中医舌诊代码
时间: 2025-05-23 10:01:35 浏览: 57
### 中医舌诊相关代码实现
以下是基于深度学习框架 TensorFlow 和 PyTorch 的简单示例,用于实现中医舌诊的图像分类任务。这些代码可以作为基础模板来开发更复杂的模型。
#### 基于 TensorFlow 的舌诊图像分类代码
此代码展示了如何加载数据集并构建一个简单的卷积神经网络 (CNN) 来对舌头图像进行分类[^1]。
```python
import tensorflow as tf
from tensorflow.keras import layers, models
# 数据预处理
def preprocess_data():
# 加载自定义的数据集(替换为实际路径)
dataset_url = "https://example.com/tongue_dataset.zip"
data_dir = tf.keras.utils.get_file('tongue_dataset', origin=dataset_url, extract=True)
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(180, 180),
batch_size=32)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(180, 180),
batch_size=32)
return train_ds, val_ds
train_ds, val_ds = preprocess_data()
# 构建 CNN 模型
model = models.Sequential([
layers.Rescaling(1./255, input_shape=(180, 180, 3)),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(len(class_names)) # 替换 class_names 为实际类别数
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练模型
epochs = 10
history = model.fit(train_ds, validation_data=val_ds, epochs=epochs)
```
---
#### 基于 PyTorch 的舌诊图像分类代码
以下是一个使用 PyTorch 实现的简单 CNN 模型,适用于中医舌诊中的图像分类任务[^2]。
```python
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 数据预处理
transform = transforms.Compose([
transforms.Resize((180, 180)), # 调整大小
transforms.ToTensor(), # 转换为张量
transforms.Normalize([0.5], [0.5]) # 归一化
])
train_dataset = datasets.ImageFolder(root='./data/train/', transform=transform)
val_dataset = datasets.ImageFolder(root='./data/val/', transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)
val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=32, shuffle=False)
# 定义 CNN 模型
class TongueNet(nn.Module):
def __init__(self):
super(TongueNet, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc_layers = nn.Sequential(
nn.Linear(64 * 22 * 22, 128), nn.ReLU(),
nn.Linear(128, num_classes) # 替换 num_classes 为实际类别数
)
def forward(self, x):
x = self.conv_layers(x)
x = x.view(-1, 64 * 22 * 22)
x = self.fc_layers(x)
return x
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = TongueNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练循环
for epoch in range(10):
for i, (images, labels) in enumerate(train_loader):
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
---
#### 关键点说明
- **数据集准备**:需要准备好高质量的舌头图像数据集,并标注好对应的特征标签,例如苔色、裂纹等。
- **模型架构**:可以根据具体需求调整模型复杂度,引入迁移学习方法(如 ResNet 或 VGG)可能进一步提高性能。
- **优化策略**:通过调节超参数(如学习率、批量大小)、增加正则化手段等方式改善模型泛化能力。
阅读全文
相关推荐



















