代码分析:def fib_search(arr, val): n = len(arr) # 数组长度 # 初始化斐波那契数列 fib_n_minus_2 = 0 fib_n_minus_1 = 1 fib_n = fib_n_minus_1 + fib_n_minus_2 # 查找fib_n刚好大于等于n的位置 while fib_n < n: fib_n_minus_2 = fib_n_minus_1 fib_n_minus_1 = fib_n fib_n = fib_n_minus_1 + fib_n_minus_2 # 在[0, n]中进行二分查找 offset = -1 while fib_n > 1: idx = min(offset + fib_n_minus_2, n-1) if arr[idx] < val: fib_n = fib_n_minus_1 fib_n_minus_1 = fib_n_minus_2 fib_n_minus_2 = fib_n - fib_n_minus_1 offset = idx elif arr[idx] > val: fib_n = fib_n_minus_2 fib_n_minus_1 -= fib_n_minus_2 fib_n_minus_2 = fib_n - fib_n_minus_1 else: return idx if arr[offset+1] == val: return offset + 1 return -1
时间: 2024-04-26 22:20:13 浏览: 114
这段代码实现了斐波那契查找算法,其时间复杂度为 O(log n)。
首先,通过斐波那契数列来找到一个刚好大于等于数组长度的斐波那契数 fib_n。然后将数组分成两部分,一部分长度为 fib_n_minus_2,另一部分长度为 fib_n_minus_1。然后在长度较长的那一部分进行查找,每次将长度较长的部分继续分成两部分,直到找到目标元素或者待查找区间为空。
在代码实现中,变量 offset 初始值为 -1,表示数组的起始位置为 0。在每次循环中,通过 offset 和 fib_n_minus_2 计算出当前查找的位置 idx,然后分别判断该位置的元素与目标元素的大小关系,进而确定下一次查找的位置和长度。
最后,如果查找成功,则返回目标元素的下标;否则,返回 -1 表示未找到。
需要注意的是,这段代码要求数组是有序的,如果数组未排序,则需要先进行排序操作。
阅读全文
相关推荐












