yolov8 CBAM注意力机制
时间: 2025-01-13 12:00:17 浏览: 97
### 如何在YOLOv8中应用CBAM注意力机制
#### 实现概述
在YOLOv8中集成CBAM(Convolutional Block Attention Module)可以显著提升模型对于目标检测任务中的特征表达能力。通过引入通道和空间维度上的注意力建设,能够更精准地捕捉图像的关键区域并抑制不重要的部分。
#### 修改`__init__.py`与`conv.py`
为了使项目识别新的模块,在项目的初始化文件即`__init__.py`以及卷积层定义所在的`conv.py`里添加对CBAM的支持:
```python
# __init__.py 文件内的改动如下所示:
from .conv import * # 原有导入语句保持不变
__all__.append('CBAM') # 将'CBAM'追加至__all__
# conv.py 文件内则需新增CBAM类的实现代码片段:
import torch.nn as nn
class CBAM(nn.Module):
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']):
super(CBAM, self).__init__()
self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types)
self.SpatialGate = SpatialGate()
def forward(self, x):
x_out = self.ChannelGate(x)
x_out = self.SpatialGate(x_out)
return x_out
class ChannelGate(nn.Module):
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']):
super(ChannelGate, self).__init__()
self.gate_channels = gate_channels
self.mlp = nn.Sequential(
Flatten(),
nn.Linear(gate_channels, gate_channels // reduction_ratio),
nn.ReLU(),
nn.Linear(gate_channels // reduction_ratio, gate_channels)
)
self.pool_types = pool_types
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.maxpool = nn.AdaptiveMaxPool2d(1)
def forward(self, x):
channel_att_sum = None
for pool_type in self.pool_types:
if pool_type == 'avg':
avg_pool = self.avgpool(x)
channel_att_raw = self.mlp(avg_pool)
elif pool_type == 'max':
max_pool = self.maxpool(x)
channel_att_raw = self.mlp(max_pool)
if channel_att_sum is None:
channel_att_sum = channel_att_raw
else:
channel_att_sum += channel_att_raw
scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
return x * scale
class SpatialGate(nn.Module):
def __init__(self):
super(SpatialGate, self).__init__()
kernel_size = 7
self.compress = ChannelPool()
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False)
def forward(self, x):
x_compress = self.compress(x)
x_out = self.spatial(x_compress)
scale = torch.sigmoid(x_out) # broadcasting
return x * scale
class ChannelPool(nn.Module):
def forward(self, x):
return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1)
class BasicConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
bn=True, bias=False):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU() if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
```
以上操作确保了框架能正确加载自定义组件,并允许后续配置文件调用此功能[^4]。
#### 调整`task.py`以支持CBAM
为了让训练过程利用上新加入的CBAM结构,需要编辑负责创建网络实例的任务脚本`task.py`:
```python
def build_model(cfg, num_classes=None):
model = Model(cfg, ch=3, nc=num_classes or cfg['nc'])
# 遍历model.modules(), 对特定类型的layer插入CBAM
for name, m in model.named_modules():
if isinstance(m, (nn.Conv2d)): # 可根据需求更改条件判断依据
setattr(model, name, nn.Sequential(m, CBAM(m.out_channels)))
return model
```
这段逻辑遍历整个神经网络图谱,针对满足一定条件的节点附加CBAM单元,从而完成对原有架构的功能扩展。
#### 更新配置文件`yolov8.yaml`
最后一步是在超参数设定文档`yolov8.yaml`里面指定哪些地方应该启用CBAM特性。这通常涉及到修改backbone或者neck部分的设计蓝图来反映这些变化:
```yaml
# yolov8.yaml 的部分内容展示
depth_multiple: 0.33 # 模型深度系数
width_multiple: 0.50 # 模型宽度系数
head: # 头部设置...
backbone:
[[-1, 1, Focus], [-1, 1, Conv, [64]], ... ,[-1, 1, C3]] # 主干网路...
neck:
[[-1, 1, SPPF],
...
] # 特征金字塔...
cbam_blocks: ['C3'] # 列表形式指明要添加CBAM的具体block名称
```
这里假设只给定名为'C3'的基础块加入了CBAM处理;实际部署时可根据个人喜好灵活调整。
阅读全文
相关推荐



















