“tmpxft_000061d4_00000000-7_cutlassB_f32_aligned_k65536_dropout.cudafe1.cpp [4835/7459] Building CXX object caffe2\CMakeFiles\torch_cuda.dir\__\torch\csrc\jit\tensorexpr\cuda_codegen.cpp.obj E:\PyTorch_Build\pytorch\torch/csrc/jit/tensorexpr/ir.h(395): warning C4805: “==”: 在操作中将类型“c10::impl::ScalarTypeToCPPType<c10::ScalarType::Bool>::type”与类型“T”混合不安全 with [ T=int ] E:\PyTorch_Build\pytorch\torch/csrc/jit/tensorexpr/ir.h(395): note: 模板实例化上下文(最早的实例化上下文)为 E:\PyTorch_Build\pytorch\torch\csrc\jit\tensorexpr\cuda_codegen.cpp(147): note: 查看对正在编译的函数 模板 实例化“bool torch::jit::tensorexpr::immediateEquals<int>(const torch::jit::tensorexpr::ExprPtr &,T)”的引用 with [ T=int ] [4844/7459] Building CUDA object caffe2\CMakeFiles\torch_c...aten\src\ATen\native\quantized\cuda\FakeQuantizeCore.cu.ob FakeQuantizeCore.cu tmpxft_000011c8_00000000-7_FakeQuantizeCore.cudafe1.cpp [4850/7459] Building CUDA object caffe2\CMakeFiles\torch_c...aten\src\ATen\native\sparse\cuda\SparseCsrTensorMath.cu.ob SparseCsrTensorMath.cu tmpxft_00000e1c_00000000-7_SparseCsrTensorMath.cudafe1.cpp [4854/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\StorageMethods.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/StorageMethods.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\StorageMethods.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\StorageMethods.cpp E:\PyTorch_Build\pytorch\torch\csrc\StorageMethods.cpp(9): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4855/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\Storage.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/Storage.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\Storage.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\Storage.cpp E:\PyTorch_Build\pytorch\torch\csrc\Storage.cpp(10): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4856/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\Module.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/Module.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\Module.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\Module.cpp E:\PyTorch_Build\pytorch\torch\csrc\Module.cpp(34): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4872/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\native\cuda\group_norm_kernel.cu.obj group_norm_kernel.cu tmpxft_00005adc_00000000-7_group_norm_kernel.cudafe1.cpp [4873/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\UfuncCUDA_add.cu.obj UfuncCUDA_add.cu tmpxft_00006bdc_00000000-7_UfuncCUDA_add.cudafe1.cpp [4875/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\native\cuda\Unique.cu.obj Unique.cu tmpxft_00000658_00000000-7_Unique.cudafe1.cpp ninja: build stopped: subcommand failed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch>” “PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env Error: [Errno 13] Permission denied: 'E:\\PyTorch_Build\\pytorch\\rtx5070_env\\Scripts\\python.exe' PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openblas 3 channel Terms of Service accepted Retrieving notices: done Channels: - conda-forge - defaults - nvidia - pytorch-nightly Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: C:\Miniconda3 added / updated specs: - openblas The following packages will be downloaded: package | build ---------------------------|----------------- libopenblas-0.3.30 |pthreads_ha4fe6b2_2 3.8 MB conda-forge openblas-0.3.30 |pthreads_h4a7f399_2 262 KB conda-forge ------------------------------------------------------------ Total: 4.0 MB The following NEW packages will be INSTALLED: libopenblas conda-forge/win-64::libopenblas-0.3.30-pthreads_ha4fe6b2_2 openblas conda-forge/win-64::openblas-0.3.30-pthreads_h4a7f399_2 Proceed ([y]/n)? y Downloading and Extracting Packages: Preparing transaction: done Verifying transaction: done Executing transaction: done (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置cuDNN路径 (rtx5070_env) PS E:\PyTorch_Build\pytorch> @" >> set(CUDNN_INCLUDE_DIR "E:/Program Files/NVIDIA/CUNND/v9.12/include/13.0") >> set(CUDNN_LIBRARY "E:/Program Files/NVIDIA/CUNND/v9.12/lib/13.0/x64/cudnn64_9.lib") >> message(STATUS "Applied custom cuDNN settings") >> "@ | Set-Content set_cudnn.cmake (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 在CMakeLists.txt第一行插入引用 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $cmakeFile = "CMakeLists.txt" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $content = Get-Content $cmakeFile (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent = @() (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent += "include(set_cudnn.cmake)" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent += $content (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent | Set-Content $cmakeFile (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装OpenBLAS (rtx5070_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openblas -y 3 channel Terms of Service accepted Channels: - conda-forge - defaults - nvidia - pytorch-nightly Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> Write-Host "✅ 构建环境优化完成" -ForegroundColor Green ✅ 构建环境优化完成 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 检查GPU支持状态 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; print(f'CUDA可用: {torch.cuda.is_available()}')" Traceback (most recent call last): File "<string>", line 1, in <module> File "E:\PyTorch_Build\pytorch\torch\__init__.py", line 415, in <module> from torch._C import * # noqa: F403 ImportError: DLL load failed while importing _C: 找不到指定的模块。 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 查看已完成任务比例 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $total = 7459 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $completed = (Get-ChildItem build -Recurse -File | Measure-Object).Count (rtx5070_env) PS E:\PyTorch_Build\pytorch> $percent = [math]::Round(($completed/$total)*100, 2) (rtx5070_env) PS E:\PyTorch_Build\pytorch> Write-Host "构建进度: $completed/$total ($percent%)" 构建进度: 12552/7459 (168.28%) (rtx5070_env) PS E:\PyTorch_Build\pytorch>”

时间: 2025-09-03 16:52:32 AIGC 浏览: 32
<think> 我们遇到了编译错误,主要是多个文件(StorageMethods.cpp, Storage.cpp, Module.cpp)中无法打开包括文件: “libshm.h”: No such file or directory。 同时,在构建过程中,我们注意到之前创建的libshm_windows目录和文件似乎没有起作用,因为编译时仍然在寻找libshm.h。 分析: 在PyTorch的源码中,libshm.h原本位于`torch/lib/libshm`目录中(在Linux/macOS平台上)。在Windows上,PyTorch默认没有提供这个文件,所以我们之前创建了一个空的libshm_windows目录来绕过CMake的目录检查。 但是,现在编译过程中需要包含libshm.h,而这个文件在我们的虚拟实现中并不存在。 解决方案: 我们需要在之前创建的`torch/lib/libshm_windows`目录中提供一个`libshm.h`文件,并在其中提供必要的声明(至少是编译所需的最小声明)。 步骤: 1. 在`torch/lib/libshm_windows`目录下创建`libshm.h`文件。 2. 在文件中声明编译错误中涉及到的函数和类(至少是StorageMethods.cpp, Storage.cpp, Module.cpp中引用的部分)。由于Windows不支持共享内存的方式,我们可以提供空实现或返回错误的实现。 注意:在Windows上,PyTorch通常使用文件映射而不是共享内存,因此这些函数在Windows上可能不会被调用。但是为了通过编译,我们需要提供声明。 创建`libshm.h`文件的内容如下(最小化实现): ```c #pragma once #include <string> // 定义一个空的结构体,用于通过编译 struct THManagedMapAllocator { // 空结构体,仅用于声明 }; // 声明函数,返回nullptr或空指针,仅用于通过编译 THManagedMapAllocator* THManagedMapAllocator::makeDataPtr( const char* deviceStr, void* data, size_t size, const char* handle) { return nullptr; } // 声明一个函数,返回空字符串,仅用于通过编译 std::string THPStorage_(sharedCacheFilename)() { return ""; } ``` 但是请注意,上述代码可能不够,因为不同的源文件可能包含不同的函数。根据错误来源文件,我们需要补充: 在`StorageMethods.cpp`和`Storage.cpp`中,它们试图包含`libshm.h`,然后使用其中的函数。我们可以在`libshm.h`中提供这些函数的声明,并在`libshm_windows.cpp`中提供定义(空实现或返回错误)。 然而,由于我们之前已经创建了一个`libshm_windows.cpp`,我们现在需要将这两个文件(`libshm.h`和`libshm_windows.cpp`)结合起来。 具体步骤: 1. 在`torch/lib/libshm_windows`目录下创建`libshm.h`文件,内容如下(提供必要的声明): ```cpp // torch/lib/libshm_windows/libshm.h #pragma once #include <string> #include <c10/core/Allocator.h> struct THManagedMapAllocator { static c10::DataPtr makeDataPtr(const char* deviceStr, void* data, size_t size, const std::string& handle); }; std::string THPStorage_sharedCacheFilename(); ``` 2. 修改之前创建的`libshm_windows.cpp`文件,提供这些函数的实现(空实现或返回错误): ```cpp // torch/lib/libshm_windows/libshm_windows.cpp #include "libshm.h" #include <c10/core/Allocator.h> #include <stdexcept> c10::DataPtr THManagedMapAllocator::makeDataPtr(const char* deviceStr, void* data, size_t size, const std::string& handle) { // 在Windows上不支持,返回空DataPtr return c10::DataPtr(); } std::string THPStorage_sharedCacheFilename() { // 返回空字符串表示不支持 return ""; } ``` 3. 修改`torch/lib/libshm_windows/CMakeLists.txt`,将新的头文件包含进去,并确保源文件包含头文件: ```cmake cmake_minimum_required(VERSION 3.10) project(libshm_windows) add_library(shm_windows STATIC libshm_windows.cpp) # 添加头文件目录,以便其他文件可以包含 target_include_directories(shm_windows PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}) set_target_properties(shm_windows PROPERTIES POSITION_INDEPENDENT_CODE ON ) ``` 4. 重新运行构建。 注意:由于我们添加了新的头文件,需要重新运行CMake(或者如果使用ninja,它会自动检测新增文件并重新编译相关部分)。 另外,我们看到在构建过程中还有关于权限的问题(创建虚拟环境时),以及最后测试导入torch失败,这些可能是由于环境未正确激活或构建未完成导致的。先解决编译错误。 由于构建已经中断,我们需要清除编译错误后重新开始构建(或者继续构建)。由于我们只修改了`libshm_windows`模块,可以尝试只重新编译该模块,但为了安全,建议重新生成并构建。 重新构建步骤: ```powershell # 清除构建目录(可选,如果问题依然存在) (rtx5070_env) PS E:\PyTorch_Build\pytorch> Remove-Item build -Recurse -Force (rtx5070_env) PS E:\PyTorch_Build\pytorch> mkdir build (rtx5070_env) PS E:\PyTorch_Build\pytorch> cd build (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> cmake -GNinja -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=E:\PyTorch_Build\pytorch\torch -DCMAKE_PREFIX_PATH=E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages -DCUDNN_INCLUDE_DIR=E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0 -DCUDNN_LIBRARY=E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib -DCUDNN_ROOT=E:\Program Files\NVIDIA\CUNND\v9.12 -DPython_EXECUTABLE=E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -DPython_NumPy_INCLUDE_DIR=E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -DTORCH_BUILD_VERSION=2.9.0a0+git2d31c3d -DTORCH_CUDA_ARCH_LIST=8.9 -DUSE_NUMPY=True -DUSE_OPENBLAS=1 .. (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> ninja install ``` 如果上述步骤后仍然出现其他错误,再根据错误日志进行分析。 注意:在Windows上编译PyTorch是一个复杂的过程,可能会遇到各种问题。如果问题持续,可以考虑使用官方提供的二进制包或者使用Linux系统进行编译。 最后,关于导入torch失败的问题(ImportError: DLL load failed while importing _C: 找不到指定的模块),这通常是因为编译生成的DLL文件依赖的其他DLL没有在PATH中。在运行之前,需要将CUDA的bin目录(如E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin)添加到PATH中。 但是,在编译过程中我们并不需要运行,所以先解决编译问题。 由于构建日志显示已经构建了大部分(4850/7459),我们可以尝试只重新编译失败的部分,但为了确保一致性,建议完整重新构建。 总结:添加libshm.h头文件及其实现,然后重新构建。 </think> 针对编译错误,主要问题是缺少`libshm.h`头文件,这是Windows平台特有的问题。我们需要为PyTorch提供Windows兼容的共享内存实现。 ### 完整解决方案 #### 1. 创建缺失的头文件 在`torch/lib/libshm_windows`目录下创建`libshm.h`文件: ```cpp:torch/lib/libshm_windows/libshm.h #pragma once // Windows平台专用共享内存实现 #ifdef _WIN32 #include <windows.h> #include <string> struct THManagedMapAllocator { static void* makeDataPtr(const char* device, void* data, size_t size, const char* handle); }; inline void* THManagedMapAllocator::makeDataPtr(const char* device, void* data, size_t size, const char* handle) { // Windows共享内存实现逻辑 return nullptr; } inline std::string THPStorage_sharedCacheFilename() { return "torch_shm_cache"; } #endif // _WIN32 ``` #### 2. 更新CMake配置 在`torch/lib/libshm_windows/CMakeLists.txt`中添加头文件路径: ```cmake:torch/lib/libshm_windows/CMakeLists.txt cmake_minimum_required(VERSION 3.10) project(libshm_windows) add_library(shm_windows STATIC libshm_windows.cpp) # 添加头文件目录 target_include_directories(shm_windows PUBLIC ${CMAKE_CURRENT_SOURCE_DIR} ) set_target_properties(shm_windows PROPERTIES POSITION_INDEPENDENT_CODE ON ) ``` #### 3. 修复Python环境问题 创建虚拟环境修复脚本: ```powershell:fix_venv.ps1 # 删除损坏的虚拟环境 Remove-Item rtx5070_env -Recurse -Force -ErrorAction SilentlyContinue # 创建新环境 python -m venv rtx5070_env # 激活环境 .\rtx5070_env\Scripts\Activate.ps1 # 安装必要依赖 pip install numpy ninja pybind11 ``` #### 4. 完整构建脚本 ```powershell:build_pytorch.ps1 # 设置环境变量 $env:CUDA_PATH = "E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0" $env:Path = "$env:CUDA_PATH\bin;$env:Path" # 修复虚拟环境 .\fix_venv.ps1 # 配置构建参数 $cmake_args = @( "-GNinja", "-DBUILD_PYTHON=ON", "-DUSE_CUDA=ON", "-DUSE_CUDNN=ON", "-DCUDNN_INCLUDE_DIR=E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0", "-DCUDNN_LIBRARY=E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib", "-DTORCH_CUDA_ARCH_LIST=8.9", "-DCMAKE_BUILD_TYPE=Release" ) -join " " # 配置构建 mkdir build -Force cd build cmake .. $cmake_args # 开始构建 ninja install # 验证安装 cd .. python -c "import torch; print(f'PyTorch版本: {torch.__version__}, CUDA可用: {torch.cuda.is_available()}')" ``` ### 关键问题解释 1. **libshm.h缺失问题**: - Windows平台不支持Unix风格的共享内存 - 我们提供了Windows专用的空实现来满足编译依赖 - 实际运行时PyTorch会使用Windows的内存映射文件代替 2. **虚拟环境损坏问题**: - 权限错误导致虚拟环境创建失败 - 脚本会完全重建环境并安装必要依赖 3. **CUDA相关配置**: - 显式指定cuDNN路径确保能被正确找到 - 设置TORCH_CUDA_ARCH_LIST匹配RTX 5070的8.9架构 ### 执行流程 ```powershell # 授予执行权限 Set-ExecutionPolicy Bypass -Scope Process -Force # 运行完整构建 .\build_pytorch.ps1 ``` ### 验证安装 构建完成后运行测试: ```powershell python -c "import torch; print(torch.rand(5).cuda())" ```
阅读全文

相关推荐

set -e net_name=yolov8n input_w=320 input_h=224 # mean: 0, 0, 0 # std: 255, 255, 255 # mean # 1/std # mean: 0, 0, 0 # scale: 0.00392156862745098, 0.00392156862745098, 0.00392156862745098 mkdir -p workspace cd workspace # convert to mlir model_transform.py \ --model_name ${net_name} \ --model_def ../${net_name}.onnx \ --input_shapes [[1,3,${input_h},${input_w}]] \ --mean "0,0,0" \ --scale "0.00392156862745098,0.00392156862745098,0.00392156862745098" \ --keep_aspect_ratio \ --pixel_format rgb \ --channel_format nchw \ --output_names "/model.22/dfl/conv/Conv_output_0,/model.22/Sigmoid_output_0" \ --test_input ./qianwen2.5/1.jpg\ --test_result ${net_name}_top_outputs.npz \ --tolerance 0.99,0.99 \ --mlir ${net_name}.mlir # export bf16 model # not use --quant_input, use float32 for easy coding model_deploy.py \ --mlir ${net_name}.mlir \ --quantize BF16 \ --processor cv181x \ --test_input ${net_name}_in_f32.npz \ --test_reference ${net_name}_top_outputs.npz \ --model ${net_name}_bf16.cvimodel echo "calibrate for int8 model" # export int8 model run_calibration.py ${net_name}.mlir \ --dataset ../images \ --input_num 200 \ -o ${net_name}_caliTraceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/tpu_mlir/python/tools/model_transform.py", line 291, in <module> tool = get_model_transform(args) File "/usr/local/lib/python3.10/dist-packages/tpu_mlir/python/tools/model_transform.py", line 226, in get_model_transform preprocessor.config(**vars(args)) File "/usr/local/lib/python3.10/dist-packages/tpu_mlir/python/utils/preprocess.py", line 218, in config self.mean = np.array([float(s) for sublist in unknown_params for s in sublist.split(',')], dtype=np.float32) File "/usr/local/lib/python3.10/dist-packages/tpu_mlir/python/utils/preprocess.py", line 218, in self.mean = np.array([float(s) for sublist in unknown_params for s in sublist.split(',')], dtype=np.float32) ValueError: could not convert string to float: 'y'

01:02:33 **** Incremental Build of configuration Debug for project FFT-T-OLED **** make -j20 all arm-none-eabi-gcc "../Core/Src/main.c" -mcpu=cortex-m3 -std=gnu11 -g3 -DDEBUG -DUSE_HAL_DRIVER -DSTM32F103xB -c -I../Core/Inc -I../Drivers/STM32F1xx_HAL_Driver/Inc/Legacy -I../Drivers/STM32F1xx_HAL_Driver/Inc -I../Drivers/CMSIS/Device/ST/STM32F1xx/Include -I../Drivers/CMSIS/Include -O0 -ffunction-sections -fdata-sections -Wall -fstack-usage -fcyclomatic-complexity -MMD -MP -MF"Core/Src/main.d" -MT"Core/Src/main.o" --specs=nano.specs -mfloat-abi=soft -mthumb -o "Core/Src/main.o" ../Core/Src/main.c: In function 'main': ../Core/Src/main.c:177:3: warning: implicit declaration of function 'OLED_Init' [-Wimplicit-function-declaration] 177 | OLED_Init(); | ^~~~~~~~~ ../Core/Src/main.c:178:3: warning: implicit declaration of function 'OLED_Clear' [-Wimplicit-function-declaration] 178 | OLED_Clear(); | ^~~~~~~~~~ ../Core/Src/main.c:179:3: warning: implicit declaration of function 'OLED_ShowString' [-Wimplicit-function-declaration] 179 | OLED_ShowString(1, 1, "Init OK"); | ^~~~~~~~~~~~~~~ arm-none-eabi-g++ -o "FFT-T-OLED.elf" @"objects.list" -mcpu=cortex-m3 -T"D:\DianSai\FFT-T-OLED\STM32F103C8TX_FLASH.ld" -Wl,-Map="FFT-T-OLED.map" -Wl,--gc-sections -static --specs=nano.specs -mfloat-abi=soft -mthumb -u _printf_float -Wl,--start-group -lc -lm -lstdc++ -lsupc++ -Wl,--end-group D:/STM32CubeIDE_1.17.0/STM32CubeIDE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-stm32.12.3.rel1.win32_1.1.0.202410251130/tools/bin/../lib/gcc/arm-none-eabi/12.3.1/../../../../arm-none-eabi/bin/ld.exe: ./Core/Src/main.o: in function FFT': D:/DianSai/FFT-T-OLED/Debug/../Core/Src/main.c:67: multiple definition of FFT'; ./Core/Src/FFT.o:D:/DianSai/FFT-T-OLED/Debug/../Core/Src/FFT.c:13: first defined here collect2.exe: error: ld returned 1 exit status make: *** [makefile:88: FFT-T-OLED.elf] Error 1 "make -j20 all" terminated with exit code 2. Build might be incomplete. 01:02:37 Build Failed. 2 errors, 3 warnings. (took 4s.239ms)

在使用STM32CubeIDE进行Build时,报错“arm_math.h”找不着,但是“arm_math.h”却存在于Project下的Drivers/CMSIS/DSP/Include文件夹中,这怎么处理? arm-none-eabi-gcc "../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c" -mcpu=cortex-m0 -std=gnu11 -g3 -DDEBUG -DUSE_HAL_DRIVER -DSTM32F030xC -c -I../Core/Inc -I../Drivers/STM32F0xx_HAL_Driver/Inc -I../Drivers/STM32F0xx_HAL_Driver/Inc/Legacy -I../Drivers/CMSIS/Device/ST/STM32F0xx/Include -I../Drivers/CMSIS/Include -O0 -ffunction-sections -fdata-sections -Wall -fstack-usage -fcyclomatic-complexity -MMD -MP -MF"Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.d" -MT"Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.o" --specs=nano.specs -mfloat-abi=soft -mthumb -o "Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.o" ../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c:29:10: fatal error: arm_math.h: No such file or directory 29 | #include "arm_math.h" | ^~~~~~~~~~~~ compilation terminated. make: *** [Drivers/CMSIS/DSP/Source/MatrixFunctions/subdir.mk:91: Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.o] Error 1 make: *** Waiting for unfinished jobs.... ../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c:29:10: fatal error: arm_math.h: No such file or directory 29 | #include "arm_math.h" | ^~~~~~~~~~~~ compilation terminated. make: *** [Drivers/CMSIS/DSP/Source/MatrixFunctions/subdir.mk:91: Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.o] Error 1 ../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c:29:10: fatal error: arm_math.h: No such file or directory 29 | #include "arm_math.h" | ^~~~~~~~~~~~ compilation terminated. make: *** [Drivers/CMSIS/DSP/Source/MatrixFunctions/subdir.mk:91: Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.o] Error 1 ../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c:29:10: fatal error: arm_math.h: No such file or directory 29 | #include "arm_math.h" | ^~~~~~~~~~~~ compilation terminated. make: *** [Drivers/CMSIS/DSP/Source/MatrixFunctions/subdir.mk:91: Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.o] Error 1 "make -j12 all" terminated with exit code 2. Build might be incomplete.

Thread 5 (LWP 2736): #0 0xb6bdcc74 in __poll_nocancel () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/lib/libc.so.0 #1 0xb6bdccbe in poll () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/lib/libc.so.0 #2 0xb6f1413e in Curl_poll () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/usr/lib/libcurl.so.4 #3 0xb6f0e864 in multi_wait.part () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/usr/lib/libcurl.so.4 #4 0xb6f0e91a in curl_multi_poll () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/usr/lib/libcurl.so.4 #5 0xb6efb40c in curl_easy_perform () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/usr/lib/libcurl.so.4 #6 0x0001efcc in https_single_post (ip=ip@entry=0x270538 "192.168.137.11", port=port@entry=0x260e40 "443", stok=stok@entry=0x0, with_stok=with_stok@entry=0, with_ds=with_ds@entry=0, req_data=0x29b7c8 "{ \"method\": \"do\", \"login\": { \"username\": \"admin\", \"password\": \"7A2F15B226DE6B458E94F4BE95EBA742\", \"passwdType\": \"md5\" } }", res_data=res_data@entry=0xb63c9dd0 "", timeout=timeout@entry=40000) at http_client.c:458 #7 0x00025f32 in request_ipc (context=context@entry=0x1042bc <context_array>, channel_id=<optimized out>, json_data=json_data@entry=0x1a6c80) at chm.c:2383 #8 0x00026332 in online_update_check (context=0x1042bc <context_array>, param=<optimized out>) at chm.c:4171 #9 0x0001739e in do_keyword_action (param=0x1aacd8, action=0x2485b0 "online_update_check", module_node=<optimized out>, context=<optimized out>) at ds_parser.c:2505 #10 ds_handle_method_do (context=0x1042bc <context_array>) at ds_parser.c:2882 #11 0x000194e4 in ds_signal_handle (sockfd=<optimized out>) at ds_parser.c:3670 #12 0x00015a7c in thd_pool_func (pool=0x2d0e78) at thd_pool.c:286 #13 0xb6c14d08 in start_thread () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/lib/libc.so.0 #14 0xb6bdbc1a in clone () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/lib/libc.so.0 Backtrace stopped: previous frame identical to this frame (corrupt stack?) 发现线程5里面也有用到curl_easy_perform ,结合这个线程栈信息,分析一下之前core文件崩溃的地方会不会与这有关

zhu@zhu:~/myros/catkin_ws$ roslaunch duckiebot duckiebot.launch ... logging to /home/zhu/.ros/log/6dc173e4-5cb1-11f0-8f32-7905a10639cf/roslaunch-zhu-24853.log Checking log directory for disk usage. This may take a while. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://zhu:34767/ SUMMARY ======== PARAMETERS * /duckietown/duckiebot_node/anonymous: False * /duckietown/duckiebot_node/camera_rand: False * /duckietown/duckiebot_node/distortion: False * /duckietown/duckiebot_node/domain_rand: False * /duckietown/duckiebot_node/draw_bbox: False * /duckietown/duckiebot_node/draw_curve: False * /duckietown/duckiebot_node/dynamics_rand: False * /duckietown/duckiebot_node/env-name: Duckietown * /duckietown/duckiebot_node/frame_skip: 1 * /duckietown/duckiebot_node/map-name: small_loop * /duckietown/duckiebot_node/seed: 1 * /rosdistro: noetic * /rosversion: 1.17.4 NODES /duckietown/ duckiebot_node (duckiebot/duckiebot_node.py) auto-starting new master process[master]: started with pid [24868] ROS_MASTER_URI=http://localhost:11311 setting /run_id to 6dc173e4-5cb1-11f0-8f32-7905a10639cf process[rosout-1]: started with pid [24885] started core service [/rosout] process[duckietown/duckiebot_node-2]: started with pid [24892] Traceback (most recent call last): File "/home/zhu/myros/catkin_ws/devel/lib/duckiebot/duckiebot_node.py", line 15, in <module> exec(compile(fh.read(), python_script, 'exec'), context) File "/home/zhu/myros/catkin_ws/src/duckiebot/src/duckiebot_node.py", line 88, in <module> duckiebot = Duckiebot() File "/home/zhu/myros/catkin_ws/src/duckiebot/src/duckiebot_node.py", line 32, in __init__ self.env = DuckietownEnv( File "/home/zhu/桌面/zhu/gym-duckietown/gym_duckietown/envs/duckietown_env.py", line 24, in __init__ Simulator.__init__(self, **kwargs) TypeError: __init__() got an unexpected keyword argument 'camera_rand' [duckietown/duckiebot_node-2] process has died [pid 24892, exit code 1, cmd /home/zhu/myros/catkin_ws/devel/lib/duckiebot/duckiebot_node.py __name:=duckiebot_node __log:=/home/zhu/.ros/log/6dc173e4-5cb1-11f0-8f32-7905a10639cf/duckietown-duckiebot_node-2.log]. log file: /home/zhu/.ros/log/6dc173e4-5cb1-11f0-8f32-7905a10639cf/duckietown-duckiebot_node-2*.log

ros2 launch moveit_setup_assistant setup_assistant.launch.py [INFO] [launch]: All log files can be found below /home/ros2/.ros/log/2025-03-10-14-12-15-019521-Humble-25238 [INFO] [launch]: Default logging verbosity is set to INFO [INFO] [moveit_setup_assistant-1]: process started with pid [25239] [moveit_setup_assistant-1] qt.qpa.plugin: Could not find the Qt platform plugin "wayland" in "" [moveit_setup_assistant-1] terminate called after throwing an instance of 'ament_index_cpp::PackageNotFoundError' [moveit_setup_assistant-1] what(): package 'diyiban.SLDASM' not found, searching: [/opt/ros/humble] [moveit_setup_assistant-1] Stack trace (most recent call last): [moveit_setup_assistant-1] #31 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a572e46, in QApplicationPrivate::sendMouseEvent(QWidget*, QMouseEvent*, QWidget*, QWidget*, QWidget**, QPointer<QWidget>&, bool, bool) [moveit_setup_assistant-1] #30 Object "/usr/lib/x86_64-linux-gnu/libQt5Core.so.5.15.3", at 0x70f3298b9e39, in QCoreApplication::notifyInternal2(QObject*, QEvent*) [moveit_setup_assistant-1] #29 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a574363, in QApplication::notify(QObject*, QEvent*) [moveit_setup_assistant-1] #28 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a56c712, in QApplicationPrivate::notify_helper(QObject*, QEvent*) [moveit_setup_assistant-1] #27 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a5af4ed, in QWidget::event(QEvent*) [moveit_setup_assistant-1] #26 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a6641e6, in QAbstractButton::mouseReleaseEvent(QMouseEvent*) [moveit_setup_assistant-1] #25 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a663fc3, in [moveit_setup_assistant-1] #24 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a66239d, in [moveit_setup_assistant-1] #23 Object "/usr/lib/x86_64-linux-g

ffmpeg音频编码学习std::vector<uint8_t> convert_pcm_to_alaw(uint8_t *pcm_data, int pcm_size, int input_sample_rate, AVSampleFormat input_fmt, const AVChannelLayout &input_ch_layout) { std::vector<uint8_t> audio_data; //----------------------------- // 1. 初始化编码器(G.711 A-law) //----------------------------- const AVCodec *enc_codec = avcodec_find_encoder(AV_CODEC_ID_PCM_ALAW); AVCodecContext *enc_ctx = avcodec_alloc_context3(enc_codec); enc_ctx->sample_rate = 8000; // 目标采样率 enc_ctx->sample_fmt = AV_SAMPLE_FMT_S16; // 编码器支持的输入格式 av_channel_layout_copy(&enc_ctx->ch_layout, &AV_CHANNEL_LAYOUT_MONO); // 单声道 avcodec_open2(enc_ctx, enc_codec, nullptr); //----------------------------- // 2. 初始化重采样器(SwrContext) //----------------------------- SwrContext *swr = swr_alloc(); av_opt_set_chlayout(swr, "in_chlayout", &input_ch_layout, 0); av_opt_set_int(swr, "in_sample_rate", input_sample_rate, 0); av_opt_set_sample_fmt(swr, "in_sample_fmt", input_fmt, 0); av_opt_set_chlayout(swr, "out_chlayout", &enc_ctx->ch_layout, 0); av_opt_set_int(swr, "out_sample_rate", enc_ctx->sample_rate, 0); av_opt_set_sample_fmt(swr, "out_sample_fmt", enc_ctx->sample_fmt, 0); swr_init(swr); //----------------------------- // 3. 将输入的PCM数据封装到AVFrame //----------------------------- AVFrame *input_frame = av_frame_alloc(); // 更名:避免"解码"歧义 input_frame->format = input_fmt; av_channel_layout_copy(&input_frame->ch_layout, &input_ch_layout); input_frame->nb_samples = pcm_size / (av_get_bytes_per_sample(input_fmt) * input_ch_layout.nb_channels); av_frame_get_buffer(input_frame, 0); memcpy(input_frame->data[0], pcm_data, pcm_size); //----------------------------- // 4. 重采样到目标格式(8kHz单声道S16) //----------------------------- AVFrame *resampled_frame = av_frame_alloc(); resampled_frame->nb_samples = swr_get_out_samples(swr, input_frame->nb_samples); resampled_frame->format = enc_ctx->sample_fmt; av_channel_layout_copy(&resampled_frame->ch_layout, &enc_ctx->ch_layout); av_frame_get_buffer(resampled_frame, 0); swr_convert(swr, resampled_frame->data, resampled_frame->nb_samples, (const uint8_t **)input_frame->data, input_frame->nb_samples); //----------------------------- // 5. 编码为G.711 A-law //----------------------------- AVPacket *enc_pkt = av_packet_alloc(); avcodec_send_frame(enc_ctx, resampled_frame); while (avcodec_receive_packet(enc_ctx, enc_pkt) >= 0) { audio_data.insert(audio_data.end(), enc_pkt->data, enc_pkt->data + enc_pkt->size); av_packet_unref(enc_pkt); } //----------------------------- // 6. 释放资源 //----------------------------- av_frame_free(&input_frame); av_frame_free(&resampled_frame); av_packet_free(&enc_pkt); avcodec_free_context(&enc_ctx); swr_free(&swr); return audio_data; } 这段代码有啥问题吗?

../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:51:29: error: 'SysTick' undeclared (first use in this function) 51 | JTEST_SYSTICK_RESET(SysTick); \ | ^~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:16:13: note: in definition of macro 'TEMPLATE_LOOP' 16 | body; \ | ^~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:54:9: note: in expansion of macro 'TEMPLATE_DO_ARR_LIKE' 54 | TEMPLATE_DO_ARR_LIKE( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:113:9: note: in expansion of macro 'TEMPLATE_DO_ARR_DESC' 113 | TEMPLATE_DO_ARR_DESC( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:51:9: note: in expansion of macro 'JTEST_SYSTICK_RESET' 51 | JTEST_SYSTICK_RESET(SysTick); \ | ^~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:160:13: note: in expansion of macro 'JTEST_COUNT_CYCLES' 160 | JTEST_COUNT_CYCLES( \ | ^~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:186:1: note: in expansion of macro 'DCT4_FIXED_POINT_DEFINE_TEST' 186 | DCT4_FIXED_POINT_DEFINE_TEST(q15, q15_t, dct4_); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_systick.h:83:13: error: 'SysTick_CTRL_ENABLE_Msk' undeclared (first use in this function) 83 | SysTick_CTRL_ENABLE_Msk | \ | ^~~~~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:16:13: note: in definition of macro 'TEMPLATE_LOOP' 16 | body; \ | ^~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:54:9: note: in expansion of macro 'TEMPLATE_DO_ARR_LIKE' 54 | TEMPLATE_DO_ARR_LIKE( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:113:9: note: in expansion of macro 'TEMPLATE_DO_ARR_DESC' 113 | TEMPLATE_DO_ARR_DESC( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:52:9: note: in expansion of macro 'JTEST_SYSTICK_START' 52 | JTEST_SYSTICK_START(SysTick); \ | ^~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:160:13: note: in expansion of macro 'JTEST_COUNT_CYCLES' 160 | JTEST_COUNT_CYCLES( \ | ^~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:186:1: note: in expansion of macro 'DCT4_FIXED_POINT_DEFINE_TEST' 186 | DCT4_FIXED_POINT_DEFINE_TEST(q15, q15_t, dct4_); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_systick.h:84:13: error: 'SysTick_CTRL_CLKSOURCE_Msk' undeclared (first use in this function) 84 | SysTick_CTRL_CLKSOURCE_Msk; /* Internal clk*/ \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:16:13: note: in definition of macro 'TEMPLATE_LOOP' 16 | body; \ | ^~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:54:9: note: in expansion of macro 'TEMPLATE_DO_ARR_LIKE' 54 | TEMPLATE_DO_ARR_LIKE( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:113:9: note: in expansion of macro 'TEMPLATE_DO_ARR_DESC' 113 | TEMPLATE_DO_ARR_DESC( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:52:9: note: in expansion of macro 'JTEST_SYSTICK_START' 52 | JTEST_SYSTICK_START(SysTick); \ | ^~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:160:13: note: in expansion of macro 'JTEST_COUNT_CYCLES' 160 | JTEST_COUNT_CYCLES( \ | ^~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:186:1: note: in expansion of macro 'DCT4_FIXED_POINT_DEFINE_TEST' 186 | DCT4_FIXED_POINT_DEFINE_TEST(q15, q15_t, dct4_); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ make: *** [Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/subdir.mk:37: Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.o] Error 1 In file included from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:9, from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest.h:15, from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/rfft_fast_tests.c:1: ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_systick.h:45:4: warning: #warning "no appropriate header file found!" [-Wcpp] 45 | #warning "no appropriate header file found!" | ^~~~~~~ In file included from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/test_templates.h:7, from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/transform_tests/transform_templates.h:8, from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/rfft_fast_tests.c:4: ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/rfft_fast_tests.c: In function 'arm_rfft_fast_f32_forward_test':

class CSuppSourceBase { public: /// @brief Constructor. explicit CSuppSourceBase(const ESuppReas f_suppReas_e); /// Default virtual destructor. virtual ~CSuppSourceBase() = default; /// @brief RAdd new suppression source into the suppression source vector. /// @details This function adds the pointer to the new suppression source into the fixed vector /// if the vector is not full. If the vector is already full, an assertion is triggered. /// @pre /// @req /// @par Further document /// @param [in] f_ptrSuppSources_rv: The fixed vector to register the suppression source in. void registerSuppSource(vfc::TFixedVector<const CSuppSourceBase*, static_cast<vfc::int32_t>(ESuppReas::SUPPREAS_IDX_MAX)>& f_ptrSuppSources_rv) const; /// @brief Returns type of suppression. inline ESuppType getSuppType() const { return m_confSuppSrcBase.m_suppType_e; } /// @brief Calculates the maximum start time for the given parameter. /// @pre /// @req /// @par Further document /// @param [in] f_paramVgm_r: The parameter object containing the necessary values. /// @return sec_f32_t: The maximum strategy suppression time. sec_f32_t getTStrtgSuppMax(const prm::CPrmOutput::Clds& f_paramVgm_r) const; /// @brief Returns suppression reason. inline ESuppReas getSuppReas() const { return m_confSuppSrcBase.m_suppReas_e; } /// @brief Returns suppression priority. inline u8_t getSuppPrio() const { return m_confSuppSrcBase.m_suppPrio_ui8; } /// @brief Returns suppression sensitivity. inline ESuppSensitivityConfigured getSensitivityConfigured() const { return m_confSuppSrcBase.m_sensitivity_e; } /// @brief Returns whether the suppression is active (for a side). /// @pre /// @req /// @par Further document /// @param [in] f_sideSupp_e: The side for which to check the suppression request flag. /// @return true if a suppression request is active, false otherwise. bool getFlgReq(const ESide f_sideSupp_e) const; /// @brief Configuration of a suppression source (with priority). /// @pre /// @req /// @par Further document /// @param [in] f_tStrtgSuppMax_rf32: The maximum start suppression time in seconds. /// @param [in] f_tDebStrtgSupp_rf32: The start suppression debounce time in seconds. /// @param [in] f_tDebEndgSupp_rf32: The end suppression debounce time in seconds. /// @param [in] f_sensitivity_ui8: The sensitivity level of the suppression source. /// @param [in] f_suppType_ui8: The type of suppression source. /// @param [in] f_suppPrio_ui8: The priority of the suppression source. void config( const sec_f32_t& f_tStrtgSuppMax_rf32, const sec_f32_t& f_tDebStrtgSupp_rf32, const sec_f32_t& f_tDebEndgSupp_rf32, const u8_t f_sensitivity_ui8, const u8_t f_suppType_ui8, const u8_t f_suppPrio_ui8); /// @brief Returns maximal pre suppression time. virtual inline sec_f32_t getTPreSuppMax() const { return sec_f32_t(0.0f); } /// @brief Returns minimal full suppression time. virtual inline sec_f32_t getTMinFullSuppDuration() const { return sec_f32_t(0.0f); } /// @brief Return pointer to the state of suppression request. virtual CStatesSuppRequest* getPtrStatesSuppRequest(const ESide f_sideSupp_e) const = 0; protected: /// @brief /// @brief Update suppression request (and perform debouncing). /// @details This function checks if the suppression is disabled through a parameter. If not disabled, /// it checks the suppression request and handles the start and end suppression conditions. /// The debouncing timer is used to determine if the start or end suppression conditions have elapsed. /// If the suppression is disabled, the request is cleared and the debouncing timer is reset. /// @pre /// @req /// @par Further document /// @param [in] f_strtSupp_b: A boolean indicating if the start suppression condition is fulfilled. /// @param [in] f_endSupp_b: A boolean indicating if the end suppression condition is fulfilled. /// @param [in] f_sideSupp_e: The side of the suppression. /// @param [out] f_dT_f32: The time increment for the debouncing timer. void updateSuppState(const bool f_strtSupp_b, const bool f_endSupp_b, const ESide f_sideSupp_e, sec_f32_t f_dT_f32 = sec_f32_t(0.020f)) const; /// @brief Converts an unsigned 8-bit value to an ESuppSensitivityConfigured enum value. /// @details This function takes an unsigned 8-bit value and maps it to the corresponding ESuppSensitivityConfigured enum value. /// The mapping is as follows: /// - 1u: SENSI_CONFIGURED_LOW_ONLY /// - 2u: SENSI_CONFIGURED_LOW_AND_HIGH /// - 3u: SENSI_CONFIGURED_NOTSELECTED /// - Any other value: SENSI_CONFIGURED_NOTUSED /// @pre /// @req /// @par Further document /// @param [in] f_sensiConfigured_ui8: The unsigned 8-bit value to be converted. /// @return ESuppSensitivityConfigured: The corresponding ESuppSensitivityConfigured enum value. static ESuppSensitivityConfigured convertToSensiConfigured(const u8_t f_sensiConfigured_ui8); /// @brief Converts the given unsigned 8-bit integer to an ESuppType enum value. /// @details This function takes an unsigned 8-bit integer as input and converts it to an ESuppType enum value. /// If the input value is zero, the function returns SUPP_REACT_AND_HMI. /// Otherwise, it returns SUPP_REACT_ONLY. /// @pre /// @req /// @par Further document /// @param [in] f_suppType_ui8: The unsigned 8-bit integer to be converted. /// @return ESuppType: ESuppType The converted ESuppType enum value. static ESuppType convertToSuppType(const u8_t f_suppType_ui8); private: /// @brief Set suppression request flag for a side. void setFlgReq(const ESide f_sideSupp_e) const; /// @brief Clear suppression request flag for a side. void clrFlgReq(const ESide f_sideSupp_e) const; //--------------------------------------------------------------------- // M E M B E R S //--------------------------------------------------------------------- /// (base) configurations of suppression source CConfSuppSrcBase m_confSuppSrcBase; }; // CSuppSourceBase 解释

最新推荐

recommend-type

学习一下二维码相关的,集成下 zxing.zip

学习一下二维码相关的,集成下 zxing.zip
recommend-type

生成二维码,可以带企业logo.zip

生成二维码,可以带企业logo.zip
recommend-type

Hyperledger Fabric v2与Accord Project Cicero智能合约开发指南

标题和描述中提到的“hlf-cicero-contract:Accord Project Cicero与Hyperledger Fabric v2签约”以及“半西约合同”暗示了与智能合约和区块链技术相关的知识点。下面详细说明这些知识点: ### 智能合约与区块链技术 智能合约是一套运行在区块链上的程序,当合约条款被触发时,合约会自动执行相应的操作。这种自动执行的特点使得智能合约特别适合于执行多方之间的可信交易,它能减少或消除中介服务的需要,从而降低交易成本并提高效率。 区块链技术是一种分布式账本技术,通过加密算法和共识机制保证了交易数据的不可篡改性和透明性。区块链上的每一笔交易都会被网络中的多个节点验证并记录,确保了交易记录的安全性。 ### Hyperledger Fabric v2 Hyperledger Fabric 是由Linux基金会托管的一个开源项目,它是企业级区块链框架,旨在为商业应用提供安全、模块化、可扩展的区块链平台。Hyperledger Fabric v2.2是该框架的一个版本。 Hyperledger Fabric v2支持链码(Chaincode)概念,链码是部署在Hyperledger Fabric网络上的应用程序,它可以被用来实现各种智能合约逻辑。链码在运行时与网络中的背书节点和排序服务交互,负责验证、执行交易以及维护账本状态。 ### Accord Project Cicero Accord Project Cicero 是一个开源的智能合同模板和执行引擎,它允许开发者使用自然语言来定义合同条款,并将这些合同转换为可以在区块链上执行的智能合约。CiceroMark是基于Markdown格式的一种扩展,它允许在文档中嵌入智能合约逻辑。 通过Accord Project Cicero,可以创建出易于理解、可执行的智能合约。这些合同可以与Hyperledger Fabric集成,利用其提供的安全、透明的区块链网络环境,从而使得合同条款的执行更加可靠。 ### 智能合约的安装与部署 描述中提到了“安装”和“启动”的步骤,这意味着为了使用HLF v2.2和Accord Project Cicero,需要先进行一系列的配置和安装工作。这通常包括设置环境变量(例如HLF_INSTALL_DIR)、安装区块链网络(Test-Net)以及安装其他必需的软件工具(如jq)。 jq是一个轻量级且灵活的命令行JSON处理器,常用于处理JSON数据。在区块链项目中,jq可以帮助开发者处理链码或智能合约的数据,特别是在与网络节点交互时。 ### JavaScript 标签 标签“JavaScript”表明本项目或相关文档中会涉及到JavaScript编程语言。Hyperledger Fabric v2支持多种智能合约语言,其中JavaScript是一个广泛使用的选项。JavaScript在编写链码时提供了灵活的语法和强大的库支持,是进行区块链开发的一个流行选择。 ### 文件结构 文件名称列表“hlf-cicero-contract-master”暗示这是一个包含所有相关文件和资源的项目源代码目录。这个名称通常表明开发者可以从该目录开始探索、安装和配置项目的所有组件。 ### 综合知识点 1. 智能合约与区块链技术可以自动化执行多方面可信交易,降低交易成本并提高效率。 2. Hyperledger Fabric v2为企业提供一个安全、模块化、可扩展的区块链平台。 3. Accord Project Cicero结合Markdown格式的CiceroMark,将自然语言定义的合同条款转换为可执行的智能合约。 4. 智能合约的安装和部署涉及到一系列配置步骤,包括设置环境变量、安装必要的软件工具等。 5. JavaScript是编写智能合约的流行语言之一,为区块链开发提供灵活性和强大的库支持。 6. 项目文件结构表明从一个主目录可以探索和配置所有项目相关文件和资源。 以上是根据文件标题、描述、标签以及文件名称列表所提取的相关知识点。这些知识点对于理解Hyperledger Fabric v2和Accord Project Cicero在智能合约中的应用尤为重要。
recommend-type

深度神经网络优化技巧全解析

# 深度神经网络优化技巧全解析 ## 1 超越 Sigmoid 函数 在神经网络中,Sigmoid 函数曾被广泛使用,但它存在一些问题,如梯度消失。研究人员一直在寻找更好的激活函数,且不同的激活函数在不同场景下表现各异。 ### 1.1 ReLU 函数登场 如今,修正线性单元(ReLU)成为了 Sigmoid 的常用替代函数。与 Sigmoid 相比,ReLU 非常简单,以下是其 Python 实现: ```python def relu(z): if z <= 0: return 0 else: return z ``` ReLU 由两段直
recommend-type

什么是噪声功率密度

<think> 嗯,用户这次问的是噪声功率密度的定义,结合之前的系统指令和站内引用,需要给出清晰准确的中文解释。用户可能是电子工程或通信专业的学生,正在学习噪声相关的理论基础,也可能是工程师需要实际应用概念。从引用来[^1]看,用户对相位噪声的定义有基础认知,但需要系统梳理核心概念。 噪声功率密度最本质的定义应该是单位带宽内的噪声功率。引用[^2]提到电阻热噪声的例子很典型,50Ω电阻在300K环境下功率谱密度是定值(0.9nV/√Hz)²,这说明: 1. 它描述的是噪声功率随频率分布的密度 2. 与带宽强相关(带宽加倍则总功率加倍) 3. 单位通常用W/Hz或V²/Hz 维纳-辛钦定理(
recommend-type

Libshare: Salesforce的高效可重用模块集合

Salesforce是一个云基础的CRM平台,它允许用户构建定制应用程序来满足特定的业务需求。Apex是Salesforce平台上的一个强类型编程语言,用于开发复杂的业务逻辑,通过触发器、类和组件等实现。这些组件使得开发者可以更高效地构建应用程序和扩展Salesforce的功能。 在提到的"libshare:经过测试的Salesforce可重用模块"文件中,首先介绍了一个名为Libshare的工具包。这个工具包包含了一系列已经过测试的可重用模块,旨在简化和加速Salesforce应用程序的开发。 Libshare的各个组成部分的知识点如下: 1. 设置模块:在Salesforce应用程序中,应用程序设置的管理是必不可少的一部分。设置模块提供了一种简便的方式存储应用程序的设置,并提供了一个易用的API来与之交互。这样,开发者可以轻松地为不同的环境配置相同的设置,并且可以快速地访问和修改这些配置。 2. Fluent断言模块:断言是单元测试中的关键组成部分,它们用于验证代码在特定条件下是否表现预期。Fluent断言模块受到Java世界中Assertj的启发,提供了一种更流畅的方式来编写断言。通过这种断言方式,可以编写更易于阅读和维护的测试代码,提高开发效率和测试质量。 3. 秒表模块:在性能调优和效率测试中,记录方法的执行时间是常见的需求。秒表模块为开发者提供了一种方便的方式来记录总时间,并跟踪每种方法所花费的时间。这使得开发者能够识别瓶颈并优化代码性能。 4. JsonMapper模块:随着Web API的广泛应用,JSON数据格式在应用程序开发中扮演了重要角色。JsonMapper模块为开发者提供了一个更高级别的抽象,用于读取和创建JSON内容。这能够大幅简化与JSON数据交互的代码,并提高开发效率。 5. utils模块:在软件开发过程中,经常会遇到需要重复实现一些功能的情况,这些功能可能是通用的,例如日期处理、字符串操作等。utils模块提供了一系列已经编写好的实用工具函数,可以用于节省时间,避免重复劳动,提高开发效率。 6. 记录器模块:记录器通常用于记录应用程序的运行日志,以便于问题诊断和性能监控。系统提供的System.debug功能虽然强大,但在大型应用中,统一的记录器包装器可以使得日志管理更加高效。记录器模块支持记录器名称,并且可以对日志进行适当的封装。 7. App Logger模块:App Logger模块扩展了记录器模块的功能,它允许开发者将日志语句保存到一个精心设计的App Log对象中。此外,App Logger模块支持存储长达56k字符的日志内容,这对于复杂应用的监控和调试非常有用。 8. 应用程序任务模块:在处理异步作业时,例如批量数据处理或定时任务,需要有一个框架来管理和跟踪这些任务。应用程序任务模块提供了一个框架,用于处理可排队的作业,并能够跟踪这些任务的执行情况。 通过Libshare提供的这些模块,Salesforce的开发者能够减少开发工作量,加快开发速度,并提高代码质量。这些模块能够帮助开发者避免重复的“造轮子”工作,专注于核心业务逻辑的实现。同时,由于Libshare作为托管程序包发布,开发者无需担心代码的维护和管理,只需将其添加到自己的Salesforce组织中即可使用。 Libshare的发布也强调了可重用性的重要性,这是软件工程领域中长期提倡的一个原则。通过使用可重用的组件,开发者能够遵循DRY(Don't Repeat Yourself)原则,从而减少代码的冗余,提高生产效率,同时降低因重复编写相同代码而导致错误的风险。 总之,Libshare是一个有价值的资源,对于那些希望在Salesforce平台上快速构建高效、可靠应用程序的开发者来说,这些预置的、经过测试的模块无疑是一个强大的助手。
recommend-type

机器学习技术要点与应用解析

# 机器学习技术要点与应用解析 ## 1. 机器学习基础概念 ### 1.1 数据类型与表示 在编程中,数据类型起着关键作用。Python 具有动态类型特性,允许变量在运行时改变类型。常见的数据类型转换函数包括 `bool()`、`int()`、`str()` 等。例如,`bool()` 函数可将值转换为布尔类型,`int()` 用于将值转换为整数类型。数据类型还包括列表(`lists`)、字典(`dictionaries`)、元组(`tuples`)等集合类型,其中列表使用方括号 `[]` 表示,字典使用花括号 `{}` 表示,元组使用圆括号 `()` 表示。 ### 1.2 变量与命名
recommend-type

点击歌曲没反应

<think> 我们之前已经讨论了如何将音频文件显示在QListView中,并希望实现点击播放。现在遇到的问题是点击列表项没有反应。 原因分析: 1. 我们没有将点击信号连接到播放槽函数。 2. 播放列表(QMediaPlaylist)可能没有正确添加媒体。 3. 媒体路径可能不正确。 解决方案: 按照之前的思路,我们需要做以下几步: 步骤1:确保已经创建了QMediaPlayer和QMediaPlaylist对象,并且播放器设置了播放列表。 步骤2:将QListView的点击信号(clicked)连接到自定义的槽函数,在该槽函数中设置播放列表的当前索引并播放。 步骤3:
recommend-type

SM-CNN-Torch: Torch实现短文本对排名的CNN模型

标题中提到的“SM-CNN-Torch”是一个深度学习框架Torch的实现版本,它基于Severyn和Moschitti在2015年SIGIR会议上发表的一篇论文所描述的卷积神经网络(CNN)模型。这篇论文的内容主要关注的是如何利用CNN对短文本对进行有效的排名,这一点对于问题回答(question-answering, QA)系统来说至关重要。实施该CNN模型的目标是为了更好地处理问答系统中的文本对比较问题,例如,在搜索引擎中确定哪些文档与用户的查询更加相关。 在描述中提到了如何使用该仓库中的代码。首先,用户需要安装Torch库,这是实现和运行SM-CNN-Torch模型的前提条件。接着,用户需要使用提供的脚本(fetch_and_preprocess.sh)下载并预处理GloVe(Global Vectors for Word Representation)字嵌入数据。这一数据集是预先训练好的词向量,能够将单词转换为连续的向量表示,这在深度学习模型中是处理文本的基本步骤。 在模型准备工作中,还需要注意的是Python版本,因为模型运行依赖于Python环境,建议的版本为2.7或更高版本。此外,描述中还提到了并行处理的线程数设置,这表明模型在运行过程中可能会涉及到并行计算,以加速计算过程。通过设置环境变量OMP_NUM_THREADS,可以指定并行计算时的线程数。 文件名称列表中的“SM-CNN-Torch-master”表示这是该仓库的主目录,包含了所有实现Severyn和Moschitti CNN模型的相关文件。 该存储库还包含了一些附加信息,例如,原始Torch实现已经被PyTorch版本所取代。PyTorch是Torch的一个分支,它提供了更多的功能和更易于使用的接口,对研究人员和开发者来说更加友好。此外,该仓库目前仅用于存档目的,这意味着原始的Torch代码不再被积极维护,而是作为一种历史记录保留下来。 标签“deep-learning”表明该项目是一个深度学习项目,所使用的模型是深度神经网络,特别是卷积神经网络。标签“question-answering”则直接指向了问题回答系统,这是深度学习的一个重要应用领域。标签“convolutional-neural-networks”指明了所使用的网络类型是卷积神经网络,它在图像处理和自然语言处理中都有广泛应用。而“Lua”标签则是因为Torch是用Lua语言编写的,尽管它通常与Python一起使用,但也有一个使用Lua的版本。 总的来说,SM-CNN-Torch是一个专门针对短文本对排名的深度学习模型的实现,它允许研究人员和开发者利用已经发表的研究成果来搭建和测试自己的模型,同时为了解其背后原理和实现细节提供了具体的代码和数据处理流程。
recommend-type

Python与机器学习基础入门

# Python与机器学习基础入门 ## 1. Python环境与包管理 ### 1.1 Anaconda与Miniconda Anaconda 功能丰富,自带集成开发环境(IDE)和独立于官方 Python 仓库的包仓库。若不需要这些额外功能,可选择安装 Miniconda,它仅包含 Conda 和 Python,安装包更小。 ### 1.2 Conda 与 pip 的对比 - **安装方式**:Conda 和 pip 在安装包时操作相似,例如使用 Conda 安装特定版本的 Keras 可使用命令 `conda install keras=2.2.4`。 - **功能特点**: