手把手教你完成yolov8的界面
时间: 2025-07-01 15:39:57 AIGC 浏览: 17
### 创建YOLOv8界面的教程
#### 使用Streamlit构建YOLOv8 Web应用程序
为了创建一个基于YOLOv8的目标检测Web应用,可以利用Streamlit框架来快速搭建交互式的用户界面。Streamlit具有易于使用的API和强大的可视化功能,非常适合用于展示机器学习模型的结果。
安装必要的库:
```bash
pip install streamlit torch torchvision ultralytics
```
编写`app.py`文件作为入口点,在此文件中加载预训练好的YOLOv8模型并定义UI组件:
```python
import streamlit as st
from PIL import Image
import torch
from ultralytics import YOLO
st.title('YOLOv8 Object Detection')
model_path = 'path/to/yolov8_model.pt'
device = "cuda" if torch.cuda.is_available() else "cpu"
model = YOLO(model_path).to(device)
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
img = Image.open(uploaded_file)
results = model(img, size=640)[0]
# Display the original image and detection result side by side.
col1, col2 = st.columns([1, 1])
with col1:
st.image(img, caption='Original Image', use_column_width=True)
with col2:
annotated_img = results.render()[0]
st.image(annotated_img, caption='Detected Objects', use_column_width=True)
```
启动Streamlit服务器以查看实时更新的应用程序页面:
```bash
streamlit run app.py
```
通过上述方法能够迅速建立一套简单易用的对象识别工具[^1]。
阅读全文
相关推荐



















