select caid.*, bcas.notes from cljn_account_info_data caid left join ( select account_id,set_val as notes from browser_customer_account_set where jh_user_id = #{input.notesUser} and set_type=0 )bcas on bcas.account_id=caid.account_id这样的写法有问题吗

时间: 2025-07-10 14:34:29 AIGC 浏览: 20
<think>嗯,我需要分析用户提供的SQL查询是否有问题。首先,我会仔细看一下查询的结构。用户使用了左连接(LEFT JOIN)将cljn_account_info_data表(别名为caid)和子查询bcas连接起来。子查询是从browser_customer_account_set表中选取account_id和set_val作为notes,条件包括jh_user_id等于某个输入参数和set_type等于0。 接下来,我要检查语法是否正确。SELECT子句中的字段引用看起来没问题,表别名使用正确。左连接的条件是bcas.account_id = caid.account_id,这似乎合理,因为通常通过account_id进行关联。 然后,考虑可能的逻辑问题。用户可能担心左连接后是否能正确获取到notes数据。如果browser_customer_account_set表中存在多个符合条件的记录,这里可能会返回重复的caid记录,因为每个匹配的account_id都会生成一行。但用户是否希望这样呢?如果他们只需要一条notes,可能需要使用聚合函数或者LIMIT子句。 另外,子查询中的jh_user_id = #{input.notesUser}可能会影响结果。如果这个参数在某些情况下为空或无效,可能导致bcas子查询没有结果,进而notes字段为NULL。但这是否符合预期,需要根据业务需求判断。 还有,检查是否有字段名冲突。两个表都可能存在account_id字段,但由于使用了别名,应该没有问题。SELECT caid.*会包含cljn_account_info_data的所有列,而bcas.notes则来自子查询,这里应该没问题。 总结一下,语法上没有明显错误,但需要注意潜在的数据重复和子查询条件的影响。用户可能需要根据业务需求进一步调整,比如处理重复数据或确保参数正确。</think>该SQL语句的写法在语法和逻辑上存在以下几点需要注意的地方,以下分步骤分析: ------------------ ### 一、**基础语法检查** 1. **缩进与格式** 虽然不影响执行,但多层嵌套时建议用缩进增强可读性(当前写法已具备基础缩进) 2. **表别名使用** - `cljn_account_info_data caid` 正确 ✅ - `browser_customer_account_set` 子查询别名 `bcas` 正确 ✅ - JOIN条件 `bcas.account_id=caid.account_id` 正确 ✅ ------------------ ### 二、**潜在问题分析** #### 1. **LEFT JOIN逻辑风险** 子查询中 `bcas` 的过滤条件为: ```sql jh_user_id = #{input.notesUser} and set_type=0 ``` *风险点*: - 若 `browser_customer_account_set` 表存在多个符合 `account_id` 的记录 ➔ 会导致主表 `caid` 数据**重复** - 若子查询无匹配记录 ➔ `notes` 字段会显示为 `NULL`(符合LEFT JOIN逻辑) *改进建议*: - 如需去重,可在子查询中加 `DISTINCT` 或 `GROUP BY account_id` - 如需保留多条备注,需评估业务是否接受重复数据 #### 2. **字段覆盖问题** `SELECT caid.*` 会获取主表所有字段,若 `browser_customer_account_set` 表也有同名字段(如 `account_id`),可能引发歧义。 *当前写法安全* ✅ 因子查询仅返回 `account_id` 和 `notes`,且通过别名 `bcas.notes` 明确指定。 ------------------ ### 三、**参数化输入检查** `#{input.notesUser}` 是模板变量(常见于MyBatis等ORM工具) *需确认*: 1. 参数 `notesUser` 是否已正确定义 2. 传入值类型需与数据库字段 `jh_user_id` 的类型匹配(如字符串或数字) ------------------ ### 四、**最终结论** #### 写法无语法错误 ✅,但需注意: 1. **数据重复风险** ➔ 根据业务需求决定是否去重 2. **NULL值处理** ➔ 确保应用层能正确处理 `notes` 为NULL的情况 3. **参数校验** ➔ 确保 `#{input.notesUser}` 有效传递 #### 优化方案示例(去重): ```sql SELECT caid.*, bcas.notes FROM cljn_account_info_data caid LEFT JOIN ( SELECT account_id, MAX(set_val) AS notes -- 取最新或特定一条备注 FROM browser_customer_account_set WHERE jh_user_id = #{input.notesUser} AND set_type = 0 GROUP BY account_id -- 按account_id去重 ) bcas ON bcas.account_id = caid.account_id ```
阅读全文

相关推荐

select a.*, b.name activityName, c.name productName, c.member_max memberMax, d.status as complete, group_concat(if(e.face_value is null, "", e.face_value) separator "\n") as rewardAmount, group_concat(if(e.coupon_code is null, "", e.coupon_code ) separator "\n") as couponCode , group_concat(if(e.coupon_id is null, "", e.coupon_id) separator "\n") as caId from marketing_group_tool_group_member a left join marketing_group_tool_group_info d on a.group_id = d.id left join marketing_group_tool_activity b on a.activity_id = b.activity_id left join marketing_group_tool_product_base c on a.product_id = c.product_id left join marketing_group_tool_send_coupon_record e on (a.group_id = e.group_id and a.card_no = e.card_no) left join wx_recommend_organization organization on b.organization_id = organization.id where ((organization.tree_id between 2002000000000000 and 2002999999999999) or (organization.tree_id between 1000000000000000 and 1999999999999999) or (organization.tree_id between 2000000000000000 and 2999999999999999) or (organization.tree_id between 3000000000000000 and 3999999999999999) or (organization.tree_id between 4000000000000000 and 4999999999999999) or (organization.tree_id between 6000000000000000 and 6999999999999999) or (organization.tree_id between 5000000000000000 and 5999999999999999) or (organization.tree_id between 10000000000000000 and 10999999999999999) or (organization.tree_id between 8000000000000000 and 8999999999999999) or (organization.tree_id between 9000000000000000 and 9999999999999999) or (organization.tree_id between 11000000000000000 and 11999999999999999) or (organization.tree_id between 12000000000000000 and 12999999999999999) or (organization.tree_id between 13000000000000000 and 13999999999999999) or (organization.tree_id between 14000000000000000 and 14999999999999999) or (organization.tree_id between 15000000000000000 and 15999999999999999) or (organization.tree_id between 16000000000000000 and 16999999999999999) or (organization.tree_id between 17000000000000000 and 17999999999999999) ) and 1 = 1 group by a.id, a.activity_id , a.group_id , a.product_id , a.activity_referral_code, a.product_referral_code , a.openid , a.unionid , a.nickname , a.head_img , a.mobile , a.is_sub_buy , a.is_sub_progress , a.is_sub_success , a.sort , a.card_no , a.create_time , a.is_received_notice , a.is_received_progress , a.is_received_success , b.name, c.name, c.member_max , d.status order by a.id desc limit 0,20;

上面的代码我用如下方式请求: package com.sina.rta; import com.google.protobuf.ByteString; import com.google.protobuf.util.JsonFormat; import com.sina.rta.proto.IosBaiduRta; import org.junit.Test; import java.io.IOException; /** * @author xinxin16 */ public class SdpaIosBaiduTest { @Test public void generateData() throws IOException { IosBaiduRta.RtaApiRequest req1 = IosBaiduRta.RtaApiRequest.newBuilder() .setToken("") .setDeviceInfo(IosBaiduRta.DeviceInfo.newBuilder() .addCaidInfo(IosBaiduRta.CaidInfo.newBuilder() .setCaidVersion(ByteString.copyFrom("20230330".getBytes())) .setCaid(ByteString.copyFrom("caid_test_rta1111_2".getBytes()) ).build()) .addCaidInfo(IosBaiduRta.CaidInfo.newBuilder() .setCaidVersion(ByteString.copyFrom("20250625".getBytes())) .setCaid(ByteString.copyFrom("caid_test_rta1111_3".getBytes()) ).build()) // .addCaidInfo(IosBaiduRta.CaidInfo.newBuilder() // .setCaidVersion(ByteString.copyFrom("20220111".getBytes())) // .setCaid(ByteString.copyFrom("247ed2630465c6f537eac277fcf00bdc".getBytes()) // ).build()) // .addCaidInfo(IosBaiduRta.CaidInfo.newBuilder() // .setCaidVersion(ByteString.copyFrom("20230330".getBytes())) // .setCaid(ByteString.copyFrom("6391e6a7e8f3afa269104e999bb554d6".getBytes()) // ).build()) // .setIdfa(ByteString.copyFrom("09b1".getBytes())) // .setIdfaMd5(ByteString.copyFrom("09b1".getBytes())) // .setIdfa(ByteString.copyFrom("123123123".getBytes())) ) .setSignTime(1692261832L) .setQid(7822518873084182062L) .setOsType(IosBaiduRta.OsType.IOS) .setDeviceIdMd5("0cd769e073b7cf6a627a959329a0e1b1") .build(); System.out.println(JsonFormat.printer().print(req1)); System.out.println("========================="); // System.out.println(WebUtils.doPostProtoBaidu("http://127.0.0.1:6655/weibo/baidu_rta_sdpa", req1.toByteArray(), 5000, 10000)); // System.out.println(WebUtils.doPostProtoBaidu("http://10.114.18.185:6655/weibo/baidu_rta_sdpa", req1.toByteArray(), 5000, 10000)); // System.out.println(WebUtils.doPostProtoBaidu("https://rtacre.sina.cn/weibo/baidu_rta_sdpa", req1.toByteArray(), 5000, 10000)); System.out.println(WebUtils.doPostProtoBaidu("http://10.116.224.92:6655/weibo/baidu_rta_sdpa", req1.toByteArray(), 5000, 10000)); } } 会走到哪一步

zip
标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能

最新推荐

recommend-type

springboot智能在线预约挂号系统【附万字论文+PPT+包部署+录制讲解视频】.zip

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
recommend-type

基于机器学习方法的信用风险评估体系构建与实现

在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
recommend-type

橙色s()_Orange's一个操作系统的实现(随书光盘).zip

橙色s()_Orange's一个操作系统的实现(随书光盘).zip
recommend-type

perl-Hash-Flatten-1.19-26.el8.tar.gz

# 适用操作系统:Centos8 #Step1、解压 tar -zxvf xxx.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
recommend-type

基于Arduino的智能4x4键盘门锁系统设计与实现

在这个项目中,我们将构建一个基于Arduino UNO的无钥匙门锁系统,该系统将使用一个4x4键盘来输入密钥,并控制一个伺服电机以开启或关闭门锁。以下是对该项目中所使用到的关键技术点的详细解释: ### Arduino UNO和Genuino UNO Arduino UNO和Genuino UNO是开源电子原型平台,基于易于使用的硬件和软件。它们使用ATmega328P微控制器,并拥有众多扩展板和模块兼容,这使得它们在创建各种项目,包括无钥匙门锁系统时,成为非常流行的选项。 ### 4x4键盘输入 4x4键盘由4行4列共16个按键组成,常用的输入方式包括矩阵键盘扫描。在无钥匙门锁系统中,4x4键盘用于输入密码。每个按键按下时,都会产生一个唯一的信号,系统会根据这些信号来确定输入的密码。使用矩阵键盘扫描技术,Arduino可以通过少数几个引脚来检测每个按键的动作,这大大简化了硬件连接。 ### 伺服电机 伺服电机(Tower Pro MG996R)是该项目中的执行器,用于控制门锁的开关。伺服电机可以精确地控制角度,非常适合用来驱动门锁机械部分进行旋转操作。通过编程,Arduino可以向伺服电机发送脉冲信号,从而控制其转动到指定的位置,比如90度用于解锁,0度用于上锁。 ### 跳线和面包板 为了简化电路连接,跳线(通用)和面包板(通用)被用作临时的原型搭建工具。跳线允许模块间进行快速且可重配置的连接,而面包板则提供了一个方便的平台来组建电路,不需要焊接。 ### LED指示灯和蜂鸣器 5毫米LED灯(红色和黄色)以及蜂鸣器都是用于提供用户反馈的组件。红色LED可以指示门锁已锁定,而黄色LED可以指示门锁已被解锁。蜂鸣器用于当输入错误的密码时发出警报声,提示用户输入不正确。 ### Adafruit标准LCD Adafruit标准LCD - 16x2白色蓝色用于显示系统的状态信息,比如“输入密码”、“门已开”或“门已锁”等提示。16x2的LCD表示它有16个字符宽度和2行字符高度,非常适合显示简短的文本信息。 ### Blynk软件应用程序 Blynk是一个为物联网项目设计的手机应用,可以通过Wi-Fi或蓝牙连接到Arduino等微控制器。在这个项目中,Blynk可以用来远程控制门锁,允许用户通过手机应用程序来输入密码解锁门锁。 ### 安全性和加密 这个项目特别提到了安全性的问题,因此在设计上需要考虑密码的加密和存储。为了避免密码被轻易破解,应该使用一种加密算法来保护存储在系统中的密码。同时,还应考虑如何安全地传输密码,尤其是如果使用Blynk这样的远程控制方法。 ### 电路方案和编程 构建这样一个系统需要对Arduino进行编程,以便它可以读取4x4键盘输入的密码,并通过编程逻辑控制伺服电机。编程时,需要编写代码以实现以下功能: 1. 初始化所有硬件组件,包括键盘、LED灯、蜂鸣器和LCD显示屏。 2. 设置键盘扫描程序,以检测按键输入。 3. 检查输入的密码是否正确,通过与存储在代码中的正确密码进行比较。 4. 控制伺服电机解锁或上锁门锁。 5. 使用LED灯和蜂鸣器提供适当的用户反馈。 6. 如果使用Blynk,则需要编写与Blynk服务器通信的代码,以及处理远程输入的密码。 ### 项目文件说明 - `source_code.c`:包含Arduino项目的源代码,用于编程和控制整个系统。 - `FpB_saOmaPgP-e187qEVsYgrz8Qy.png`:可能是项目的原理图或演示图,用于展示电路连接和布局。 - `项目展示.rar`:一个压缩文件,可能包含项目相关的视频、图像或其他演示文件,用于展示项目的实际运行效果。 - `原文地址.txt`:包含指向项目详细说明、教程或发布源的链接,方便用户查看更多项目细节或下载资源。 这个项目结合了多种技术,从物理输入设备的控制到系统软件逻辑编程,再到用户界面的设计,是物联网和嵌入式系统学习的一个很好的实例。通过实施这个项目,可以加深对Arduino平台、外围硬件组件以及简单安全系统的理解。
recommend-type

深入探索TypeScript类型验证与状态管理

### 深入探索 TypeScript 类型验证与状态管理 #### 1. Redux 与 React 组件中的状态管理 在 React 应用中,Redux 是管理状态的强大工具。`useSelector` 是 Redux 提供的一个钩子,它接收两个 TypeScript 泛型参数:整个状态的类型和返回值的类型。通过使用 `useSelector`,我们可以将组件所需的数据限制在必要范围内。例如: ```typescript const state = useSelector<VenueState, VenueState>((state) => state) ``` 这里,直接返回了整个状态
recommend-type

trace切片怎么对齐

由于提供的引用内容未涉及trace切片对齐的方法相关信息,以下是一般情况下trace切片对齐的常见方法: ### 时间戳对齐 确定一个共同的时间基准,将不同trace切片的时间戳映射到该基准上。可以通过找到所有trace切片中最早的时间戳作为起始点,然后将其他时间戳减去这个起始时间,从而实现相对时间的对齐。 ```python import pandas as pd # 假设有两个trace切片,每个切片是一个包含时间戳和事件的DataFrame trace1 = pd.DataFrame({ 'timestamp': [100, 110, 120], 'event': [
recommend-type

Flink与Kafka实时数据充实流测试指南

根据给定的文件信息,我们将详细讨论以下知识点: 1. Apache Flink和Kafka在实时数据处理中的应用: Apache Flink是一个开源的流处理框架,用于在高吞吐量下进行有状态的计算。它特别适合实时数据处理场景,能够快速地处理无边界和有边界的数据流。Kafka是一个分布式流处理平台,主要用于构建实时数据管道和流应用程序。Flink与Kafka结合使用时,可以实现高效且可靠的数据摄入与处理流程,从而完成复杂的实时数据转换和分析任务。 2. 实时数据充实(Data Enrichment)概念: 数据充实是数据工程中的一个常见概念,指的是通过添加额外信息来增强数据的过程。在实时数据流处理中,数据充实通常用于为原始数据添加元数据、上下文信息或其他相关数据,以便对数据进行更全面的分析。例如,在零售行业中,通过实时数据充实,可以将销售数据与库存数据、价格信息等进行关联,从而获取更有价值的业务洞察。 3. 实践操作的先决条件和环境配置: - 在安装Flink之前,应确保系统满足最低硬件要求,即至少4GB可用内存。这是因为实时数据处理和流计算可能会占用较多计算资源,特别是内存资源。 - 存储库中包含的脚本和命令应在Linux或OS X操作系统上执行,这说明了Flink环境对操作系统有一定的要求,以确保最佳的运行效率和兼容性。 - 执行存储库中的脚本前需要确保脚本文件权限正确,即文件应设置为可执行(chmod +x ./start.sh)。这是基本的Linux系统操作,确保脚本文件具有正确的权限,以便能够被系统执行。 4. 本地环境的搭建与运行: - 提供了一个名为“start.sh”的脚本,用于本地环境的搭建和运行。执行此脚本后,需要在浏览器中输入指定的地址(http://localhost:8080和http://localhost:8081),以访问运行中的Flink和Kafka界面。这表明了如何在本地机器上快速搭建和启动一个实时数据处理和展示平台。 - Flink和Kafka的界面地址用于在研讨会期间展示相关数据处理结果,说明了如何利用这些工具的可视化特性来更好地理解和分析数据流处理过程。 5. 内容的表达方式和格式: - 该存储库中的内容主要通过名为“flink-kafka-workshop1”的笔记本进行表达。笔记本格式为一种方便记录和展示数据处理过程的方式,它通常包含一系列的代码、命令和注释,以便开发者更好地理解每一步的操作和结果。 - 笔记本的格式方便进行编码练习和知识分享,它使得实时数据处理的步骤和过程可视化,并且可以作为教学材料和学习资源。 6. Dockerfile的使用: 虽然给定文件中没有直接提及Dockerfile的内容,但根据标签可以推断,该存储库或相关环境可能涉及使用Docker容器技术。Dockerfile用于编写指令集,以自动化构建Docker镜像的过程。它通常包含了操作系统环境配置、依赖安装、服务部署等步骤,用于创建一个可以运行Flink和Kafka等应用程序的轻量级、可移植的容器环境。这说明了如何利用现代的容器化技术来简化大数据应用的部署和分发。 综上所述,该存储库涉及的知识点广泛,包括了实时数据处理、数据丰富、系统环境配置、本地运行环境搭建以及Docker容器技术的应用。通过实践操作,学习者可以深入理解Flink和Kafka在实时数据处理场景下的工作原理和应用方法。
recommend-type

前端应用中异步数据处理与获取的实践指南

### 前端应用中异步数据处理与获取的实践指南 在现代前端开发中,异步数据处理和获取是常见的需求。本文将介绍如何使用 JavaScript 的 `async/await` 语法简化异步操作,以及如何在 Stimulus 和 React 应用中实现数据的获取和更新。 #### 1. 异步操作与 `async/await` 在 JavaScript 中,处理多个异步操作时,传统的 `then` 链式调用可能会使代码变得复杂。例如: ```javascript updateData() { fetch("/sold_out_concerts").then((response) => {
recommend-type

ref,toRef,toRefs区别?

ref、toRef、toRefs都是Vue 3中用于创建响应式数据的方法,它们的区别如下: - **创建数据类型及响应式原理**:ref用于生成值类型的响应式数据,是对原始数据的拷贝,修改ref数据时,模板中的视图会改变,但原始数据不变。当修改ref的数据时,通过其`.value`属性进行操作,模板中的视图会相应更新,但原始数据不受影响。定义基础类型的响应式数据通常使用ref。例如: ```vue <template> <div>{{ num }}</div> </template> <script setup> import { ref } from 'vue'; let origin