活动介绍

提示 quoting=后的csv未指定怎么处理 df.to_csv(file_path, index=False, encoding='utf-8-sig',quoting=csv.QUOTE_NONNUMERIC)

时间: 2025-08-14 11:27:48 浏览: 14
<think>好的,我现在需要解决用户在使用pandas导出CSV时证券代码前导零丢失和quoting参数未指定的问题。用户之前已经尝试将证券代码转换为字符串并用pad方法补零,但导出后仍然有问题。首先,我需要回顾之前的解决方案,看看哪里可能遗漏了。 用户提到即使转换了类型并补零,导出时还是丢失前导零。可能的原因之一是导出时没有正确指定参数,导致pandas自动将字符串转换为其他类型。另外,用户还遇到了quoting参数未指定的提示,这可能是因为数据中包含特殊字符,如逗号,导致CSV格式混乱。 首先,确保在导出时正确设置quoting参数。根据pandas文档,quoting参数控制字段是否用引号括起来。默认情况下,只有必要的时候才会加引号,比如字段中有分隔符或换行符。但为了保险起见,特别是当证券代码可能包含类似数字但需要保留前导零时,可以强制使用QUOTE_NONNUMERIC,这样所有非数值类型的字段都会被引号括起来,避免Excel等软件自动转换为数字而丢失前导零。 另外,用户可能在使用Excel打开CSV时,Excel自动将代码视为数字,去掉了前导零。这时候,即使CSV文件中正确保存了前导零,Excel显示时仍可能有问题。因此,除了正确导出,还需要指导用户如何在Excel中正确打开,比如导入数据时指定列为文本格式。 接下来检查用户之前的代码。他们使用了astype(str)和pad方法,但可能在导出时没有处理quoting参数。所以解决方案应包括在to_csv时设置quoting=csv.QUOTE_NONNUMERIC,并且可能需要导入csv模块来使用这个参数。 还需要验证导出的CSV是否正确。例如,用文本编辑器打开查看,确认证券代码列是否有引号,以及前导零是否存在。另外,重新读取CSV时,必须指定dtype={'证券代码': str},否则pandas可能会再次推断为数字类型,导致前导零丢失。 此外,用户可能没有处理所有异常情况,比如证券代码中有非字符串类型的数据,或者某些行数据为空,导致补零失败。需要确保在预处理时,将所有数据转换为字符串,并处理可能的缺失值。 最后,总结步骤:转换列为字符串,补零,导出时设置quoting参数为QUOTE_NONNUMERIC,并在读取时指定类型。同时,提醒用户使用正确的方法在Excel中打开CSV,避免自动类型转换。</think>--- ### 问题根源 导出的CSV中证券代码前导零丢失的根本原因是: 1. **未强制字符串类型标识**:CSV文件本身无数据类型标记,若字段形似数字,Excel等软件会自动转为数值类型,导致前导零丢失[^1] 2. **quoting参数缺失**:当字段包含特殊字符(如逗号、换行符)时,未指定quoting参数会引发格式错误提示 --- ### 完整解决方案 #### 一、预处理阶段 ```python import pandas as pd import csv # 需导入csv模块使用quoting常量 # 确保列类型为字符串 df['证券代码'] = df['证券代码'].astype(str) # 使用zfill方法更安全地补零(自动处理非数值型数据) df['证券代码'] = df['证券代码'].str.zfill(6) # 处理可能的异常值(如空值、非字符串数据) df['证券代码'] = df['证券代码'].apply( lambda x: str(x).zfill(6) if pd.notnull(x) else x ) ``` #### 二、导出CSV配置 ```python df.to_csv('stock_codes.csv', index=False, quoting=csv.QUOTE_NONNUMERIC, # 关键参数:强制非数值字段加引号 encoding='utf-8-sig') # 支持中文显示 ``` #### 三、Excel兼容处理 ```python # 进阶配置(防止Excel自动转换) df.to_csv('stock_codes_excel.csv', index=False, quoting=csv.QUOTE_ALL, # 所有字段加引号 escapechar='\\', # 转义特殊字符 na_rep='NULL') # 明确空值表示 ``` --- ### 技术验证方法 1. **二进制验证**(最可靠): ```python with open('stock_codes.csv', 'rb') as f: print(f.read(100)) # 直接查看字节流中的引号与零 # 应显示类似:b'"000895","双汇发展"\r\n...' ``` 2. **重新加载验证**: ```python test_df = pd.read_csv('stock_codes.csv', dtype={'证券代码': str}, # 必须指定类型 keep_default_na=False) print(test_df['证券代码'].iloc[0][0]) # 检查首位字符 # 应输出:0 ``` --- ### 参数对照表 | 参数 | 作用 | 推荐值 | |---------------------|--------------------------------------------------------------------|-------------------------| | `quoting` | 控制引号使用规则 | `csv.QUOTE_NONNUMERIC` | | `escapechar` | 转义特殊字符(如字段内包含引号) | `\\` | | `encoding` | 编码格式(解决中文乱码) | `utf-8-sig` | | `na_rep` | 空值占位符(避免空字符串引发类型混乱) | `NULL` | --- ### Excel打开指引 1. **新建空白工作簿** 2. 【数据】→【从文本/CSV】 3. 选择文件后: - 在预览中点击证券代码列 - 设置「列数据格式」为 **文本** - 取消勾选「自动检测数据类型」 --- ### 原理说明 - **quoting=csv.QUOTE_NONNUMERIC**:强制给非数值字段添加引号,使Excel等软件识别为文本类型 - **zfill(6)优于pad**:直接针对数字字符串设计,避免填充非数字字符导致异常 - **utf-8-sig编码**:添加BOM头,增强与Excel的编码兼容性 --- ### 常见错误排查 | 现象 | 解决方案 | |---------------------|---------------------------------| | 提示`Error due to quoting` | 添加`escapechar='\\'`参数 | | 中文显示乱码 | 改用`encoding='utf-8-sig'` | | 空值导致错位 | 设置`na_rep='NULL'` | ---
阅读全文

相关推荐

import pandas as pd import os # 设置文件夹路径 folder_path = r'F:\LAB\2' # 遍历处理每个CSV文件 for filename in os.listdir(folder_path): if filename.endswith('.csv'): file_path = os.path.join(folder_path, filename) # 读取CSV文件 df = pd.read_csv(file_path) # 按列位置选择数据(第1、2、4列,索引为0,1,3) # 如果实际列位置不同,请调整下方数字[0,1,3] df = df.iloc[:, [0, 1, 3]] # 保存回原文件(覆盖) df.to_csv(file_path, index=False, encoding='utf-8') print("所有文件处理完成!")这个代码报错--------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) Cell In[13], line 9 6 file_path = os.path.join(folder_path, filename) 8 try: ----> 9 df = pd.read_csv(file_path) 10 except UnicodeDecodeError: 11 # 捕获编码错误后自动处理 12 with open(file_path, 'rb') as f: File D:\anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1013 kwds_defaults = _refine_defaults_read( 1014 dialect, 1015 delimiter, (...) 1022 dtype_backend=dtype_backend, 1023 ) 1024 kwds.update(kwds_defaults) -> 1026 return _read(filepath_or_buffer, kwds) File D:\anaconda\Lib\site-packages\pandas\io\parsers\readers.py:620, in _read(filepath_or_buffer, kwds) 617 _validate_names(kwds.get("names", None)) 619 # Create the parser. --> 620 parser = TextFileReader(filepath_or_buffer, **kwds) 622 if chunksize or iterator: 623 return parser File D:\anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds) 1617 self.options["has_index_names"] = kwds["has_index_names"] 1619 self.handles: IOHandles | None = None -> 1620 self._engine = self._make_engine(f, self.engine) File D:\anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1880, in TextFileReader._make_engine(self, f, engine) 1878 if "b" not in mode: 1879 mode += "b" -> 1880 self.handles = get_handle( 1881 f, 1882 mode, 1883 encoding=self.options.get("encoding", None), 1884 compression=self.options.get("compression", None), 1885 memory_map=self.options.get("memory_map", False), 1886 is_text=is_text, 1887 errors=self.options.get("encoding_errors", "strict"), 1888 storage_options=self.options.get("storage_options", None), 1889 ) 1890 assert self.handles is not None 1891 f = self.handles.handle File D:\anaconda\Lib\site-packages\pandas\io\common.py:873, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options) 868 elif isinstance(handle, str): 869 # Check whether the filename is to be opened in binary mode. 870 # Binary mode does not support 'encoding' and 'newline'. 871 if ioargs.encoding and "b" not in ioargs.mode: 872 # Encoding --> 873 handle = open( 874 handle, 875 ioargs.mode, 876 encoding=ioargs.encoding, 877 errors=errors, 878 newline="", 879 ) 880 else: 881 # Binary mode 882 handle = open(handle, ioargs.mode) FileNotFoundError: [Errno 2] No such file or directory: '你的文件夹路径\\你的文件名.csv'

ModuleNotFoundError Traceback (most recent call last) Cell In[27], line 1 ----> 1 df[['comment', 'cleaned', 'tokens']].to_csv('douban_reviews.csv', index=False, encoding='utf_8_sig') File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/util/_decorators.py:333, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs) 327 if len(args) > num_allow_args: 328 warnings.warn( 329 msg.format(arguments=_format_argument_list(allow_args)), 330 FutureWarning, 331 stacklevel=find_stack_level(), 332 ) --> 333 return func(*args, **kwargs) File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/core/generic.py:3967, in NDFrame.to_csv(self, path_or_buf, sep, na_rep, float_format, columns, header, index, index_label, mode, encoding, compression, quoting, quotechar, lineterminator, chunksize, date_format, doublequote, escapechar, decimal, errors, storage_options) 3956 df = self if isinstance(self, ABCDataFrame) else self.to_frame() 3958 formatter = DataFrameFormatter( 3959 frame=df, 3960 header=header, (...) 3964 decimal=decimal, 3965 ) -> 3967 return DataFrameRenderer(formatter).to_csv( 3968 path_or_buf, 3969 lineterminator=lineterminator, 3970 sep=sep, 3971 encoding=encoding, 3972 errors=errors, 3973 compression=compression, 3974 quoting=quoting, 3975 columns=columns, 3976 index_label=index_label, 3977 mode=mode, 3978 chunksize=chunksize, 3979 quotechar=quotechar, 3980 date_format=date_format, 3981 doublequote=doublequote, 3982 escapechar=escapechar, 3983 storage_options=storage_options, 3984 ) File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/io/formats/format.py:995, in DataFrameRenderer.to_csv(self, path_or_buf, encoding, sep, columns, index_label, mode, compression, quoting, quotechar, lineterminator, chunksize, date_format, doublequote, escapechar, errors, storage_options) 992 else: 993 created_buffer = False --> 995 csv_formatter = CSVFormatter( 996 path_or_buf=path_or_buf, 997 lineterminator=lineterminator, 998 sep=sep, 999 encoding=encoding, 1000 errors=errors, 1001 compression=compression, 1002 quoting=quoting, 1003 cols=columns, 1004 index_label=index_label, 1005 mode=mode, 1006 chunksize=chunksize, 1007 quotechar=quotechar, 1008 date_format=date_format, 1009 doublequote=doublequote, 1010 escapechar=escapechar, 1011 storage_options=storage_options, 1012 formatter=self.fmt, 1013 ) 1014 csv_formatter.save() 1016 if created_buffer: File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/io/formats/csvs.py:98, in CSVFormatter.__init__(self, formatter, path_or_buf, sep, cols, index_label, mode, encoding, errors, compression, quoting, lineterminator, chunksize, quotechar, date_format, doublequote, escapechar, storage_options) 96 self.lineterminator = lineterminator or os.linesep 97 self.date_format = date_format ---> 98 self.cols = self._initialize_columns(cols) 99 self.chunksize = self._initialize_chunksize(chunksize) File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/io/formats/csvs.py:172, in CSVFormatter._initialize_columns(self, cols) 169 # update columns to include possible multiplicity of dupes 170 # and make sure cols is just a list of labels 171 new_cols = self.obj.columns --> 172 return new_cols._get_values_for_csv(**self._number_format) File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/core/indexes/base.py:1478, in Index._get_values_for_csv(self, na_rep, decimal, float_format, date_format, quoting) 1469 def _get_values_for_csv( 1470 self, 1471 *, (...) 1476 quoting=None, 1477 ) -> npt.NDArray[np.object_]: -> 1478 return get_values_for_csv( 1479 self._values, 1480 na_rep=na_rep, 1481 decimal=decimal, 1482 float_format=float_format, 1483 date_format=date_format, 1484 quoting=quoting, 1485 ) File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/core/indexes/base.py:7864, in get_values_for_csv(values, date_format, na_rep, quoting, float_format, decimal) 7861 return new_values 7863 else: -> 7864 mask = isna(values) 7865 itemsize = writers.word_len(na_rep) 7867 if values.dtype != _dtype_obj and not quoting and itemsize: File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/core/dtypes/missing.py:178, in isna(obj) 101 def isna(obj: object) -> bool | npt.NDArray[np.bool_] | NDFrame: 102 """ 103 Detect missing values for an array-like object. 104 (...) 176 Name: 1, dtype: bool 177 """ --> 178 return _isna(obj) File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/core/dtypes/missing.py:207, in _isna(obj, inf_as_na) 205 return False 206 elif isinstance(obj, (np.ndarray, ABCExtensionArray)): --> 207 return _isna_array(obj, inf_as_na=inf_as_na) 208 elif isinstance(obj, ABCIndex): 209 # Try to use cached isna, which also short-circuits for integer dtypes 210 # and avoids materializing RangeIndex._values 211 if not obj._can_hold_na: File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/pandas/core/dtypes/missing.py:288, in _isna_array(values, inf_as_na) 283 else: 284 # error: Incompatible types in assignment (expression has type 285 # "Union[ndarray[Any, Any], ExtensionArraySupportsAnyAll]", variable has 286 # type "ndarray[Any, dtype[bool_]]") 287 result = values.isna() # type: ignore[assignment] --> 288 elif isinstance(values, np.rec.recarray): 289 # GH 48526 290 result = _isna_recarray_dtype(values, inf_as_na=inf_as_na) 291 elif is_string_or_object_np_dtype(values.dtype): File ~/opt/anaconda3/envs/temp/lib/python3.11/site-packages/numpy/__init__.py:367, in __getattr__(attr) 365 raise AssertionError() 366 except AssertionError: --> 367 msg = ("The current Numpy installation ({!r}) fails to " 368 "pass simple sanity checks. This can be caused for example " 369 "by incorrect BLAS library being linked in, or by mixing " 370 "package managers (pip, conda, apt, ...). Search closed " 371 "numpy issues for similar problems.") 372 raise RuntimeError(msg.format(__file__)) from None ModuleNotFoundError: No module named 'numpy.rec'如何解决

#!/usr/bin/env python3 import os import pandas as pd from glob import glob import sys import argparse from openpyxl.styles import Alignment from openpyxl import load_workbook from pathlib import Path import shutil import tempfile # 常见编码列表 COMMON_ENCODINGS = ['utf-8', 'latin1', 'gbk', 'iso-8859-1', 'latin1', 'cp1252','gb2312'] #COMMON_ENCODINGS = [‘utf-8’, ‘latin1’, ‘iso-8859-1’, ‘cp1252’, ‘gbk’, ‘gb2312’, ‘big5’] def detect_encoding(file_path): """静默检测文件编码""" for encoding in COMMON_ENCODINGS: try: with open(file_path, 'r', encoding=encoding) as f: f.read(1024) # 尝试读取前1KB内容 return encoding except: continue return 'utf-8' # 默认使用utf-8 def apply_left_alignment(output_file): """应用左对齐样式到所有单元格""" try: wb = load_workbook(output_file) ws = wb.active # 创建左对齐样式 left_align = Alignment(horizontal='left') # 应用到所有单元格 for row in ws.iter_rows(): for cell in row: cell.alignment = left_align wb.save(output_file) return True except Exception as e: print(f"应用左对齐样式时出错: {str(e)}", file=sys.stderr) return False def clean_file_content(file_path): """清理文件内容:执行字节替换操作""" try: with open(file_path, 'rb') as file: content = file.read() # 执行字节替换操作 cleaned_content = content.replace(b'\x01', b'\r').replace(b'\x00', b' ').replace(b'\x0A', b' ') with open(file_path, 'wb') as file: file.write(cleaned_content) return True except Exception as e: print(f"清理文件 {file_path} 时出错: {str(e)}", file=sys.stderr) return False def read_txt_file(file_path, sep): """读取单个文本文件,不处理标题行""" encoding = detect_encoding(file_path) try: return pd.read_csv( file_path, sep=sep, encoding=encoding, engine='python', header=None, # 不将第一行作为标题 dtype=str, # 所有数据作为字符串处理 keep_default_na=False, # 不将空值转换为NaN on_bad_lines='skip' # 跳过格式错误的行 ) except Exception as e: print(f"读取文件 {file_path} 时出错: {str(e)}", file=sys.stderr) return None def merge_txt_files(input_dir, output_file, sep='\t', recursive=False, clean_files=False): """ 合并目录下所有文本文件到单个Excel文件 :param input_dir: 输入目录路径 :param output_file: 输出Excel文件路径 :param sep: 文本文件分隔符,默认为制表符 :param recursive: 是否递归搜索子目录 :param clean_files: 是否在合并前执行字节替换清理 """ # 获取所有文本文件 pattern = os.path.join(input_dir, '**', '*.txt') if recursive \ else os.path.join(input_dir, '*.txt') txt_files = glob(pattern, recursive=recursive) if not txt_files: print(f"在 {input_dir} 中未找到任何.txt文件", file=sys.stderr) return False # 如果需要清理文件,创建临时目录处理 if clean_files: temp_dir = tempfile.mkdtemp() print(f"创建临时目录: {temp_dir}") # 复制文件到临时目录并清理 for file_path in txt_files: temp_path = os.path.join(temp_dir, os.path.basename(file_path)) shutil.copy2(file_path, temp_path) if not clean_file_content(temp_path): print(f"清理失败: {os.path.basename(file_path)}", file=sys.stderr) continue print(f"已清理: {os.path.basename(file_path)}") # 使用临时目录中的文件 input_dir = temp_dir pattern = os.path.join(temp_dir, '*.txt') txt_files = glob(pattern, recursive=False) all_data = [] for file_path in txt_files: df = read_txt_file(file_path, sep) if df is not None and not df.empty: all_data.append(df) print(f"已处理: {os.path.basename(file_path)}") if not all_data: print("所有文件均为空或无法读取", file=sys.stderr) return False try: # 合并所有数据 combined_df = pd.concat(all_data, ignore_index=True) # 写入Excel文件 combined_df.to_excel(output_file, sheet_name='合并数据', index=False, header=False) print(f"已创建Excel文件: {output_file}") # 应用左对齐样式 if apply_left_alignment(output_file): return True return False except Exception as e: print(f"合并或写入文件时出错: {str(e)}", file=sys.stderr) return False finally: # 清理临时目录 if clean_files and 'temp_dir' in locals(): shutil.rmtree(temp_dir) print(f"已删除临时目录: {temp_dir}") if __name__ == "__main__": parser = argparse.ArgumentParser( description='合并多个文本文件到单个Excel文件,支持字节替换清理', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('-i', '--input', required=True, help='包含.txt文件的输入目录路径') parser.add_argument('-o', '--output', default='合并数据.xlsx', help='输出Excel文件路径') parser.add_argument('-s', '--sep', default='\t', help='文本文件中的分隔符,如",", ";", "\\t"等') parser.add_argument('-r', '--recursive', action='store_true', help='递归搜索子目录中的文件') parser.add_argument('-c', '--clean', action='store_true', help='在合并前执行字节替换清理(替换 \\x01, \\x00, \\x0A)') args = parser.parse_args() # 确保输出目录存在 output_dir = os.path.dirname(args.output) if output_dir and not os.path.exists(output_dir): os.makedirs(output_dir) success = merge_txt_files( args.input, args.output, args.sep, args.recursive, args.clean ) sys.exit(0 if success else 1) 智能纠错:修改读取文件格式错误的问题

请帮忙分析代码,并给出可行性的优化方案 import os import pandas as pd import numpy as np import re import chardet import csv import time import gc import psutil from sqlalchemy import create_engine, text from datetime import datetime from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor, as_completed from tenacity import retry, stop_after_attempt, wait_fixed base_path = r'D:\OneDrive\ERIC\维护\综资数据\20250601' database_url = 'mysql+pymysql://root:[email protected]:3306/test' def custom_field_handler(field): """自定义字段处理函数,使用正则表达式""" if isinstance(field, str): field = field.strip() if field in ('', '\\N'): return None return re.sub(r'["\n\r]', '', field) return field def detect_encoding_and_separator(filepath): """自动检测CSV文件的编码和分隔符""" encodings = ['utf-8', 'utf-8-sig', 'gbk', 'gb2312', 'iso-8859-1'] best_sep = None max_columns = 0 detected_encoding = None for encoding in encodings: try: with open(filepath, 'rb') as f: raw_data = f.read(10000) detected = chardet.detect(raw_data) detected_encoding = detected['encoding'] with open(filepath, 'r', encoding=detected_encoding, errors='ignore') as f: first_line = f.readline() separators = [',', '\t', ';', '|', '^'] for sep in separators: columns = len(first_line.split(sep)) if columns > max_columns: max_columns = columns best_sep = sep if best_sep is not None: break except Exception as ex: print(f"尝试使用编码 {encoding} 时遇到错误: {ex}") if best_sep is None: raise ValueError(f"无法检测到分隔符,文件可能为空或格式不正确: {filepath}") return detected_encoding, best_sep def read_csv_with_encodings(filepath): """根据自动检测的编码读取CSV文件""" encoding, sep = detect_encoding_and_separator(filepath) try: df = pd.read_csv(filepath, encoding=encoding, sep=sep, quoting=3, low_memory=False, on_bad_lines='warn') print(f"成功读取文件: {filepath}") return df except Exception as ex: print(f"尝试读取文件时遇到错误: {ex}") raise ValueError(f"无法读取文件: {filepath},请检查文件格式或编码。") def process_csv_file(filepath, column_map, custom_handler, folder_type): """处理单个CSV文件,并返回处理后的DataFrame""" try: df_temp = read_csv_with_encodings(filepath) df_temp.columns = [custom_handler(col) for col in df_temp.columns] selected_columns = list(column_map.keys()) temp_df = df_temp[selected_columns].copy() temp_df.rename(columns=column_map, inplace=True) type_mapping = { "机房": "机房", "站点": "基站", "铁塔": "铁塔", "直放站": "室分_直放站", "分布系统": "室分", "BTS": "BBU_2G", "BBU": "BBU_4G", "DU": "BBU_5G", "CELL": "CELL_2G", "E-UTRANCELL": "CELL_4G", "NR-CELL": "CELL_5G", "E-NODEB": "SITE_4G", "GNODEB": "SITE_5G" } temp_df['类型'] = type_mapping.get(folder_type, "未知类型") print(f"{os.path.basename(filepath)}已成功加载,本次包含行数:{len(temp_df)}") return temp_df except (pd.errors.ParserError, KeyError) as ex: print(f"在处理文件 {os.path.basename(filepath)} 时遇到错误: {ex}") return None def read_csv_with_encodings_station(filepath): """根据自动检测的编码读取CSV文件""" encoding, sep = detect_encoding_and_separator(filepath) try: with open(filepath, 'r', newline='', encoding=encoding, errors='replace') as csvfile: reader = csv.DictReader(csvfile, delimiter=sep, quotechar='@') data = list(reader) df = pd.DataFrame(data) print(f"成功读取文件: {filepath}") return df except Exception as ex: print(f"尝试读取文件时遇到错误: {ex}") raise ValueError(f"无法读取文件: {filepath},请检查文件格式或编码。") def process_csv_files_station(filepath, column_map, custom_handler, folder_type): """处理单个CSV文件,并返回处理后的DataFrame""" try: df_temp = read_csv_with_encodings_station(filepath) df_temp.columns = [custom_handler(col) for col in df_temp.columns] selected_columns = list(column_map.keys()) temp_df = df_temp[selected_columns].copy() temp_df.rename(columns=column_map, inplace=True) type_mapping = { "机房": "机房", "站点": "基站", "铁塔": "铁塔", "直放站": "室分_直放站", "分布系统": "室分", "BTS": "BBU_2G", "BBU": "BBU_4G", "DU": "BBU_5G", "CELL": "CELL_2G", "E-UTRANCELL": "CELL_4G", "NR-CELL": "CELL_5G", "E-NODEB": "SITE_4G", "GNODEB": "SITE_5G" } temp_df['类型'] = type_mapping.get(folder_type, "未知类型") print(f"{os.path.basename(filepath)}已成功加载,本次包含行数:{len(temp_df)}") return temp_df except (pd.errors.ParserError, KeyError) as ex: print(f"在处理文件 {os.path.basename(filepath)} 时遇到错误: {ex}") return None def validate_dataframe(df, required_columns): """验证DataFrame是否包含必要的列""" for col in required_columns: if col not in df.columns: print(f"缺少必要的列: {col}") return False return True def read_and_process_folder(folder_path): """读取并处理文件夹中的所有CSV文件""" combined_dataframes_local = {} df_list_station = [] df_list_room = [] combined_other_dfs = [] key_columns_map = { "NR-CELL": ['NAME$03008', 'ID$03008', 'ROOM_NAME$03008', 'ROOM_ID$03008'], "GNODEB": ['NAME$03007', 'ID$03007', 'ROOM_NAME$03007', 'ROOM_ID$03007'], "E-UTRANCELL": ['NAME$03006', 'ID$03006', 'ROOM_NAME$03006', 'ROOM_ID$03006'], "E-NODEB": ['NAME$03005', 'ID$03005', 'ROOM_NAME$03005', 'ROOM_ID$03005'], "CELL": ['NAME$03002', 'ID$03002', 'ROOM_NAME$03002', 'ROOM_ID$03002'], "BTS": ['NAME$03001', 'ID$03001', 'ROOM_NAME$03001', 'ROOM_ID$03001'], "BBU": ['NAME$03010', 'ID$03010', 'ROOM_NAME$03010', 'ROOM_ID$03010'], "DU": ['NAME$03011', 'ID$03011', 'ROOM_NAME$03011', 'ROOM_ID$03011'], "铁塔": ['NAME$03020', 'ID$03020', 'ROOM_NAME$03020', 'ROOM_ID$03020'], "直放站": ['NAME$03019', 'ID$03019', 'ROOM_NAME$03019', 'ROOM_ID$03019'], "分布系统": ['NAME$03018', 'ID$03018', 'ROOM_NAME$03018', 'ROOM_ID$03018'] } new_column_names = {k: ['NAME', 'ID', 'ROOM_NAME', 'ROOM_ID'] for k in key_columns_map.keys()} for root, dirs, files in os.walk(folder_path): current_folder_name = os.path.basename(root) if current_folder_name == "站点": column_map = {'MNT_LEVEL$01002': 'STATION_LEVEL', 'NAME$01002': 'STATION_NAME', 'ID$01002': 'STATION_ID', 'LATITUDE$01002': 'LATITUDE', 'LONGITUDE$01002': 'LONGITUDE', "MNT_TYPE$01002": "维护类型", "LIFE_STATE$01002": "生命周期状态", "EXT_CODE$01002": "铁塔编码", "IS_MATCHING$01002": "是否含配套", "ORGANIZATION_NAME$01002": "维护小组", "BELONG_SPECIALITY$01002": "关联专业", "MNT_DIFFICULTY$01002": "维护难度", "CITY_NAME$01002": "地市"} for file in files: if file.lower().endswith('.csv'): df_station = process_csv_files_station(os.path.join(root, file), column_map, custom_field_handler, current_folder_name) if df_station is not None and validate_dataframe(df_station, ['STATION_NAME', 'STATION_ID']): df_list_station.append(df_station) if df_list_station: combined_dataframes_local['站点'] = pd.concat(df_list_station, ignore_index=True) elif current_folder_name == "机房": column_map = {'NAME$01003': 'ROOM_NAME', 'ID$01003': 'ROOM_ID', 'SITE_NAME$01003': 'STATION_NAME', 'SITE_ID$01003': 'STATION_ID'} for file in files: if file.lower().endswith('.csv'): df_room = process_csv_files_station(os.path.join(root, file), column_map, custom_field_handler, current_folder_name) if df_room is not None and validate_dataframe(df_room, ['ROOM_NAME', 'ROOM_ID']): df_list_room.append(df_room) if df_list_room: combined_dataframes_local['机房'] = pd.concat(df_list_room, ignore_index=True) elif current_folder_name in key_columns_map: current_columns_key = key_columns_map[current_folder_name] current_column_names = new_column_names[current_folder_name] column_map = dict(zip(current_columns_key, current_column_names)) for file in files: if file.lower().endswith('.csv'): data = process_csv_file(os.path.join(root, file), column_map, custom_field_handler, current_folder_name) if data is not None: combined_other_dfs.append(data) if combined_other_dfs: combined_dataframes_local['合并表'] = pd.concat(combined_other_dfs, ignore_index=True) # 合并机房与站点 if '机房' in combined_dataframes_local and '站点' in combined_dataframes_local: station_columns = ['STATION_ID', 'STATION_LEVEL', 'LONGITUDE', 'LATITUDE', '维护类型'] df_station_subset = combined_dataframes_local['站点'][station_columns] combined_dataframes_local['机房'] = combined_dataframes_local['机房'].merge( df_station_subset, on='STATION_ID', how='left' ) # 合并合并表与机房 if '合并表' in combined_dataframes_local and '机房' in combined_dataframes_local: room_columns = ['ROOM_ID', 'STATION_NAME', 'STATION_ID', 'STATION_LEVEL', 'LONGITUDE', 'LATITUDE', '维护类型'] df_room_subset = combined_dataframes_local['机房'][room_columns] combined_dataframes_local['合并表'] = combined_dataframes_local['合并表'].merge( df_room_subset, on='ROOM_ID', how='left' ) return combined_dataframes_local @retry(stop=stop_after_attempt(3), wait=wait_fixed(5)) def safe_insert_chunk(chunk, table_name, engine_url, chunk_id, total_chunks): """安全插入单个数据块,包含重试机制""" chunk_start = time.time() start_mem = psutil.virtual_memory().used thread_engine = create_engine(engine_url, pool_pre_ping=True, pool_recycle=3600) inner_connection = thread_engine.connect() transaction = inner_connection.begin() # 显式开始事务 try: # 使用显式连接执行插入 chunk.to_sql( name=table_name, con=inner_connection, if_exists='append', index=False, method='multi', chunksize=1000 # 内部进一步分块 ) transaction.commit() # 显式提交事务 chunk_elapsed = time.time() - chunk_start print(f"块 {chunk_id}/{total_chunks} 导入完成,行数: {len(chunk)}, 耗时: {chunk_elapsed:.2f}秒") return len(chunk), chunk_elapsed except Exception as insert_error: transaction.rollback() # 出错时显式回滚 print( f"块 {chunk_id}/{total_chunks} 导入失败 (尝试 {safe_insert_chunk.retry.statistics.get('attempt_number', 1)}/3): {str(insert_error)}") raise finally: connection.close() thread_engine.dispose() del chunk gc.collect() end_mem = psutil.virtual_memory().used print(f"内存使用: {(end_mem - start_mem) / 1024 / 1024:.2f}MB") def parallel_insert_to_sql(df, table_name, engine_url, chunk_size=10000, max_workers=10): """并行将DataFrame分块导入数据库,修复计数问题""" if df.empty: print("没有数据需要导入") return total_chunks = (len(df) + chunk_size - 1) // chunk_size print(f"数据将分为 {total_chunks} 块进行并行导入,每块 {chunk_size} 行,使用 {max_workers} 个工作线程") # 性能监控 successful_chunks = 0 failed_chunks = 0 total_rows_inserted = 0 insert_start_time = time.time() # 创建进度条 with tqdm(total=total_chunks, desc="并行导入") as pbar: # 使用线程池处理 with ThreadPoolExecutor(max_workers=max_workers) as executor: futures = {} # 提交所有任务 for i in range(0, len(df), chunk_size): chunk = df.iloc[i:i + chunk_size].copy() chunk_id = i // chunk_size + 1 # 提交任务到线程池 future = executor.submit( safe_insert_chunk, chunk=chunk, table_name=table_name, engine_url=engine_url, chunk_id=chunk_id, total_chunks=total_chunks ) futures[future] = chunk_id # 等待所有任务完成并收集结果 for future in as_completed(futures): chunk_id = futures[future] try: rows_inserted, elapsed = future.result() successful_chunks += 1 total_rows_inserted += rows_inserted pbar.update(1) # 定期打印统计信息 if successful_chunks % 10 == 0: current_elapsed = time.time() - insert_start_time rows_per_second = total_rows_inserted / current_elapsed if current_elapsed > 0 else 0 pbar.set_postfix({ "已插入": f"{total_rows_inserted}行", "速度": f"{rows_per_second:.0f}行/秒" }) except Exception as ex: failed_chunks += 1 print(f"块 {chunk_id}/{total_chunks} 处理失败: {str(ex)}") pbar.update(1) # 打印总体统计 total_time = time.time() - insert_start_time if successful_chunks > 0: avg_rows_per_second = total_rows_inserted / total_time print(f"导入完成! 总块数: {total_chunks}, 成功块数: {successful_chunks}, 失败块数: {failed_chunks}") print(f"总行数: {total_rows_inserted}, 总耗时: {total_time:.2f}秒, 平均速度: {avg_rows_per_second:.0f}行/秒") else: print("所有块导入均失败") return total_rows_inserted # 主程序开始 start_time = time.time() print(f"程序开始执行,时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") # 读取并处理数据 combined_dataframes = read_and_process_folder(base_path) # 合并结果 final_combined = pd.concat([ combined_dataframes.get('站点'), combined_dataframes.get('机房'), combined_dataframes.get('合并表') ], ignore_index=True) # 数据处理和清洗 final_combined = final_combined[ ['地市', 'NAME', 'ID', 'ROOM_NAME', 'ROOM_ID', 'STATION_NAME', 'STATION_ID', '生命周期状态', '铁塔编码', '是否含配套', 'STATION_LEVEL', 'LATITUDE', 'LONGITUDE', '维护小组', '关联专业', '维护难度', '类型', '维护类型'] ] final_combined['NAME'] = np.where( final_combined['ROOM_NAME'].isna(), final_combined['NAME'].fillna(final_combined['STATION_NAME']), final_combined['NAME'].fillna(final_combined['ROOM_NAME']) ) final_combined['ID'] = np.where( final_combined['ROOM_ID'].isna(), final_combined['ID'].fillna(final_combined['STATION_ID']), final_combined['ID'].fillna(final_combined['ROOM_ID']) ) # 提取并格式化日期 folder_name = os.path.basename(base_path) # 先在此处获取文件夹名称 try: date_obj = datetime.strptime(folder_name, "%Y%m%d") final_combined['DATE'] = date_obj.strftime("%Y-%m-%d") except ValueError: final_combined['DATE'] = None print(f"无效的日期格式: {folder_name}") # 清理数据 final_combined = final_combined.apply(lambda x: x.str.strip() if x.dtype == "object" else x) final_combined = final_combined.rename(columns={'ID': 'SOURCE_ID'}) # 调整列顺序 final_combined = final_combined[ ['地市', 'NAME', 'SOURCE_ID', 'ROOM_NAME', 'ROOM_ID', 'STATION_NAME', 'STATION_ID', '生命周期状态', '铁塔编码', '是否含配套', 'STATION_LEVEL', 'LATITUDE', 'LONGITUDE', '维护小组', '关联专业', '维护难度', '类型', '维护类型', 'DATE'] ] print(f"数据处理完成,总行数: {len(final_combined)}") # 数据库操作 print("开始数据库操作...") # 获取当前处理的日期 folder_name = os.path.basename(base_path) try: date_obj = datetime.strptime(folder_name, "%Y%m%d") current_date = date_obj.strftime("%Y-%m-%d") except ValueError: current_date = None print(f"无效的日期格式: {folder_name}") # 删除当天已有数据(如果存在) if current_date: try: with create_engine(database_url).connect() as connection: # 关闭索引和约束以提高删除性能 connection.execute(text("SET foreign_key_checks = 0")) connection.execute(text("SET unique_checks = 0")) delete_query = text("DELETE FROM zzwy WHERE DATE = :date") result = connection.execute(delete_query, {'date': current_date}) connection.commit() print(f"已删除日期为 {current_date} 的 {result.rowcount} 条记录") # 重新启用索引和约束 connection.execute(text("SET foreign_key_checks = 1")) connection.execute(text("SET unique_checks = 1")) except Exception as e: print(f"删除当天数据时出错: {str(e)}") # 继续执行,尝试插入新数据 else: print("警告: 当前日期为空,跳过删除步骤") # 关闭索引和约束以提高性能 with create_engine(database_url).connect() as connection: connection.execute(text("SET foreign_key_checks = 0")) connection.execute(text("SET unique_checks = 0")) try: # 自动计算最佳chunksize available_memory = psutil.virtual_memory().available estimated_row_size = 1024 # 假设每行1KB内存 chunksize = min(int(available_memory * 0.3 / estimated_row_size), 500000) print(f"自动计算的chunksize: {chunksize}") # 创建表(如果不存在) with create_engine(database_url).connect() as connection: connection.execute(text(""" CREATE TABLE IF NOT EXISTS zzwy ( 地市 VARCHAR(255), NAME VARCHAR(255), SOURCE_ID VARCHAR(255), ROOM_NAME VARCHAR(255), ROOM_ID VARCHAR(255), STATION_NAME VARCHAR(255), STATION_ID VARCHAR(255), 生命周期状态 VARCHAR(255), 铁塔编码 VARCHAR(255), 是否含配套 VARCHAR(255), STATION_LEVEL VARCHAR(255), LATITUDE VARCHAR(255), LONGITUDE VARCHAR(255), 维护小组 VARCHAR(255), 关联专业 VARCHAR(255), 维护难度 VARCHAR(255), 类型 VARCHAR(255), 维护类型 VARCHAR(255), DATE VARCHAR(255) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 """)) # 并行导入数据 actual_rows_inserted = parallel_insert_to_sql( df=final_combined, table_name='zzwy', engine_url=database_url, chunk_size=20000, max_workers=10 ) # 验证数据完整性 if current_date: try: with create_engine(database_url).connect() as connection: result = connection.execute( text("SELECT COUNT(*) FROM zzwy WHERE DATE = :date"), {'date': current_date} ) db_count = result.scalar() print( f"源数据行数: {len(final_combined)}, 实际插入行数: {actual_rows_inserted}, 数据库记录数(当天): {db_count}") if db_count == len(final_combined): print("数据导入完整! 数据库记录数与源数据一致") else: print(f"警告: 数据可能不完整! 差异: {len(final_combined) - db_count}") except Exception as e: print(f"验证数据完整性时出错: {str(e)}") else: print("无法验证数据完整性: 当前日期为空") except Exception as main_error: print(f"导入数据到数据库时发生错误: {str(main_error)}") raise finally: # 重新启用索引和约束 with create_engine(database_url).connect() as connection: connection.execute(text("SET foreign_key_checks = 1")) connection.execute(text("SET unique_checks = 1")) # 结束计时并输出耗时 end_time = time.time() elapsed_time = end_time - start_time print(f"程序执行完成,时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") print(f"总耗时: {elapsed_time:.2f}秒 ({elapsed_time / 3600:.2f}小时)")

Traceback (most recent call last): File "D:\nutrition projiect\main.py", line 914, in <module> unet = train_segmentation() File "D:\nutrition projiect\main.py", line 588, in train_segmentation dataset = Nutrition5kDataset( File "D:\nutrition projiect\main.py", line 283, in __init__ self.all_dish_metadata = self._load_all_dish_metadata(dish_metadata) File "D:\nutrition projiect\main.py", line 343, in _load_all_dish_metadata df = pd.read_csv(file_path) File "D:\ProgramData\anaconda\envs\torch\lib\site-packages\pandas\io\parsers\readers.py", line 1026, in read_csv return _read(filepath_or_buffer, kwds) File "D:\ProgramData\anaconda\envs\torch\lib\site-packages\pandas\io\parsers\readers.py", line 626, in _read return parser.read(nrows) File "D:\ProgramData\anaconda\envs\torch\lib\site-packages\pandas\io\parsers\readers.py", line 1923, in read ) = self._engine.read( # type: ignore[attr-defined] File "D:\ProgramData\anaconda\envs\torch\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 234, in read chunks = self._reader.read_low_memory(nrows) File "parsers.pyx", line 838, in pandas._libs.parsers.TextReader.read_low_memory File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: Expected 125 fields in line 21, saw 188 Process finished with exit code 1

Matplotlib is building the font cache; this may take a moment. Starting segmentation model training... Initializing segmentation training... Traceback (most recent call last): File "D:\nutrition projiect\nutrition train.py", line 535, in <module> unet = train_segmentation() File "D:\nutrition projiect\nutrition train.py", line 298, in train_segmentation dataset = Nutrition5kDataset( File "D:\nutrition projiect\nutrition train.py", line 49, in __init__ self.all_dish_metadata = self._load_all_dish_metadata(dish_metadata) File "D:\nutrition projiect\nutrition train.py", line 105, in _load_all_dish_metadata df = pd.read_csv(file_path) File "D:\ProgramData\anaconda\envs\pytorch\lib\site-packages\pandas\io\parsers\readers.py", line 1026, in read_csv return _read(filepath_or_buffer, kwds) File "D:\ProgramData\anaconda\envs\pytorch\lib\site-packages\pandas\io\parsers\readers.py", line 626, in _read return parser.read(nrows) File "D:\ProgramData\anaconda\envs\pytorch\lib\site-packages\pandas\io\parsers\readers.py", line 1923, in read ) = self._engine.read( # type: ignore[attr-defined] File "D:\ProgramData\anaconda\envs\pytorch\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 234, in read chunks = self._reader.read_low_memory(nrows) File "parsers.pyx", line 838, in pandas._libs.parsers.TextReader.read_low_memory File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: Expected 125 fields in line 21, saw 188 Process finished with exit code 1

刚刚用代码保存的CSV文件,为什么打不开--------------------------------------------------------------------------- OSError Traceback (most recent call last) <ipython-input-2-a19d8d0ebe73> in <module>() 3 4 file_name = './data_清洗后.csv' ----> 5 pd_data = pd.read_csv(file_name, encoding='utf-8-sig') 6 7 pos_com = pd_data[pd_data['评分'] > 3] E:\WorkSoftware\Install\Anaconda3\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, doublequote, delim_whitespace, low_memory, memory_map, float_precision) 676 skip_blank_lines=skip_blank_lines) 677 --> 678 return _read(filepath_or_buffer, kwds) 679 680 parser_f.__name__ = name E:\WorkSoftware\Install\Anaconda3\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds) 438 439 # Create the parser. --> 440 parser = TextFileReader(filepath_or_buffer, **kwds) 441 442 if chunksize or iterator: E:\WorkSoftware\Install\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, f, engine, **kwds) 785 self.options['has_index_names'] = kwds['has_index_names'] 786 --> 787 self._make_engine(self.engine) 788 789 def close(self): E:\WorkSoftware\Install\Anaconda3\lib\site-packages\pandas\io\parsers.py in _make_engine(self, engine) 1012 def _make_engine(self, engine='c'): 1013 if engine == 'c': -> 1014 self._engine = CParserWrapper(self.f, **self.options) 1015 else: 1016 if engine == 'python': E:\WorkSoftware\Install\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, src, **kwds) 1706 kwds['usecols'] = self.usecols 1707 -> 1708 self._reader = parsers.TextReader(src, **kwds) 1709 1710 passed_names = self.names is None pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader.__cinit__() pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source() OSError: Initializing from file failed

--------------------------------------------------------------------------- NotADirectoryError Traceback (most recent call last) Cell In[4], line 3 1 import zipfile 2 import pandas as pd ----> 3 df = pd.read_csv('data/data340622/data.zip/AA00001.csv', compression='zip', encoding='GBK') File /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1013 kwds_defaults = _refine_defaults_read( 1014 dialect, 1015 delimiter, (...) 1022 dtype_backend=dtype_backend, 1023 ) 1024 kwds.update(kwds_defaults) -> 1026 return _read(filepath_or_buffer, kwds) File /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/pandas/io/parsers/readers.py:620, in _read(filepath_or_buffer, kwds) 617 _validate_names(kwds.get("names", None)) 619 # Create the parser. --> 620 parser = TextFileReader(filepath_or_buffer, **kwds) 622 if chunksize or iterator: 623 return parser File /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds) 1617 self.options["has_index_names"] = kwds["has_index_names"] 1619 self.handles: IOHandles | None = None -> 1620 self._engine = self._make_engine(f, self.engine) File /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1880, in TextFileReader._make_engine(self, f, engine) 1878 if "b" not in mode: 1879 mode += "b" -> 1880 self.handles = get_handle( 1881 f, 1882 mode, 1883 encoding=self.options.get("encoding", None), 1884 compression=self.options.get("compression", None), 1885 memory_map=self.options.get("memory_map", False), 1886 is_text=is_text, 1887 errors=self.options.get("encoding_errors", "strict"), 1888 storage_options=self.options.get("storage_options", None), 1889 ) 1890 assert self.handles is not None 1891 f = self.handles.handle File /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/pandas/io/common.py:794, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options) 789 # ZIP Compression 790 elif compression == "zip": 791 # error: Argument 1 to "_BytesZipFile" has incompatible type 792 # "Union[str, BaseBuffer]"; expected "Union[Union[str, PathLike[str]], 793 # ReadBuffer[bytes], WriteBuffer[bytes]]" --> 794 handle = _BytesZipFile( 795 handle, ioargs.mode, **compression_args # type: ignore[arg-type] 796 ) 797 if handle.buffer.mode == "r": 798 handles.append(handle) File /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/pandas/io/common.py:1037, in _BytesZipFile.__init__(self, file, mode, archive_name, **kwargs) 1034 kwargs.setdefault("compression", zipfile.ZIP_DEFLATED) 1035 # error: Incompatible types in assignment (expression has type "ZipFile", 1036 # base class "_BufferedWriter" defined the type as "BytesIO") -> 1037 self.buffer: zipfile.ZipFile = zipfile.ZipFile( # type: ignore[assignment] 1038 file, mode, **kwargs 1039 ) File /opt/conda/envs/python35-paddle120-env/lib/python3.10/zipfile.py:1249, in ZipFile.__init__(self, file, mode, compression, allowZip64, compresslevel, strict_timestamps) 1247 while True: 1248 try: -> 1249 self.fp = io.open(file, filemode) 1250 except OSError: 1251 if filemode in modeDict: NotADirectoryError: [Errno 20] Not a directory: 'data/data340622/data.zip/AA00001.csv' import zipfile import pandas as pd df = pd.read_csv('data/data340622/data.zip/AA00001.csv', compression='zip', encoding='GBK')

if __name__ == "__main__": # 配置参数 DATA_PATH = R"C:\Users\wxn\Desktop\2014.csv" # 加载数据 X, y = load_data(DATA_PATH) # 训练评估模型 model = train_evaluate_svm(X, y) 报错FileNotFoundError Traceback (most recent call last) Cell In[39], line 6 3 DATA_PATH = R"C:\Users\wxn\Desktop\2014.csv" 5 # 加载数据 ----> 6 X, y = load_data(DATA_PATH) 8 # 训练评估模型 9 model = train_evaluate_svm(X, y) Cell In[37], line 2, in load_data(file_path) 1 def load_data(file_path): ----> 2 df = pd.read_csv(R"C:\Users\wxn\Desktop\2014.csv") 3 print(f"数据加载成功! 形状: {df.shape}") 4 print(f"特征列: {list(df.columns[:-1])}") File /opt/conda/envs/anaconda-2024.02-py310/lib/python3.10/site-packages/pandas/io/parsers/readers.py:948, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 935 kwds_defaults = _refine_defaults_read( 936 dialect, 937 delimiter, (...) 944 dtype_backend=dtype_backend, 945 ) 946 kwds.update(kwds_defaults) --> 948 return _read(filepath_or_buffer, kwds) File /opt/conda/envs/anaconda-2024.02-py310/lib/python3.10/site-packages/pandas/io/parsers/readers.py:611, in _read(filepath_or_buffer, kwds) 608 _validate_names(kwds.get("names", None)) 610 # Create the parser. --> 611 parser = TextFileReader(filepath_or_buffer, **kwds) 613 if chunksize or iterator: 614 return parser File /opt/conda/envs/anaconda-2024.02-py310/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1448, in TextFileReader.__init__(self, f, engine, **kwds) 1445 self.options["has_index_names"] = kwds["has_index_names"] 1447 self.handles: IOHandles | None = None -> 1448 self._engine = self._make_engine(f, self.engine) File /opt/conda/envs/anaconda-2024.02-py310/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1705, in TextFileReader._make_engine(self, f, engine) 1703 if "b" not in mode: 1704 mode += "b" -> 1705 self.handles = get_handle( 1706 f, 1707 mode, 1708 encoding=self.options.get("encoding", None), 1709 compression=self.options.get("compression", None), 1710 memory_map=self.options.get("memory_map", False), 1711 is_text=is_text, 1712 errors=self.options.get("encoding_errors", "strict"), 1713 storage_options=self.options.get("storage_options", None), 1714 ) 1715 assert self.handles is not None 1716 f = self.handles.handle File /opt/conda/envs/anaconda-2024.02-py310/lib/python3.10/site-packages/pandas/io/common.py:863, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options) 858 elif isinstance(handle, str): 859 # Check whether the filename is to be opened in binary mode. 860 # Binary mode does not support 'encoding' and 'newline'. 861 if ioargs.encoding and "b" not in ioargs.mode: 862 # Encoding --> 863 handle = open( 864 handle, 865 ioargs.mode, 866 encoding=ioargs.encoding, 867 errors=errors, 868 newline="", 869 ) 870 else: 871 # Binary mode 872 handle = open(handle, ioargs.mode) FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\wxn\\Desktop\\2014.csv' 怎么解决

--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[53], line 7 4 file_path = [f'month_{i:02d}.csv' for i in range(1, 10)] 6 # 读取数据到 DataFrame(注意变量名区分) ----> 7 df = pd.read_csv(file_path) 9 # 用于存储已读取的时间戳 10 timestamps = set() File D:\anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1013 kwds_defaults = _refine_defaults_read( 1014 dialect, 1015 delimiter, (...) 1022 dtype_backend=dtype_backend, 1023 ) 1024 kwds.update(kwds_defaults) -> 1026 return _read(filepath_or_buffer, kwds) File D:\anaconda\Lib\site-packages\pandas\io\parsers\readers.py:620, in _read(filepath_or_buffer, kwds) 617 _validate_names(kwds.get("names", None)) 619 # Create the parser. --> 620 parser = TextFileReader(filepath_or_buffer, **kwds) 622 if chunksize or iterator: 623 return parser File D:\anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds) 1617 self.options["has_index_names"] = kwds["has_index_names"] 1619 self.handles: IOHandles | None = None -> 1620 self._engine = self._make_engine(f, self.engine) File D:\anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1895, in TextFileReader._make_engine(self, f, engine) 1893 elif engine != "python": 1894 msg = f"Invalid file path or buffer object type: {type(f)}" -> 1895 raise ValueError(msg) 1897 try: 1898 return mapping[engine](f, **self.options) ValueError: Invalid file path or buffer object type: <class 'list'>

FileNotFoundError Traceback (most recent call last) Cell In[1], line 14 11 I = df['光强(W/nm)'].values 13 # 加载CIE 1931颜色匹配函数(需补充完整数据) ---> 14 cie_data = pd.read_csv('cie1931.csv') # 假设存在CIE标准数据文件 15 cie_wl = cie_data['波长'].values 16 x_bar = cie_data['x'].values File D:\anacondaxiaz\Lib\site-packages\pandas\io\parsers\readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1013 kwds_defaults = _refine_defaults_read( 1014 dialect, 1015 delimiter, (...) 1022 dtype_backend=dtype_backend, 1023 ) 1024 kwds.update(kwds_defaults) -> 1026 return _read(filepath_or_buffer, kwds) File D:\anacondaxiaz\Lib\site-packages\pandas\io\parsers\readers.py:620, in _read(filepath_or_buffer, kwds) 617 _validate_names(kwds.get("names", None)) 619 # Create the parser. --> 620 parser = TextFileReader(filepath_or_buffer, **kwds) 622 if chunksize or iterator: 623 return parser File D:\anacondaxiaz\Lib\site-packages\pandas\io\parsers\readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds) 1617 self.options["has_index_names"] = kwds["has_index_names"] 1619 self.handles: IOHandles | None = None -> 1620 self._engine = self._make_engine(f, self.engine) File D:\anacondaxiaz\Lib\site-packages\pandas\io\parsers\readers.py:1880, in TextFileReader._make_engine(self, f, engine) 1878 if "b" not in mode: 1879 mode += "b" -> 1880 self.handles = get_handle( 1881 f, 1882 mode, 1883 encoding=self.options.get("encoding", None), 1884 compression=self.options.get("compression", None), 1885 memory_map=self.options.get("memory_map", False), 1886 is_text=is_text, 1887 errors=self.options.get("encoding_errors", "strict"), 1888 storage_options=self.options.get("storage_options", None), 1889 ) 1890 assert self.handles is not None 1891 f = self.handles.handle File D:\anacondaxiaz\Lib\site-packages\pandas\io\common.py:873, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options) 868 elif isinstance(handle, str): 869 # Check whether the filename is to be opened in binary mode. 870 # Binary mode does not support 'encoding' and 'newline'. 871 if ioargs.encoding and "b" not in ioargs.mode: 872 # Encoding --> 873 handle = open( 874 handle, 875 ioargs.mode, 876 encoding=ioargs.encoding, 877 errors=errors, 878 newline="", 879 ) 880 else: 881 # Binary mode 882 handle = open(handle, ioargs.mode) FileNotFoundError: [Errno 2] No such file or directory: 'cie1931.csv'。尝试能否跳过

--------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) Cell In[4], line 1 ----> 1 apple = pd.read_csv('appl_1980_2014') File D:\Anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1013 kwds_defaults = _refine_defaults_read( 1014 dialect, 1015 delimiter, (...) 1022 dtype_backend=dtype_backend, 1023 ) 1024 kwds.update(kwds_defaults) -> 1026 return _read(filepath_or_buffer, kwds) File D:\Anaconda\Lib\site-packages\pandas\io\parsers\readers.py:620, in _read(filepath_or_buffer, kwds) 617 _validate_names(kwds.get("names", None)) 619 # Create the parser. --> 620 parser = TextFileReader(filepath_or_buffer, **kwds) 622 if chunksize or iterator: 623 return parser File D:\Anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds) 1617 self.options["has_index_names"] = kwds["has_index_names"] 1619 self.handles: IOHandles | None = None -> 1620 self._engine = self._make_engine(f, self.engine) File D:\Anaconda\Lib\site-packages\pandas\io\parsers\readers.py:1880, in TextFileReader._make_engine(self, f, engine) 1878 if "b" not in mode: 1879 mode += "b" -> 1880 self.handles = get_handle( 1881 f, 1882 mode, 1883 encodi

FileNotFoundError Traceback (most recent call last) <ipython-input-3-fbf9b09b5099> in <cell line: 5>() 3 4 # 数据预处理(引用[1]) ----> 5 train = pd.read_csv('train.csv') 6 test = pd.read_csv('test.csv') 7 x_train = train.drop(['id', 'label'], axis=1) # 删除无关列 /usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1024 kwds.update(kwds_defaults) 1025 -> 1026 return _read(filepath_or_buffer, kwds) 1027 1028 /usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in _read(filepath_or_buffer, kwds) 618 619 # Create the parser. --> 620 parser = TextFileReader(filepath_or_buffer, **kwds) 621 622 if chunksize or iterator: /usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in __init__(self, f, engine, **kwds) 1618 1619 self.handles: IOHandles | None = None -> 1620 self._engine = self._make_engine(f, self.engine) 1621 1622 def close(self) -> None: /usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in _make_engine(self, f, engine) 1878 if "b" not in mode: 1879 mode += "b" -> 1880 self.handles = get_handle( 1881 f, 1882 mode, /usr/local/lib/python3.10/dist-packages/pandas/io/common.py in ge

大家在看

recommend-type

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip
recommend-type

只输入固定-vc实现windows多显示器编程的方法

P0.0 只输入固定 P0.1 P0CON.1 P0.2 P0CON.2 PORT_SET.PORT_REFEN P0.3 P0CON.3 自动“偷”从C2的交易应用程序在. PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[0] P0.4 P0CON.4 C2调试的LED驱动器的时钟输入,如果作为 未启用. P0.5 PORT_CTRL.PORT_LED[1:0] 输出港口被迫为.阅读 实际LED驱动器的状态(开/关) 用户应阅读 RBIT_DATA.GPIO_LED_DRIVE 14只脚 不能用于在开发系统中,由于C2交易扰 乱输出. 参考区间的时钟频率 对抗 控制控制 评论评论 NVM的编程电压 VPP = 6.5 V 矩阵,和ROFF工业* PORT_CTRL 2 GPIO 1 矩阵,和ROFF工业* PORT_CTRL 3 参考 clk_ref GPIO 矩阵 4 C2DAT 产量 CLK_OUT GPIO 5 C2CLK LED驱动器 1 2 工业* PORT_CTRL 1 2 3 1 2 6 产量 CLK_OUT GPIO 1 2 1 1 1 PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[1] P0.6 P0CON.6 P0.7 P0CON.7 P1.0 P1CON.0 P1.1 P1CON.1 7 8 9 GPIO GPIO GPIO 14只脚 14只脚 14只脚 *注:工业注:工业 代表“独立报”设置. “ 矩阵矩阵 and Roff 模式控制模拟垫电路. 116 修订版修订版1.0
recommend-type

半导体Semi ALD Tungsten W and TiN for Advanced Contact Application

ALD Tungsten, W and TiN for Advanced Contact Application
recommend-type

声纹识别数据集 IDMT-ISA-ELECTRIC-ENGINE

包含发动机正常、高负荷、损坏三种状态.wav声音片段,每种状态包含几百个片段,每个片段时长3S,可用于声纹类型识别,包含数据集介绍文档。
recommend-type

StepInt3-Plugin-x64:StepInt3插件(x64)-x64dbg的插件

StepInt3插件(x64)-x64dbg的插件 有关此插件的x86版本,请访问 概述 一个插件来解决int3断点异常 特征 自动跳过int3断点异常 从插件菜单启用/禁用的选项 如何安装 如果当前正在运行x64dbg(x64dbg 64位),请停止并退出。 将StepInt3.dp64复制到x64dbg\x64\plugins文件夹中。 启动x64dbg 信息 由撰写 使用 RadASM项目(.rap)用于管理和编译插件。 RadASM IDE可以在下载 该插件的x64版本使用 要构建此x64版本,还需要。 x64dbg x64dbg github x64dbg开关

最新推荐

recommend-type

kernel-4.19.90-52.29.v2207.ky10.x86-64.rpm

kernel-4.19.90-52.29.v2207.ky10.x86-64.rpm
recommend-type

2025年检验检测机构评审准则宣贯试题(附答案).pdf

2025年检验检测机构评审准则宣贯试题(附答案).pdf
recommend-type

多数据源管理与分表实践:MybatisPlus与ShardingJdbc整合

根据给定的文件信息,我们可以详细地解读其中涉及到的关键知识点,这些知识点包括Mybatis Plus的使用、ShardingJdbc的数据分片策略、Swagger的API文档生成能力,以及如何通过注解方式切换数据源。以下是详细的知识点分析: ### Mybatis Plus Mybatis Plus是一个Mybatis的增强工具,在Mybatis的基础上只做增强不做改变,为简化开发、提高效率而生。Mybatis Plus提供了如CRUD、分页、多数据源等一些列增强功能,并且可以与Spring、Spring Boot无缝集成。 #### 使用Mybatis Plus的优势: 1. **简化CRUD操作**:Mybatis Plus自带通用的Mapper和Service,减少代码量,提高开发效率。 2. **支持多种数据库**:支持主流的数据库如MySQL、Oracle、SQL Server等。 3. **逻辑删除**:可以在数据库层面实现记录的软删除功能,无需手动在业务中进行判断。 4. **分页插件**:提供默认的分页功能,支持自定义SQL、Lambda表达式等。 5. **性能分析插件**:方便分析SQL性能问题。 6. **代码生成器**:可以一键生成实体类、Mapper、Service和Controller代码,进一步提高开发效率。 #### 关键点: - **代码生成器**:位于`com.example.demo.common.codegenerator`包下的`GeneratorConfig`类中,用户需要根据实际的数据库配置更改数据库账号密码。 ### ShardingJdbc ShardingJDBC是当当网开源的轻量级Java框架,它在JDBC的层次提供了数据分片的能力。通过ShardingJDBC,可以在应用层面进行分库分表、读写分离、分布式主键等操作。 #### 分库分表: - 通过ShardingJDBC可以配置分库分表的策略,例如按照某个字段的值来决定记录应该保存在哪个分库或分表中。 - **Sharding策略**:可以定义多种分片策略,如模运算、查找表、时间范围等。 #### 关键点: - **注解切换数据源**:文件中提到通过注解的方式切换数据源,这允许开发者在编写代码时通过简单注解即可控制数据访问的路由规则。 ### Swagger Swagger是一个规范且完整的框架,用于生成、描述、调用和可视化RESTful风格的Web服务。总体目标是使客户端和文件系统作为服务器以同样的速度来更新。Swagger文件可让机器读取以了解远程服务的功能,并且可以作为浏览器插件,以便用户与远程服务互动。 #### 使用Swagger的优势: 1. **API文档自动生成**:Swagger可以根据代码中的注释直接生成文档。 2. **动态接口测试**:可以动态地对API接口进行测试。 3. **交互式文档**:提供交互式的API文档,可以实时地在线测试API。 #### 关键点: - **动态文档**:项目中集成Swagger后,可以在开发过程中动态更新API文档,便于团队协作和文档维护。 ### 如何使用 1. **准备工作**:在解压之前,需要更改数据源的IP、账号和密码,并执行resources下的SQL脚本。 2. **数据源配置**:在实际使用中,需要根据实际情况更改GeneratorConfig类中的dataSourceConfig()的数据库账号密码。 3. **代码生成**:启动代码生成器,根据设定的模板和策略生成相应的代码,包含实体类、Mapper、Service和Controller等。 4. **分库分表配置**:配置ShardingJDBC的分库分表策略,包括分片键和分片算法等。 5. **API文档**:集成Swagger,自动生成API文档并提供动态测试功能。 ### 结语 通过本文件所描述的内容,我们可以了解到如何利用Mybatis Plus、ShardingJdbc、Swagger这三大工具配合实现复杂的数据库操作和维护,以及如何通过注解在不同数据源之间灵活切换。用户在使用时应严格按照文件中的指示进行操作,确保数据库连接信息的正确配置,并结合代码生成器快速搭建项目基础结构。同时,应充分理解ShardingJdbc的分库分表策略,以及Swagger的API文档管理功能,以优化开发流程和提高工作效率。如果以上内容使用得当,这将是一个能够有效提升项目开发和维护质量的强大工具集。
recommend-type

BLE广播机制深度解析:XN297_TO_BLE.zip中的创新实践与应用指南

# 摘要 本文全面分析了蓝牙低功耗(BLE)广播机制的理论与实践应用,特别关注了XN297_TO_BLE.zip的开发与优化。通过详细探讨BLE广播的工作原理、数据包结构、以及XN297_TO_BLE.zip的设计理念与架构,本文为开发者提供了深入了解和实践BLE技术的框架。文中不仅介绍了如何搭建开发环境和编程实践,还深入讨论了
recommend-type

我用的就是idea的内置maven呀

<think>好的,用户现在提到他们使用的是IDEA的内置Maven,但之前遇到了“mvn不是内部或外部命令”的问题。我需要仔细分析可能的场景和用户的需求。 首先,用户可能是在IDEA内部使用Maven时没有问题,但在外部命令行中使用mvn命令时遇到了问题。这说明用户可能混淆了IDEA内置Maven和系统环境变量配置的关系。内置的Maven只在IDEA内部有效,并不会自动配置系统的环境变量,因此当用户在命令行中直接运行mvn时,系统找不到该命令,导致报错。 接下来,我需要确定用户的具体使用场景。用户可能是在尝试通过命令行执行Maven命令,或者是在其他需要系统环境变量支持的地方使用mvn。
recommend-type

环保主题植树节PPT模板设计赏析

标题“清新淡雅绿色环保植树节ppt模板”和描述“茂密的一棵卡通树,散落的绿叶,藤蔓线条,清新淡雅,绿色环保,312植树节ppt模板”共同体现了该PPT模板的设计风格和主题。该模板旨在宣传和庆祝植树节,同时强调了环保的理念。以下是对标题和描述中所蕴含知识点的详细说明: 1. 植树节的概念 植树节,是为了提高人们对森林资源的认识、倡导植树造林而设定的节日。不同国家的植树节日期可能不同,而在中国,“312”植树节(每年的3月12日)被广泛认知和庆祝。这个节日起源于20世纪初,是纪念孙中山先生的逝世纪念日,并逐渐演变为全民植树造林的活动日。 2. 绿色环保理念 绿色环保是指在人类活动中,采取相应的措施减少对环境的破坏,保护地球的自然资源和生态系统。这包括节能减排、资源循环利用、减少废弃物产生、提高能源效率等方面。该PPT模板采用“清新淡雅”的视觉元素,通过卡通形象和自然元素来传递环保的理念,使人们对环保有更深的认同感。 3. 卡通风格设计 模板使用了卡通风格来呈现内容,卡通风格设计通常更加生动、活泼,易于吸引观众的注意力,尤其适合儿童及青少年教育和宣传场合。卡通化的树木和藤蔓线条,可以更好地将植树节这一主题与观众尤其是年轻一代进行连接。 4. 清新淡雅的设计风格 “清新淡雅”是一种设计理念,强调色彩的温和、简洁的布局和舒适的视觉体验。在设计中,它通常表现为使用柔和的色调、简单的图形和没有过多装饰的版面,以创造出一种宁静、舒适的感觉。这种风格的模板适合用于教育、公益宣传等场合,易于传达温暖、积极的信息。 5. PPT模板的应用 PPT(PowerPoint演示文稿)是微软公司开发的一款演示软件,广泛用于商业汇报、教育授课、会议演讲和各类展示活动。一个精心设计的PPT模板可以提高演示的专业性和观赏性,同时通过统一的风格和格式,帮助使用者节省准备演示的时间和精力。模板中预设的版式、字体和配色可以被用户根据自己的需求进行调整和补充内容。 结合以上知识点,可以得出这个植树节PPT模板的设计意图和使用价值。它不仅具有美化演示文稿的作用,而且通过其环保主题和设计风格,传达了植树造林、保护环境的重要性。模板的视觉元素如卡通树木和藤蔓线条等,使得环保理念的表达更为直观和亲民,适合在植树节等环保主题活动上使用。
recommend-type

BLE调试必备:XN297_TO_BLE.zip故障排除与性能监控手册

# 摘要 本文详细介绍了BLE技术的基础知识,并针对XN297_TO_BLE.zip这一软件包进行了深入分析。通过对安装、配置、故障排查、性能优化、高级功能实现及案例研究等方面的探讨,提供了全面的实施指导和最佳实践。文章首先概括了BLE技术的核心要点,随后重点阐述了XN297_TO_BLE.zip的安装、初始配置以及功能验证,特别是在连接故障诊断、数据同步问题解决、性能
recommend-type

开源 文件管理

<think>好的,用户想找关于开源文件管理系统的信息,包括工具、项目或解决方案。首先,我需要回忆一下相关的开源项目。根据之前的引用,用户提到过Redmine、Taiga、ProjectLibre等开源项目管理软件,但可能这些更多是项目管理而非专门的文件管理。不过,用户还提到了Gollum,这是一个基于Git的文档管理系统,可能更贴近文件管理。 接下来,我需要区分文件管理系统和项目管理系统的不同。文件管理更侧重于文档的存储、版本控制、权限管理等,而项目管理则涉及任务跟踪、协作等。因此,可能需要专门针对文件管理的工具。比如,Nextcloud和OwnCloud都是开源的云存储解决方案,适合文件
recommend-type

CISP标准课件V4.2:信息安全与系统保障全面指南

在详细阐述CISP课件V4.2标准版的知识点之前,我们首先需要明确几个概念。首先,“CISP”指的是“Certified Information Security Professional”(注册信息安全专业人员),这是一个在信息安全领域内认可的专业认证资格。而“CISE”和“CISO”则是指信息安全工程师(Certified Information Security Engineer)和信息安全官(Certified Information Security Officer)的认证,它们都属于CISP的范畴。此外,“CISM”指的是“Certified Information Security Manager”(注册信息安全经理),这是另一个与CISP相关的信息安全专业认证。 根据给出的标题和描述,这份CISP课件V4.2标准版是针对上述信息安全相关认证的教材和学习资源,涵盖了信息安全领域中各类专业人士需要掌握的核心知识。课件的内容体系是以模块化的方式组织的,包括知识域、知识子域和知识点三个层次。具体地,以下是对这份课件中提及的知识点的详细解释: 1. 知识体系模块化结构 - 知识体系:指的是课件内容的整体框架,它将复杂的信息安全知识划分成不同的模块,便于学习者理解和记忆。 - 知识域:指的是整个信息安全领域内的一大类知识主题,例如“信息安全保障”、“网络安全监管”等。 - 知识子域:是在知识域基础上细分出来的子主题,它们构成了实现知识域目标的具体内容。 - 知识点:是在知识子域中进一步细分的小知识点,是学习者需要掌握的基础内容。 2. 知识点掌握程度分类 - 了解:这是基础层级,学习者需要对知识点的基本概念和原理有所认识,但不涉及深层次的应用和分析。 - 理解:这个层次要求学习者不仅了解知识点的基础概念和原理,还能够深入理解其内容,并在此基础上进行判断和推理。 - 掌握:这是最高层级,学习者不仅要了解和理解知识点,还必须能够在实践中灵活运用所学知识,解决实际问题。 3. 知识体系结构涵盖的知识域 - 信息安全保障:涉及组织和机构在信息安全方面的整体策略和措施。 - 网络安全监管:关注如何监管和管理网络安全,以保障网络空间的安全性。 - 信息安全管理:包括信息资产保护、安全政策和程序的制定与实施等内容。 - 业务连续性:讨论如何确保组织在发生信息安全事件后的业务连续性和恢复。 - 安全工程与运营:涉及安全系统的设计、实施和运维管理。 - 安全评估:包括信息安全风险评估和审计等评估活动。 - 信息安全支撑技术:介绍支持信息安全的关键技术和工具。 - 物理与网络通信安全:讲述如何保护物理资产和网络通信不受威胁。 - 计算环境安全:涉及服务器、工作站和其他计算环境的安全保护。 - 软件安全开发:着重于在软件开发过程中如何实现安全性。 综上所述,CISP课件V4.2标准版是一份综合性的学习资源,旨在通过模块化和层次化的方式,帮助信息安全相关专业人士深入掌握信息安全领域的专业知识和技能。这份课件不仅适合作为教材和教学资源,还能够作为学习者自我提升和考核的知识依据。此外,这份课件的文件名称列表中只列出了一个文件名称“CISP课件V4.2标准版 20190214”,表明当前获取的资源是一个特定版本的压缩包文件。在实际使用中,需要解压这个文件以获取其中的教学内容和材料。
recommend-type

BLE通信距离扩展技术:XN297_TO_BLE.zip解决方案与应用分享

# 摘要 随着无线通信技术的快速发展,蓝牙低能耗(BLE)技术因其低功耗和低成本特性在智能家居和健康监控设备中得到广泛应用。本文首先概述了BLE通信技术的工作原理及优势,并介绍了一个名为XN297_TO_BLE.zip的解决方案,该方案旨在扩展BLE的通信距离。接着,本文解析了该技术实现的关键技术点,包括硬件提升和软件优化措施,并通过实践应用案例展示