箱', '书', '钟', '花瓶', '剪刀', '泰迪熊', '干发器', '牙刷'] Name10=['人','电脑','鼠标', '键盘', '订书机', '手机', '书', '台灯','杯子','电水壶'] Name2=['人','电脑'] ObjectName=Name80.copy() MainWin.title('目标检测系统智能体平台') MainWin.geometry('1300x700') MainWin.resizable(width=False,height=False) #========函数区开始=========== def callback1(): filename = file.askopenfilename(title='打开文件名字', initialdir="\image", filetypes=[('jpg文件', '*.jpg'), ('png文件', '.png')]) picshow(filename) def callback2(): #import argostranslate.package #argostranslate.package.update_package_index() #available_packages = argostranslate.package.get_available_packages() #package_to_install = next(p for p in available_packages if p.from_code == "zh" and p.to_code == "en") #argostranslate.package.install_from_path(package_to_install.download()) #text = Translate.translate("蔬菜和水果", "zh", "en") #FileName=text.replace(" ","") text = '紫荆花' pinyin_str = ''.join(lazy_pinyin(text)) print(pinyin_str) # ni hao #print(FileName) def picshow(filename): global GI I1 = cv2.imread(filename) I2 = cv2.resize(I1, (WW, WH)) cv2.imwrite('ImageFile/temp.png', I2) I3 = tk.PhotoImage(file='ImageFile/temp.png') L1 = tk.Label(InputFrame, image=I3) L1.grid(row=1, column=0, columnspan=2, padx=40) GI = I2 MainWin.update() #******************************** #******************************** #以下下是文件操作代码区************* #******************************** #******************************** def LoadImage(): global TargetVector, GI path=os.getcwd() filename = file.askopenfilename(title='打开文件名字', initialdir=path, filetypes=[('jpg文件', '*.jpg'), ('png文件', '.png')]) if len(filename) == 0: return I1 = cv2.imread(filename) I2 = cv2.resize(I1, (WW, WH)) GI = I2 # print(np.shape(GI)) cv2.imwrite('image/temp.png', I2) I3 = tk.PhotoImage(file='image/temp.png') L1 = tk.Label(InputFrame, image=I3) L1.grid(row=1, column=0, columnspan=2, padx=40) s = np.shape(I1) MainWin.mainloop() return def SaveImage(): return #******************************** #******************************** #以下下是图像爬取代码区************* #******************************** #******************************** def StartCrawling(): global CrawlFlag if KeyStr.get()=="": return CrawlFlag=True Thd1 = thread.Thread(target=CrawlPicture, args=(300, 500,)) Thd1.setDaemon(True) Thd1.start() return PauseFlag=False def StopCrawling(): global CrawlFlag CrawlFlag = False return def Suspending(): return def Resuming(): return #******************************** #******************************** #以下下是图像清洗代码区************* #******************************** #******************************** std=None def CleanImage(): global img, recimg, sw, sh, FileLength, pathname, FileNum, filelist, std, ax if std != None: std.destroy() std = None fig.clear() draw_set.draw() OutputFrame.update() curpath = os.getcwd() pathname = file.askdirectory(title='图像文件目录', initialdir=curpath) if len(pathname) == 0: return filelist = os.listdir(pathname) FileLength = len(filelist) DeletFile=[] fig.clear() ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) for i in range(FileLength): fstr = pathname + '/' + filelist[i] if imghdr.what(fstr) is not None: #print(fstr) img = cv2.imread(fstr) if np.shape(img) == (): DeletFile.append(fstr) else: s = np.shape(img) sw = s[0] sh = s[1] if s[0] > 1024 or s[1] > 1024: sv = 1024.0 / max(s[0], s[1]) img = cv2.resize(img, (int(sv * s[1]), int(sv * s[0]))) cv2.imwrite(fstr, img) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) ax.imshow(img) draw_set.draw() OutputFrame.update() else: DeletFile.append(fstr) if len(DeletFile) !=0: for i in range(len(DeletFile)): fstr = DeletFile[i] os.remove(fstr) return def ScanImage(): global img, recimg, sw, sh, FileLength, pathname, FileNum, filelist, std, ax if std!=None: std.destroy() std=None fig.clear() draw_set.draw() OutputFrame.update() curpath = os.getcwd() pathname = file.askdirectory(title='图像文件目录', initialdir=curpath) if len(pathname) == 0: return filelist = os.listdir(pathname) FileLength = len(filelist) for i in range(FileLength): fstr = pathname + '/' + filelist[i] img = cv2.imread(fstr) if np.shape(img) == (): os.remove(fstr) filelist = os.listdir(pathname) FileLength = len(filelist) FileNum = 0 fstr = pathname + '/' + filelist[FileNum] img = cv2.imread(fstr) s = np.shape(img) sw = s[0] sh = s[1] if s[0] > 1024 or s[1] > 1024: sv = 1024.0 / max(s[0], s[1]) img = cv2.resize(img, (int(sv * s[1]), int(sv *s[0]))) recimg = np.zeros((sw, sh, 3), dtype=np.uint8) s = np.shape(img) sw = s[0] sh = s[1] img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) fig.clear() ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) ax.imshow(img) draw_set.draw() recimg = np.zeros((WH, WW, 3), dtype=np.uint8) fig.canvas.mpl_connect('scroll_event', on_ax_scroll) fig.canvas.mpl_connect('button_press_event', on_ax_click) fig.canvas.mpl_connect('motion_notify_event', on_ax_motion) OutputFrame.update() return def RenameImage(): return def NPZfile(): return #******************************** #******************************** #以下下是图像标注代码区************** #******************************** #******************************** def LoadClassName(): return #批量区域标定 def LabelBatch(): global img, recimg, sw, sh, FileLength, pathname, FileNum, filelist, std2,ax2 global Mflag fig2.clear() draw_set2.draw() InputFrame.update() Lab3.config(text="图片标注结果输出") std2=st.ScrolledText(InputFrame,width=60,height=22,foreground="blue", font=("隶书",12)) std2.grid(row=1, column=0,columnspan=2,padx=10) std2.config(foreground="black", relief="solid",font=("宋体", 12)) std2.delete(0.0, tk.END) InputFrame.update() cwd = os.getcwd() pathname = file.askdirectory(title='图像文件目录', initialdir=cwd) if len(pathname) == 0: return filelist = os.listdir(pathname) FileLength = len(filelist) FileNum = 0 DeletFile=[] for i in range(FileLength): fstr = pathname + '/' + filelist[i] if imghdr.what(fstr) is not None: #print(fstr) img = cv2.imread(fstr) if np.shape(img) == (): DeletFile.append(fstr) else: fstr = DeletFile[i] DeletFile.append(fstr) for i in range(len(DeletFile)): os.remove(fstr) filelist = os.listdir(pathname) FileLength = len(filelist) FileNum = 0 fstr = pathname + '/' + filelist[FileNum] img = cv2.imread(fstr) s = np.shape(img) if s[0] > 1024 or s[1] > 1024: sv = 1024.0 / max(s[0], s[1]) img = cv2.resize(img, (int(sv * s[1]), int(sv * s[0]))) img = cv2.resize(img, (WW, WH)) recimg = np.zeros(img.shape, dtype=np.uint8) s = np.shape(img) sh = s[0] sw = s[1] img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) fig.clear() ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) ax.imshow(img) draw_set.draw() recimg = np.zeros((WH, WW, 3), dtype=np.uint8) fig.canvas.mpl_connect('scroll_event', on_ax_scroll) fig.canvas.mpl_connect('button_press_event', on_ax_click) fig.canvas.mpl_connect('motion_notify_event', on_ax_motion) OutputFrame.update() but7.config(state=tk.DISABLED) but8.config(state=tk.DISABLED) Mflag=1 return def LabelEnd(): global LabelData, BoxData if len(BoxData) != 0: LabelData.append(BoxData.copy()) but8.config(state=tk.ACTIVE) return def LabelSave(): global ImageData, LabelData, BoxData cwd = os.getcwd() dir1 = cwd + "\image" if not os.path.exists(dir1): os.mkdir(dir1) startnum = len(os.listdir(dir1)) for i in range(len(ImageData)): fname = dir1 + "\myimage" + str(i + startnum) + ".jpg" myim = cv2.cvtColor(ImageData[i], cv2.COLOR_RGB2BGR) cv2.imwrite(fname, myim) dir1 = cwd + "\label" if not os.path.exists(dir1): os.mkdir(dir1) for i in range(len(ImageData)): fname = dir1 + "\myimage" + str(i + startnum) + ".txt" with open(fname, 'w', encoding='utf-8') as file: for j in range(len(LabelData[i])): txt = str(LabelData[i][j][0]) + " " + str(LabelData[i][j][1]) + " " + str( LabelData[i][j][2]) + " " + str(LabelData[i][j][3]) + " " + str(LabelData[i][j][4]) file.write(txt + '\n') # 添加换行符 file.close() ClearAnn() return #******************************** #******************************** #以下下是图像训练代码区************* #******************************** #******************************** def TrainSetting(): return def TrainStarting(): TrainYoloV8() return def TrainResultShow(): return def SaveTrainResult(): return #******************************** #******************************** #以下下是图像测试代码区************* #******************************** #******************************** def SelectImage(): LoadImage() return def SingleImageTest(): Yolov8SingleDetect() return def ObjectTracking(): Yolov8Detect() return def SaveTestResult(): return #******************************** #******************************** #以下下是操作帮助代码区************* #******************************** #******************************** def HelpPicCrawl(): global std if std != None: std.destroy() fig.clear() draw_set.draw() OutputFrame.update() std = st.ScrolledText(OutputFrame, width=60, height=22, foreground="blue", font=("隶书", 12)) std.grid(row=1, column=0, padx=10) std.config(relief="solid") #std.config(foreground="black", relief="solid", font=("宋体", 13)) std.delete(0.0, tk.END) Lab3.config(text="图片爬取操作指导") HelpStr1="图像爬取操作步骤:\r\n 1)在主题框输入要爬取的主题提示词" \ "\r\n 2)单击《开始爬取》按钮,开始爬取图片,并存在当前目录下" \ "\r\n 3)单击《停止爬取》按钮,停止爬取图片,但爬完当前页才结束"\ "\r\n 4)爬取的图像存在主题词拼音目录下" std.delete(0.0,tk.END) std.insert(tk.END,HelpStr1) return def HelpAnnSave(): return def HelpBatchAnn(): global std if std!=None: std.destroy() fig.clear() draw_set.draw() OutputFrame.update() std = st.ScrolledText(OutputFrame, width=60, height=22, foreground="blue", font=("隶书", 12)) std.config(relief="solid") std.grid(row=1, column=0, padx=10) std.delete(0.0, tk.END) Lab3.config(text="区域标注操作指导") HelpStr3 = "图像区域标注操作步骤:\r\n 1)单击《方框标注》按钮,弹出目录选择对话框,选择图片目录" \ "\r\n 2)计算机会对该目录的图像文件扫描,清洗掉一些格式不对的非图像文件,时间较长" \ "\r\n 3)显示目录下第1幅图像,通过鼠标滚轮,快速浏览目录下的所有图片" \ "\r\n 4)停在所选图片,在要标注的物体左上角按下鼠标左键,选择拉框起点" \ "\r\n 5)按下鼠标左键不放,拖动鼠标拉框,将要标注的物体画到矩形框内" \ "\r\n 6)点击鼠标右键,激活目标选项,滚动鼠标滚轮,浏览目标名称,并停在所选名称" \ "\r\n 7)点击鼠标左键,确认选项,并在文本框内显示类别ID和矩形几何参数" \ "\r\n 8)如果本张图片还有要标定的目标,则重复步骤4-7,继续标注" \ "\r\n 9)更换图片和浏览一样滚动鼠标滚轮,选择图片,然后重复步骤4-7" \ "\r\n 10)结束本次标定,单击《结束标注》按钮" \ "\r\n 11)保存标定结果,单击《保存标注》按钮"\ "\r\n 12)标定的图像保存在\image目录下,标签保存在\label目录下" std.delete(0.0, tk.END) #std.config(foreground="blue", font=("楷体", 12)) std.insert(tk.END, HelpStr3) ########################################## def TagPicture(): return def SpareBut(): global ImageData for i in range(len(ImageData)): cv2.imshow("ls",ImageData[i]) cv2.waitKey(200) return def GetPageURL(URLStr): #获取一个页面的所有图片的URL+下页的URL if not URLStr: print('现在是最后一页啦!爬取结束') return [], '' try: header = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.93 Safari/537.36"} html = requests.get(URLStr,headers=header)#,verify=False) html.encoding = 'utf-8' html = html.text except Exception as e: print("err=",str(e)) ImageURL = [] NextPageURL = '' return ImageURL, NextPageURL ImageURL = re.findall(r'"objURL":"(.*?)",', html, re.S) #print("ImageURL",ImageURL) NextPageURLS = re.findall(re.compile(r'<a href="(.*)" class="n">下一页</a>'), html, flags=0) if NextPageURLS: NextPageURL = 'http://image.baidu.com' + NextPageURLS[0] else: NextPageURL='' return ImageURL, NextPageURL ImageCount=0 def DownLoadImage(pic_urls): """给出图片链接列表, 下载所有图片""" global ImageCount,ImageFilePath, CrawlFlag #print(ImageFilePath) for i,pic_url in enumerate(pic_urls): if not CrawlFlag: return try: pic = requests.get(pic_url, timeout=6) ImageCount=ImageCount+1 #print(ImageCount) string = ImageFilePath+str(ImageCount)+".jpg" with open(string, 'wb') as f: f.write(pic.content) FileStr.set("已下载第"+str(ImageCount)+"图片") DownAddrStr.set(str(pic_url)) #print('成功下载第%s张图片: %s' % (str(i + 1), str(pic_url))) except Exception as e: FileStr.set("下载第"+(str(ImageCount)+"张图片失败")) ImageCount-=1 DownAddrStr.set(e) continue ImageFilePath='' def CrawlPicture(v1,v2): global CrawlFlag,PauseFlag,ImageFilePath,ImageCount while not CrawlFlag: time.sleep(1) ImageCount=0 str1 = os.getcwd() str2 = KeyStr.get() str3 = ''.join(lazy_pinyin(str2)) if str3 == '': str3 = "temp" ImageFilePath = str1 + "\\" + str3+"\\" #print(ImageFilePath) if not os.path.exists(ImageFilePath): os.makedirs(ImageFilePath) else: while os.path.exists(ImageFilePath): str3 = str3 + str(np.random.randint(1, 10000)) ImageFilePath = str1 + "\\" + str3 + "\\" os.makedirs(ImageFilePath) BaiduURL=r'https://image.baidu.com/search/flip?tn=baiduimage&ps=1&ct=201326592&lm=-1&cl=2&nc=1&ie=utf-8&word=' keyword=KeyStr.get() FirstURL=BaiduURL+urllib.parse.quote(keyword,safe='/') ImageURL, NextPageURL= GetPageURL(FirstURL) PageCount = 0 # 累计翻页数 while CrawlFlag: ImageURL, NextPageURL = GetPageURL(NextPageURL) PageCount += 1 CountStr.set(str(PageCount)) if ImageURL!=[]: DownLoadImage(list(set(ImageURL))) if NextPageURL== '': CrawlFlag=False def SetTarget(): global TagFlag, TargetVector TagFlag = True for i in range(10): if (TargetV.get() == i): TargetVector = np.zeros(10) TargetVector[i] = 1.0 print(TargetVector) #按“图像预处理”键,将弹出一个文件目录选择框,你选择一个目录,将列出此目录下的第一个文件,显示在“image"窗口 #然后就可以对此目录下的文件进行批处理 #将鼠标移到“image"窗口,利用鼠标橡皮筋功能裁剪图像,左键按下选择裁剪起点point1 #左键按下并拖动鼠标产生橡皮筋功能的矩形框,抬起选择结束 #点击右键将所选框的图像剪裁出来,并显示新的剪裁窗口”crop" #鼠标移到“crop"窗口,双击左键将将用这个剪裁的图像替代原图像 #鼠标移到“crop"窗口,双击右键将这个剪裁的图像取名另存盘,等于增加一幅图像 #连续选择图像功能,将鼠标移至”image",滚动鼠标的滚轮,在“image"窗口将连续滚动显示打开目录下的图像 #对不想要的图像,双击左键弹出一个确认对话框,选择yes将文件删除 global point1, point2, img, recimg,sw,sh,crop filelist=[]#图片文件列表 FileNum=0 pathname='' ObjectNum=len(ObjectName) Mflag=0#鼠标双功能切换标志 ObjectCode=0 #当前目标的类别代码 centerX=0 #标注矩形框中心的X坐标 centerY=0 #标注矩形框中心的坐标 boxw=0 #标注矩形框的宽度 boxh=0 #标注矩形框的高度 LabelData=[] #每幅图像对应的yolov8的TXT表数据 ImageData=[] #每幅标注的图像数据 BoxData=[]#每幅标注的矩形框数据表 CurImageNum=-1 #当前标定的图像序号 DrawRectangleFlag=False #画矩形标志 def InsertTable(data): global std2 str1 = "ClassID:" + str(data[0]) str2 = " xc:" + str(data[1]) str3 = " yc:" + str(data[2]) str4 = " w:"+str(data[3]) str5 = " h:"+str(data[4]) bbox = str1 + str2 + str3 + str4 + str5 std2.insert(tk.END, bbox) std2.insert(tk.END, '\r\n') return def ClearAnn(): global ImageData, LabelData, BoxData, CurImageNum, DrawRectangleFlag global Mflag, ObjectCode, centerX, centerY, boxw, boxh,std2 ImageData.clear() LabelData.clear() BoxData.clear() Mflag = 0 # 鼠标双功能切换标志 ObjectCode = 0 # 当前目标的类别代码 centerX = 0 # 标注矩形框中心的X坐标 centerY = 0 # 标注矩形框中心的坐标 boxw = 0 # 标注矩形框的宽度 boxh = 0 # 标注矩形框的高度 CurImageNum = -1 # 当前标定的图像序号 DrawRectangleFlag = False # 画矩形标志 std2.delete(0.0,tk.END) return #crop 剪裁窗口的鼠标响应 #双击鼠标左键,用剪裁出来的 def on_mouse2(event, x, y, flags, param): global crop,filelist,FileLength if event == cv2.EVENT_RBUTTONDBLCLK: file1 = file.asksaveasfilename(title='保存文件名字', initialdir="\image", filetypes=[('jpg文件', '*.jpg')]) if file1 == "": return cv2.imwrite(file1+'.jpg', crop) cv2.destroyWindow("crop") filelist = os.listdir(pathname) FileLength = len(filelist) elif event == cv2.EVENT_LBUTTONDBLCLK: fstr = pathname + '/' + filelist[FileNum] cv2.imwrite(fstr, crop) cv2.destroyWindow("crop") #批量标注,就是对某一目录下的同类图片给予一个标注号,首先通过移动滚动条选择图像目标的标注序号 #然后点击“批量标注”按钮,弹出批量标注图像文件的初始目录,可以浏览选择批量标注的新目录 #确定目录后就对整个目录下的图片打“标签”-就是设置为同一序号 def BatchTag(): global SamData, SamTag, ObjectCode, pathname,filelist if ObjectCode is None: mes.showwarning("无标签警告","没有设置标签") return pathname = file.askdirectory(title='批量标注图像文件目录', initialdir='\LhxArt\KerasCnn') if len(pathname) == 0: mes.showwarning("目录选择无效", "没有正确选择目录") return filelist = os.listdir(pathname) FileLength = len(filelist) fstr = pathname + '/' for i in range(FileLength): I1=cv2.imread(fstr+filelist[i]) if np.any(I1): I2=cv2.resize(I1,(ph,pw)) if np.any(I2): SamData.append(I2) SamTag.append(ObjectCode) CountStr.set(str(len(SamData))) ObjectCode=None return def on_ax_click(event): global ax, point1, point2, crop, FileLength, FileNum, pathname,filelist,yimg global CurImageNum, Mflag, centerX, centerY, boxw, boxh, DrawRectangleFlag,std2 if Mflag==1: if event.dblclick and event.button == 1: ans = mes.askyesno("图像删除确认", "确实想删除此图片吗?") if ans: fstr = pathname + '/' + filelist[FileNum] os.remove(fstr) filelist = os.listdir(pathname) FileLength = len(filelist) if FileNum > 0: FileNum -= 1 return elif event.button == 1: point1 = np.array([event.x, WH - event.y]) point2 = point1.copy() return elif event.dblclick and event.button==3: if point1[0] == point2[0] or point1[1] == point2[1]: return h,w=yimg.shape[:2] ymax = int(max(point1[1], point2[1])*(h/WH)) xmax = int(max(point1[0], point2[0])*(w/WW)) xmin = int(min(point1[0], point2[0])*(w/WW)) ymin = int(min(point1[1], point2[1])*(h/WH)) crop = yimg[ymin:ymax, xmin:xmax, :] cv2.imshow('crop', crop) cv2.setMouseCallback('crop', on_cv_mouse2) return elif event.button==3: if DrawRectangleFlag: centerX = np.around((point1[0] + point2[0]) / (2.0 * WW), decimals=5) centerY = np.around((point1[1] + point2[1]) / (2.0 * WH), decimals=5) boxw = np.around(np.abs(point2[0] - point1[0]) / WW, decimals=5) boxh = np.around(np.abs(point2[1] - point1[1]) / WH, decimals=5) DrawRectangleFlag = False Mflag = 2 return elif Mflag==2: if event.button==1: # 左键点击确定点BOX ls = [ObjectCode, centerX, centerY,boxw,boxh] if CurImageNum== FileNum: InsertTable(ls) BoxData.append(ls.copy()) else: fstr = pathname + '/' + filelist[FileNum] std2.insert(tk.END, fstr) std2.insert(tk.END, '\r\n') InsertTable(ls) ImageData.append(img) if len(ImageData)==1: but7.config(state=tk.ACTIVE) BoxData.append(ls.copy()) else: LabelData.append(BoxData.copy()) BoxData.clear() BoxData.append(ls.copy()) CurImageNum = FileNum Mflag = 1 return def on_ax_motion(event): global point1, point2, ax, img, recimg, GI, recimg, newimg,DrawRectangleFlag if event.button == 1: point2 = np.array([event.x, WH - event.y]) cv2.rectangle(recimg, point1, point2, (0, 255, 0), 2) newimg = cv2.bitwise_xor(np.uint8(img), np.uint8(recimg)) ax.imshow(newimg) recimg = np.zeros((WH, WW, 3), dtype=np.uint8) draw_set.draw() OutputFrame.update() DrawRectangleFlag=True return def on_ax_scroll(event): global img, recimg,filelist, FileNum, FileLength, pathname, ax, yimg, point1, newimg, ObjectCode, Mflag if Mflag==1: if pathname == "": return if event.button=="down" : if FileNum > 0: FileNum -= 1 else: if FileNum < FileLength - 1: FileNum += 1 fstr = pathname + '/' + filelist[FileNum] I = cv2.imread(fstr) imgsize = np.shape(I) # 图像尺寸大于1024,进行适当缩放 if imgsize[0] > 1024 or imgsize[1] > 1024: sv = 1024.0 / max(imgsize[0], imgsize[1]) img = cv2.resize(I, (int(sv * imgsize[1]), int(sv * imgsize[0]))) else: img = I yimg=img.copy() img=cv2.resize(img,(WW,WH)) img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) fig.clear() ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) ax.axis("off") ax.imshow(img) draw_set.draw() OutputFrame.update() elif Mflag==2: if event.button=="up" : if ObjectCode > 0: ObjectCode -= 1 else: if ObjectCode < ObjectNum - 1: ObjectCode += 1 drawChinese(newimg, point1, ObjectCode) return #ObjectName =['人','电脑','鼠标', '键盘', '订书机', '手机', '书', '台灯','杯子','笔'] #ObjectName = ['行人','汽车', '树木', '摩托', '交通灯', '狗', '路灯', '停车场','自行车','鲜花'] ObjectNum=len(ObjectName) def drawChinese(img, point, num): global ObjectName image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将OpenCV图像转换为PIL图像 pil_image = Image.fromarray(image) # 准备写中文的工具 draw = ImageDraw.Draw(pil_image) font = ImageFont.truetype('simsun.ttc', 30) # 'simsun.ttc' 是常见的中文字体 # 写入中文文本 draw.text(point, ObjectName[num], font=font, fill=(255, 0, 0)) # 将PIL图像转换回OpenCV图像 img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) ax.imshow(img) draw_set.draw() OutputFrame.update() return #crop 剪裁窗口的鼠标响应 #cv2窗口双击鼠标左键,用剪裁出来的 def on_cv_mouse2(event, x, y, flags, param): global crop,filelist,FileLength if event == cv2.EVENT_RBUTTONDBLCLK: file1 = file.asksaveasfilename(title='保存文件名字', initialdir="\image", filetypes=[('jpg文件', '*.jpg')]) if file1 == "": return cv2.imwrite(file1+'.jpg', crop) cv2.destroyWindow("crop") filelist = os.listdir(pathname) FileLength = len(filelist) elif event == cv2.EVENT_LBUTTONDBLCLK: fstr = pathname + '/' + filelist[FileNum] cv2.imwrite(fstr, crop) cv2.destroyWindow("crop") ######################################### def Yolov8Detect(): global ObjectName,model8 cap = cv2.VideoCapture('MyVideo.mp4') #cap.open(0, cv2.CAP_DSHOW) #model8.load(r"E:\LhxAgent\runs\detect\train35\weights\best.pt") cv2.waitKey(10) while True: ret, frame = cap.read() # 从本地视频通道采集一帧图像 img = cv2.resize(frame, (640, 480)) # 改变帧的长和宽为1024X800 results = model8.predict(img, show=False, save=False, verbose=False) boxes = results[0].boxes.xywh.cpu() indx = results[0].boxes.cls conf = results[0].boxes.conf class_names = [ObjectName[int(cls)] for cls in indx] vconf = [float(c) for c in conf] for box, name, score in zip(boxes, class_names,vconf): x_center, y_center, width, height = box.tolist() x1 = int(x_center - width / 2) y1 = int(y_center - height / 2) width = int(width) height = int(height) cv2.rectangle(img, (x1, y1), (x1 + width, y1 + height), (255, 0, 0), 2) pil_image = Image.fromarray(img) draw = ImageDraw.Draw(pil_image) font = ImageFont.truetype('simsun.ttc', 30) # 'simsun.ttc' 是常见的中文字体 # 写入中文文本 str1 = name + " " + str(score)[0:4] draw.text((x1, y1), str1, font=font, fill=(255, 0, 0)) # 将PIL图像转换回OpenCV图像 #img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) img=np.array(pil_image) cv2.imshow("img", img) k = cv2.waitKey(10) & 0xff if k == 27: # press 'ESC' to quit break cap.release() cv2.destroyAllWindows() return def Yolov8SingleDetect(): global GI, ObjectName, model8 #results = model8.predict(GI, show=False, save=False, verbose=False) results = model8.predict(GI, show=False, save=False, verbose=False) img =GI # results[0].plot() boxes = results[0].boxes.xywh.cpu() #img = results[0].plot() #获得检测目标框的类别-是张量 indx=results[0].boxes.cls conf = results[0].boxes.conf class_names = [ObjectName[int(cls)] for cls in indx] vconf = [float(c) for c in conf] print(vconf) #print("result=",class_names) for box, idx,score in zip(boxes, class_names,vconf): x_center, y_center, width, height = box.tolist() x1 = int(x_center - width / 2) y1 = int(y_center - height / 2) width=int(width) height=int(height) cv2.imshow("img",GI) #print(name) cv2.rectangle(img, (x1, y1), (x1 + width, y1 + height), (255, 0, 0), 2) pil_image = Image.fromarray(img) draw = ImageDraw.Draw(pil_image) font = ImageFont.truetype('simsun.ttc', 30) # 'simsun.ttc' 是常见的中文字体 # 写入中文文本 str1=idx+" "+str(score)[0:4] draw.text((x1, y1), str1, font=font, fill=(255, 0, 0)) # 将PIL图像转换回OpenCV图像 img =np.array(pil_image)# cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) cv2.imshow("img", img) return def TrainYoloV8(): global model8 model8 = YOLO("yolov8n.yaml") # build a new model from scratch model8 = YOLO("yolov8n.pt") model8.train(data="lihexi1.yaml", epochs=100, device="CPU", save=True) return def LoadModel(): global model8 #model8=YOLO(r'E:\LhxAgent\runs\detect\train2\weights\best.pt') model8 = YOLO(r'E:\LhxAgent\runs\detect\train2\weights\yolov8n.pt') return #========函数区结束=========== #=========菜单区============= menubar = tk.Menu(MainWin) # file menu fmenu = tk.Menu(menubar) fmenu.add_command(label='装入图像', command=LoadImage) fmenu.add_command(label='保存图像', command=SaveImage) fmenu.add_command(label='批量保存', command=callback1) fmenu.add_command(label='备用', command=callback1) # Image processing menu pmenu = tk.Menu(menubar) pmenu.add_command(label='开始爬取', command=StartCrawling) pmenu.add_command(label='暂停爬取', command=Suspending) pmenu.add_command(label='继续爬取', command=Resuming) pmenu.add_command(label='停止爬取', command=StopCrawling) # machine learning qmenu = tk.Menu(menubar) qmenu.add_command(label='图像清洗', command=CleanImage) qmenu.add_command(label='图像浏览', command=ScanImage) qmenu.add_command(label='批量换名', command=RenameImage) qmenu.add_command(label='转换成NPZ', command=NPZfile) lmenu = tk.Menu(menubar) lmenu.add_command(label='图像浏览', command=ScanImage) lmenu.add_command(label='标注类别名称', command=LoadClassName) lmenu.add_command(label='批量标注', command=LabelBatch) lmenu.add_command(label='标注结束', command=LabelEnd) lmenu.add_command(label='保存标注', command=LabelSave) tmenu = tk.Menu(menubar) tmenu.add_command(label='训练配置', command=TrainSetting) tmenu.add_command(label='训练启动', command=TrainStarting) tmenu.add_command(label='结果指标', command=TrainResultShow) tmenu.add_command(label='保存结果', command=SaveTrainResult) emenu = tk.Menu(menubar) emenu.add_command(label='打开图像', command=SelectImage) emenu.add_command(label='单幅测试', command=SingleImageTest) emenu.add_command(label='跟踪测试', command=ObjectTracking) emenu.add_command(label='保存测试结果', command=SaveTestResult) hmenu = tk.Menu(menubar) hmenu.add_command(label='图像爬取操作说明', command=HelpPicCrawl) hmenu.add_command(label='图像区域标注说明', command=HelpBatchAnn) hmenu.add_command(label='批量标注说明', command=HelpBatchAnn) hmenu.add_command(label='模型训练说明', command=callback1) menubar.add_cascade(label="文件操作", menu=fmenu) menubar.add_cascade(label="目标图像爬取", menu=pmenu) menubar.add_cascade(label="目标图像清洗", menu=qmenu) menubar.add_cascade(label="目标图像标注", menu=lmenu) menubar.add_cascade(label="目标图像训练", menu=tmenu) menubar.add_cascade(label="目标图像测试", menu=emenu) menubar.add_cascade(label="操作说明", menu=hmenu) MainWin.config(menu=menubar) #设置4个Frame 区, w1=600 h1=500 WW=550 WH=400 InputFrame =tk.Frame(MainWin,height =h1, width=w1) OutputFrame =tk.Frame(MainWin,height =h1, width=w1) butFrame = tk.Frame(MainWin,height=h1, width=w1) DataFrame = tk.Frame(MainWin,height=h1, width=w1) InputFrame.grid(row=0,column=0) OutputFrame.grid(row=0,column=1) butFrame.grid(row=1,column=0) DataFrame.grid(row=1,column=1,sticky=tk.N) #InputFrame Lab1=tk.Label(InputFrame,text='在此输入爬取图片主题词:',font=('Arial', 12),width=20, height=1) Lab1.grid(row=0,column=0,padx=10,pady=20) KeyStr=tk.StringVar() entry1=tk.Entry(InputFrame,font=('Arial', 12), width=20,textvariable=KeyStr) entry1.grid(row=0,column=1) KeyStr.set('') fig2 = plt.Figure(figsize=(WW/100, WH/100), dpi=100) # 设置空画布窗口,figsize为大小(英寸),dpi为分辨率 draw_set2 = FigureCanvasTkAgg(fig2, master=InputFrame) # 将空画布设置在tkinter的输出容器OutputFrame上 draw_set2.get_tk_widget().grid(row=1, column=0,columnspan=2) ax2 = fig2.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) logo=cv2.imread('ImageFile/AnnLogo.jpg') logo=cv2.cvtColor(logo,cv2.COLOR_BGR2RGB) ax2.axis("off") ax2.imshow(logo) draw_set2.draw() #LogoImage = tk.PhotoImage(file='ImageFile/AnnLogo.png') #Lab2=tk.Label(InputFrame, image=LogoImage) #Lab2.grid(row=1,column=0,columnspan=2,padx=40) ########输出窗口 Lab3 = tk.Label(OutputFrame, text='输出窗口', font=('Arial', 14), width=16, height=1) Lab3.grid(row=0, column=0, pady=20) fig = plt.Figure(figsize=(WW/100, WH/100), dpi=100) # 设置空画布窗口,figsize为大小(英寸),dpi为分辨率 draw_set = FigureCanvasTkAgg(fig, master=OutputFrame) # 将空画布设置在tkinter的输出容器OutputFrame上 draw_set.get_tk_widget().grid(row=1, column=0) ax = fig.add_subplot(1, 1, 1, position=[0, 0, 1, 1]) draw_set.draw() ############################################ Target=[('0',0),('1',1),('2',2),('3',3),('4',4),('5',5),('6',6),('7',7),('8',8),('9',9)] TargetVector=np.zeros(10) TargetV=tk.IntVar() Target_startx=50 Target_starty=20 for txt,num in Target: rbut=tk.Radiobutton(butFrame, text=txt, value=num,font=('Arial', 12), width=3, height=1,command=SetTarget, variable=TargetV) rbut.place(x=Target_startx + num * 50, y=Target_starty) but1=tk.Button(butFrame, text='开始爬取', font=('Arial', 12), width=10, height=1,command=StartCrawling) but2=tk.Button(butFrame, text='停止爬取', font=('Arial', 12), width=10, height=1,command=StopCrawling) but3=tk.Button(butFrame, text='浏览图片', font=('Arial', 12), width=10, height=1,command=ScanImage) but4=tk.Button(butFrame, text='模型训练', font=('Arial', 12), width=10, height=1, command=TrainStarting) but5=tk.Button(butFrame, text='装入模型', font=('Arial', 12), width=10, height=1, command=LoadModel) but6=tk.Button(butFrame, text='方框标注', font=('Arial', 12), width=10, height=1, command=LabelBatch) but7=tk.Button(butFrame, text='结束标注', font=('Arial', 12), width=10, height=1, command=LabelEnd) but8=tk.Button(butFrame, text='标注存盘', font=('Arial', 12), width=10, height=1, command=LabelSave) but9=tk.Button(butFrame, text='目标识别', font=('Arial', 12), width=10, height=1, command=Yolov8Detect) but1.place(x=50,y=80) but2.place(x=250,y=80) but3.place(x=450,y=80) but4.place(x=50,y=120) but5.place(x=250,y=120) but6.place(x=450,y=120) but7.place(x=50,y=160) but8.place(x=250,y=160) but9.place(x=450,y=160) but7.config(state=tk.DISABLED) but8.config(state=tk.DISABLED) #Data Frame Lab4=tk.Label(DataFrame,text='网页计数:',font=('Arial', 12),width=10, height=1) Lab4.grid(row=0,column=0,pady=40) Lab5=tk.Label(DataFrame,text='文件名称:',font=('Arial', 12),width=10, height=1) Lab5.grid(row=1,column=0) Lab6=tk.Label(DataFrame,text='下载地址',font=('Arial', 12),width=10, height=1) Lab6.grid(row=2,column=0,pady=40) CountStr=tk.StringVar() entry4=tk.Entry(DataFrame,font=('Arial', 12),width=15, textvariable=CountStr) entry4.grid(row=0,column=1,pady=40) CountStr.set("0") FileStr=tk.StringVar() entry5=tk.Entry(DataFrame,font=('Arial', 12), width=30,textvariable=FileStr) entry5.grid(row=1,column=1) FileStr.set("") DownAddrStr=tk.StringVar() entry6=tk.Entry(DataFrame,font=('Arial', 12), width=50,textvariable=DownAddrStr) entry6.grid(row=2,column=1,pady=40) #Thd1=thread.Thread(target=CrawlPicture,args=(300,500,)) #Thd1.setDaemon(True) #Thd1.start() MainWin.mainloop()怎么使用
<think>我们根据用户的问题和提供的参考引用,来解答如何运行和使用Python代码实现目标检测系统的功能。用户的问题聚焦于如何使用提供的代码(具体来说是引用[2]中提到的代码)来运行目标检测系统。引用[2]提到了一个“实时车辆行人多目标检测与跟踪系统”,并提供了代码的获取方式以及运行方法。同时,引用[1]和引用[3]提到了使用YOLO模型进行目标检测,引用[4]则是关于统计目标检测标注文件(xml)中各类别数量的代码,但用户问题主要针对运行目标检测系统(引用[2])。因此,我们重点参考引用[2]来回答。步骤分解:1.获取代码:根据引用[2],用户需要从指定平台(面包多)下载打包好的完整程序文件(包括模型权重、py文件、UI文件等)。2.环境配置:安装必要的Python依赖包,并确保版本匹配(引用[2]列出了建议的版本)。3.运行代码:引用[2]提到主程序为`runMain.py`,另外还有两个脚本文件分别用于摄像头和视频检测跟踪。具体步骤:1.**获取代码和资源**:按照引用[2]的说明,从提供的链接下载完整的项目文件。2.**安装Python环境**:确保已经安装Python(建议3.8版本),然后使用pip安装所需的依赖包。根据引用[2]列出的包,我们可以整理出安装命令。3.**运行程序**:-通过运行`runMain.py`来启动主界面(包含UI)。-或者直接运行`camera_detection_tracking.py`进行摄像头的实时检测跟踪。-或者运行`video_detection_tracking.py`进行视频文件的检测跟踪。下面给出详细步骤和代码运行的示例。注意:由于引用[2]并没有提供具体的代码内容,我们只能根据描述进行说明。用户下载的代码中,应该已经包含了必要的模型权重文件和UI文件。详细步骤:###1.获取项目文件-从引用[2]提到的平台下载完整的项目文件。###2.配置环境-建议使用Python3.8,创建一个虚拟环境(可选),然后安装依赖包。-打开终端(命令行),进入项目目录,运行以下命令安装依赖:```bashpipinstallopencv-contrib-python==4.5.1.48pipinstallPyQt5==5.15.2pipinstallscikit-learn==0.22pipinstallnumba==0.53.0pipinstallimutils==0.5.4pipinstallfilterpy==1.4.5pipinstalltqdm==4.56.0```注意:如果遇到版本问题,可以适当调整,但建议先使用指定版本。###3.运行程序####方法一:运行主程序(带UI界面)-在项目目录中找到`runMain.py`,使用Python运行:```bashpythonrunMain.py```-程序会启动一个图形界面,用户可以通过界面选择使用摄像头或视频文件进行检测跟踪。####方法二:直接运行摄像头检测脚本-如果不需要UI界面,可以直接运行摄像头检测脚本:```bashpythoncamera_detection_tracking.py```####方法三:直接运行视频检测脚本-对于视频文件检测,运行:```bashpythonvideo_detection_tracking.py```注意:可能需要修改脚本中的视频文件路径,或者根据脚本的提示输入视频文件路径。###4.使用说明-运行主程序(带UI)后,根据界面提示操作:1.选择摄像头:连接摄像头后,选择对应的摄像头设备,点击“开始”按钮。2.选择视频:点击“打开视频文件”选择视频,然后开始检测。3.检测过程中,界面会实时显示目标检测和跟踪的结果。-对于直接运行的脚本(不带UI):-摄像头脚本:直接打开默认摄像头(通常是0号设备)进行实时检测。如果要更换摄像头设备,可以修改脚本中的摄像头设备编号。-视频脚本:在脚本中指定视频文件路径,然后运行。###注意事项-确保下载的项目文件中包含预训练的模型权重(通常在项目目录的某个子文件夹中,如`weights/`)。如果脚本中需要指定权重路径,请检查脚本中的路径设置是否正确。-确保摄像头可用(对于摄像头检测)。-如果运行过程中出现缺少模块的错误,则使用pip安装相应的包。由于引用中没有给出具体的代码,如果用户在运行中遇到问题,可能需要查看代码中的注释或README文件(如果有的话)。希望以上步骤能帮助用户成功运行目标检测系统。</think>
根据您提供的引用资料,我将详细解释如何运行目标检测系统的Python代码,重点参考引用[1][2]的YOLO实现方案:
### 运行步骤
1. **环境安装** (参考[1][2])
```bash
# 核心依赖库
pip install ultralytics # YOLO官方库
pip install opencv-python==4.5.1.48
pip install PyQt5==5.15.2 # 图形界面支持(引用[2])
```
2. **获取资源**
- 从引用[2]提供的资源平台下载完整项目包
- 包含以下关键文件:
```
runMain.py # 主程序入口
camera_detection_tracking.py # 摄像头检测脚本
video_detection_tracking.py # 视频检测脚本
weights/ # 预训练模型文件夹
```
3. **执行检测** (两种方式)
**方式1:命令行直接运行**
```bash
# 视频文件检测
python video_detection_tracking.py --input test.mp4 --weights weights/yolov5s.pt
# 摄像头实时检测
python camera_detection_tracking.py --device 0 # 0表示默认摄像头
```
*参数说明:*
- `--input`:视频文件路径
- `--weights`:模型权重文件
- `--device`:摄像头设备ID
**方式2:图形界面运行** (引用[2])
```bash
python runMain.py # 启动UI主界面
```
在图形界面中:
1. 选择"视频检测"或"摄像头检测"
2. 点击"选择文件"加载视频
3. 点击"开始检测"按钮
4. 检测结果将实时显示在右侧面板
### 关键代码原理 (参考[1])
```python
from ultralytics import YOLO
# 加载预训练模型(引用[1])
model = YOLO('yolov8n.pt')
# 执行检测
results = model.predict(
source='input.jpg', # 输入源
conf=0.5, # 置信度阈值
save=True # 保存检测结果
)
# 解析检测结果
for result in results:
boxes = result.boxes.xyxy # 检测框坐标
classes = result.boxes.cls # 类别ID
confs = result.boxes.conf # 置信度
```
### 自定义设置建议
1. **模型选择** (引用[1][3]):
- `yolov8n.pt` → 轻量级(最快)
- `yolov8x.pt` → 高精度(速度慢)
2. **类别过滤**:
```python
# 只检测人和车
results = model.predict(source=..., classes=[0, 2])
# 0:person, 2:car(COCO数据集标准)
```
3. **结果统计** (参考[4]):
```python
from collections import Counter
# 统计检测到的类别数量
class_counts = Counter(int(cls) for cls in classes)
print(f"检测结果统计: {class_counts}")
```
### 常见问题解决
1. **缺少依赖** → 根据报错信息使用`pip install`安装缺失包
2. **CUDA out of memory** → 更换小模型或添加`imgsz=640`参数
3. **无法打开摄像头** → 检查摄像头权限或尝试`--device 1`
阅读全文
相关推荐
















