活动介绍

-f https://download.pytorch.org/whl/cu113/torch_stable.html -f https://data.dgl.ai/wheels/repo.html anyio==3.5.0 argon2-cffi==21.3.0 argon2-cffi-bindings==21.2.0 async-generator==1.10 attrs==21.4.0 Babel==2.9.1 backcall==0.2.0 bleach==4.1.0 cached-property==1.5.2 cairocffi==1.2.0 CairoSVG==2.5.2 certifi==2021.10.8 cffi==1.15.0 chainer==7.8.1 chainer-chemistry==0.7.1 charset-normalizer==2.0.11 contextvars==2.4 cssselect2==0.4.1 cycler==0.11.0 decorator==4.4.2 defusedxml==0.7.1 dgl-cu113==0.8.0 dglgo==0.0.1 einops==0.4.0 entrypoints==0.4 filelock==3.4.1 googledrivedownloader==0.4 h5py==3.1.0 idna==3.3 imageio==2.15.0 immutables==0.16 importlib-metadata==4.8.3 ipykernel==5.5.6 ipython==7.16.3 ipython-genutils==0.2.0 isodate==0.6.1 jedi==0.17.2 Jinja2==3.0.3 joblib==1.1.0 json5==0.9.6 jsonschema==3.2.0 jupyter-client==7.1.2 jupyter-core==4.9.1 jupyter-server==1.13.1 jupyterlab==3.2.8 jupyterlab-pygments==0.1.2 jupyterlab-server==2.10.3 kiwisolver==1.3.1 MarkupSafe==2.0.1 matplotlib==3.3.4 mistune==0.8.4 nbclassic==0.3.5 nbclient==0.5.9 nbconvert==6.0.7 nbformat==5.1.3 nest-asyncio==1.5.4 networkx==2.5.1 notebook==6.4.8 numpy==1.19.5 opencv-python==4.5.5.62 packaging==21.3 pandas==1.1.5 pandocfilters==1.5.0 parso==0.7.1 pbr==5.8.1 pexpect==4.8.0 pickleshare==0.7.5 Pillow==8.4.0 pkg_resources==0.0.0 prometheus-client==0.13.1 prompt-toolkit==3.0.26 protobuf==3.19.4 psutil==5.9.0 ptyprocess==0.7.0 pycparser==2.21 Pygments==2.11.2 pyparsing==3.0.7 pyrsistent==0.18.0 pysmiles==1.0.1 python-dateutil==2.8.2 pytz==2021.3 PyWavelets==1.1.1 PyYAML==6.0 pyzmq==22.3.0 rdflib==5.0.0 rdkit-pypi==2021.9.4 requests==2.27.1 scikit-image==0.17.2 scikit-learn==0.24.2 scipy==1.5.4 seaborn==0.11.2 Send2Trash==1.8.0 six==1.16.0 sklearn==0.0 sniffio==1.2.0 terminado==0.12.1 testpath==0.5.0 threadpoolctl==3.1.0 tifffile==2020.9.3 tinycss2==1.1.1 torch==1.10.2+cu113 tornado==6.1 tqdm==4.62.3 traitlets==4.3.3 typing==3.7.4.3 typing_extensions==4.0.1 urllib3==1.26.8 wcwidth==0.2.5 有哪些包需要我手动安装

时间: 2025-06-05 17:58:38 浏览: 62
<think>嗯,用户想知道哪些Python包需要手动安装,并列出它们的依赖项。首先,我需要理解用户的问题。他们可能是在处理一个项目,遇到了依赖问题,或者想预先知道需要安装哪些包。手动安装通常指的是那些不能通过包管理器自动解决的依赖,或者需要额外步骤的包。 接下来,我需要回忆Python包管理的基本知识。通常,使用pip或conda时,大部分依赖会自动安装,但有些情况下可能需要手动安装。比如,有些包可能没有正确声明依赖,或者依赖的是系统库,或者需要特定版本的包。 然后,我得考虑用户的场景。用户可能是在部署项目,或者从requirements.txt安装依赖时遇到了问题。例如,某些包在PyPI上可能没有正确指定依赖,导致自动安装失败。或者,依赖项需要编译,用户的环境缺少构建工具,导致需要手动安装。 接下来,我需要列出需要手动安装的包类型。比如,包含C扩展的包可能需要系统库,如numpy可能需要BLAS/LAPACK。还有,某些包可能依赖其他非Python库,如PyQt5需要Qt框架。另外,私有或本地开发的包可能不在PyPI上,需要手动安装。 还要考虑依赖冲突的情况。如果两个包依赖同一库的不同版本,可能需要手动解决,比如使用--no-deps选项安装,并指定版本。或者,某些包被标记为“extra”,需要用户显式安装,比如TensorFlow的扩展功能。 然后,我需要提供具体例子,帮助用户理解。比如,Psycopg2需要PostgreSQL开发文件,Pillow需要图像库,PyMySQL是纯Python可能不需要手动安装,但如果有问题可能需要检查。还有,像PyTorch可能根据CUDA版本不同需要手动选择。 最后,要总结步骤,指导用户如何检查依赖,比如查看文档,使用pip check,或者生成requirements.txt。同时提醒用户参考项目的最佳实践,比如引用中提到的依赖管理方法,如requirements.txt和setup.py的使用。 可能还需要注意用户可能遇到的常见问题,比如安装错误提示缺失系统库,这时候需要手动安装这些系统依赖。另外,虚拟环境的重要性,避免全局安装带来的冲突。 总之,需要结构清晰地分点说明哪些情况需要手动安装,给出例子,并指导用户如何处理,同时引用相关的资源帮助用户进一步管理依赖。</think>根据Python包管理机制,需要手动安装的包主要有以下三种类型及其依赖关系: ### 一、需要系统级依赖的包 1. **Psycopg2** (PostgreSQL适配器) - 依赖项:`libpq-dev`(PostgreSQL开发库) - 安装命令: ```bash sudo apt-get install libpq-dev # Ubuntu/Debian pip install psycopg2 ``` 2. **Pillow** (图像处理库) - 依赖项:`libjpeg-dev zlib1g-dev libwebp-dev`(图像格式支持库) - 安装命令: ```bash sudo apt-get install libjpeg-dev zlib1g-dev libwebp-dev pip install pillow ``` ### 二、存在版本冲突的包 当出现依赖冲突时(如同时需要`numpy>=1.20`和`tensorflow<2.6`),需要手动指定版本: ```bash pip install "numpy==1.19.5" --no-deps pip install "tensorflow==2.5.0" ``` ### 三、非PyPI发布的私有包 例如公司内部开发的`my_utils-0.1.0.whl`: ```bash pip install /path/to/my_utils-0.1.0.whl ``` ### 四、依赖检测方法 1. 查看文档:所有Python包在PyPI页面都会声明`Requires`字段[^3] 2. 使用依赖检查命令: ```bash pip check # 检测依赖冲突 pipdeptree --graph # 生成依赖树 ``` ### 典型示例列表 | 包名称 | 需要手动安装的原因 | 依赖解决方案 | |--------------|-----------------------------|----------------------------------| | `mysqlclient`| 需要MySQL客户端库 | 先安装`libmysqlclient-dev` | | `pycocotools`| 需要C编译器 | 先安装`python3-dev gcc` | | `opencv-python`| 包含视频编解码依赖 | 安装`ffmpeg libsm6 libxext6` | 建议在项目根目录创建`requirements.txt`记录显式依赖[^2],并使用虚拟环境隔离包版本。若遇到C扩展编译错误,需要安装对应的开发工具链(如`build-essential` on Linux)[^1]。
阅读全文

相关推荐

似乎都好好的,这样有问题吗 root@interactive97364:/opt/data/private/3dgs# pip install torch==2.3.1+cu118 torchvision==0.18.1+cu118 torchaudio==2.3.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html Looking in links: https://download.pytorch.org/whl/torch_stable.html Collecting torch==2.3.1+cu118 Downloading https://download.pytorch.org/whl/cu118/torch-2.3.1%2Bcu118-cp38-cp38-linux_x86_64.whl (839.6 MB) |████████████████████████████████| 839.6 MB 16 kB/s Collecting torchvision==0.18.1+cu118 Downloading https://download.pytorch.org/whl/cu118/torchvision-0.18.1%2Bcu118-cp38-cp38-linux_x86_64.whl (6.3 MB) |████████████████████████████████| 6.3 MB 331 kB/s Collecting torchaudio==2.3.1+cu118 Downloading https://download.pytorch.org/whl/cu118/torchaudio-2.3.1%2Bcu118-cp38-cp38-linux_x86_64.whl (3.3 MB) |████████████████████████████████| 3.3 MB 6.3 MB/s Collecting nvidia-cusparse-cu11==11.7.5.86; platform_system == "Linux" and platform_machine == "x86_64" Downloading nvidia_cusparse_cu11-11.7.5.86-py3-none-manylinux2014_x86_64.whl (204.1 MB) |████████████████████████████████| 204.1 MB 21 kB/s Collecting nvidia-nccl-cu11==2.20.5; platform_system == "Linux" and platform_machine == "x86_64" Downloading nvidia_nccl_cu11-2.20.5-py3-none-manylinux2014_x86_64.whl (142.9 MB) |████████████████████████████████| 142.9 MB 123 kB/s Collecting fsspec Downloading fsspec-2025.3.0-py3-none-any.whl (193 kB) |████████████████████████████████| 193 kB 8.4 MB/s Collecting nvidia-cuda-runtime-cu11==11.8.89; platform_system == "Linux" and platform_machine == "x86_64" Downloading nvidia_cuda_runtime_cu11-11.8.89-py3-none-manylinux2014_x86_64.whl (875 kB) |████████████████████████████████| 875 kB 10.5 MB/s Collecting nvidia-curand-cu11==10.3.0.86; platform_system == "Linux" and platform_machine == "x86_64" Downloading nvidia_curand_cu11-10.3.0.86-py3-none-manylinux2014_x86_64.whl (58.1 MB) |████████████████████████████████| 58.1 MB 72 kB/s Collect

venv "E:\AI\stable-diffusion-webui\venv\Scripts\Python.exe" Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)] Version: v1.10.1 Commit hash: 82a973c04367123ae98bd9abdf80d9eda9b910e2 Installing torch and torchvision Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu121 Collecting torch==2.1.2 Downloading https://download.pytorch.org/whl/cu121/torch-2.1.2%2Bcu121-cp310-cp310-win_amd64.whl (2473.9 MB) -------------- ------------------------- 0.9/2.5 GB 5.6 MB/s eta 0:04:40 WARNING: Connection timed out while downloading. ERROR: Could not install packages due to an OSError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。: 'C:\\Users\\Administrator\\AppData\\Local\\Temp\\pip-unpack-ek9ua0k8\\torch-2.1.2+cu121-cp310-cp310-win_amd64.whl' Check the permissions. Traceback (most recent call last): File "E:\AI\stable-diffusion-webui\launch.py", line 48, in <module> main() File "E:\AI\stable-diffusion-webui\launch.py", line 39, in main prepare_environment() File "E:\AI\stable-diffusion-webui\modules\launch_utils.py", line 381, in prepare_environment run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True) File "E:\AI\stable-diffusion-webui\modules\launch_utils.py", line 116, in run raise RuntimeError("\n".join(error_bits)) RuntimeError: Couldn't install torch. Command: "E:\AI\stable-diffusion-webui\venv\Scripts\python.exe" -m pip install torch==2.1.2 torchvision==0.16.2 --extra-index-url https://download.pytorch.org/whl/cu121 Error code: 1

root@b82c95bfc43f:/workspace/data-zj/test_code_v1# . train.sh /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( W0529 02:52:35.084000 938 torch/distributed/run.py:792] W0529 02:52:35.084000 938 torch/distributed/run.py:792] ***************************************** W0529 02:52:35.084000 938 torch/distributed/run.py:792] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0529 02:52:35.084000 938 torch/distributed/run.py:792] ***************************************** [W529 02:52:39.311003207 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3 [W529 02:52:43.313869930 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3 /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE W0529 02:52:48.206000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1003 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1004 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1005 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1006 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1007 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1009 closing signal SIGTERM W0529 02:52:48.208000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1010 closing signal SIGTERM E0529 02:52:48.385000 938 torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 5 (pid: 1008) of binary: /usr/bin/python Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) File "/usr/local/lib/python3.10/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/distributed/run.py", line 918, in main run(args) File "/usr/local/lib/python3.10/dist-packages/torch/distributed/run.py", line 909, in run elastic_launch( File "/usr/local/lib/python3.10/dist-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/usr/local/lib/python3.10/dist-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ axolotl.cli.train FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-05-29_02:52:48 host : b82c95bfc43f rank : 5 (local_rank: 5) exitcode : 1 (pid: 1008) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================

训练yolov11模型时,采用4个GPU进行训练,发生以下错误 DDP: debug command /usr/local/bin/python3.10 -m torch.distributed.run --nproc_per_node 4 --master_port 52701 /home/hdzx/.config/Ultralytics/DDP/_temp_7n568r5a140541635673920.py Traceback (most recent call last): File "/home/hdzx/.config/Ultralytics/DDP/_temp_7n568r5a140541635673920.py", line 6, in <module> from ultralytics.models.yolo.detect.train import DetectionTrainer ModuleNotFoundError: No module named 'ultralytics' Traceback (most recent call last): File "/home/hdzx/.config/Ultralytics/DDP/_temp_7n568r5a140541635673920.py", line 6, in <module> from ultralytics.models.yolo.detect.train import DetectionTrainer ModuleNotFoundError: No module named 'ultralytics' Traceback (most recent call last): File "/home/hdzx/.config/Ultralytics/DDP/_temp_7n568r5a140541635673920.py", line 6, in <module> from ultralytics.models.yolo.detect.train import DetectionTrainer ModuleNotFoundError: No module named 'ultralytics' Traceback (most recent call last): File "/home/hdzx/.config/Ultralytics/DDP/_temp_7n568r5a140541635673920.py", line 6, in <module> from ultralytics.models.yolo.detect.train import DetectionTrainer ModuleNotFoundError: No module named 'ultralytics' E0810 08:46:51.890965 140194103115904 torch/distributed/elastic/multiprocessing/api.py:833] failed (exitcode: 1) local_rank: 0 (pid: 6372) of binary: /usr/local/bin/python3.10 Traceback (most recent call last): File "/usr/local/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/local/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/home/hdzx/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 905, in <module> main() File "/home/hdzx/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 348, in wrapper return f(*args, **kwargs) File "/home/hdzx/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 901, in main run(args) File "/home/hdzx/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 892, in run elastic_launch( File "/home/hdzx/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 133, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/hdzx/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/hdzx/.config/Ultralytics/DDP/_temp_7n568r5a140541635673920.py FAILED ------------------------------------------------------------ Failures: [1]: time : 2025-08-10_08:46:51 host : hdzx-SYS-7048GR-TR rank : 1 (local_rank: 1) exitcode : 1 (pid: 6373) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [2]: time : 2025-08-10_08:46:51 host : hdzx-SYS-7048GR-TR rank : 2 (local_rank: 2) exitcode : 1 (pid: 6374) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [3]: time : 2025-08-10_08:46:51 host : hdzx-SYS-7048GR-TR rank : 3 (local_rank: 3) exitcode : 1 (pid: 6375) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-08-10_08:46:51 host : hdzx-SYS-7048GR-TR rank : 0 (local_rank: 0) exitcode : 1 (pid: 6372) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/hdzx/test02/test02.py", line 11, in <module> model.train( File "/home/hdzx/test02/ultralytics/engine/model.py", line 799, in train self.trainer.train() File "/home/hdzx/test02/ultralytics/engine/trainer.py", line 222, in train raise e File "/home/hdzx/test02/ultralytics/engine/trainer.py", line 220, in train subprocess.run(cmd, check=True) File "/usr/local/lib/python3.10/subprocess.py", line 524, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['/usr/local/bin/python3.10', '-m', 'torch.distributed.run', '--nproc_per_node', '4', '--master_port', '52701', '/home/hdzx/.config/Ultralytics/DDP/_temp_7n568r5a140541635673920.py']' returned non-zero exit status 1.

使用设备: cuda 初始化训练数据集... 找到模态文件: audio -> /home/msj_team/data/code/CIF-MMIN/data/dataset/mositext/A/acoustic_noisy.h5 找到模态文件: visual -> /home/msj_team/data/code/CIF-MMIN/data/dataset/mositext/V/visual_noisy.h5 找到模态文件: text -> /home/msj_team/data/code/CIF-MMIN/data/dataset/mositext/L/deberta-v3-large_noisy.h5 模态 audio: 找到 2195 个样本 模态 visual: 找到 2195 个样本 模态 text: 找到 2195 个样本 加载标签文件: /home/msj_team/data/code/CIF-MMIN/data/dataset/mositext/labels/all_labels.npy, 总标签数: 2195 使用 audio 模态的顺序作为标签映射参考 回归任务标签标准化: mean=0.0710, std=1.5708 加载 train 数据集: 2195 个样本, 3 个模态 样本示例: ['0', '1', '10'], 标签示例: [ 0.46408388 0.84606296 -0.4272008 ] 标签统计: min=-1.9551, max=1.8647, mean=-0.0000, std=1.0000 初始化验证数据集... 找到模态文件: audio -> /home/msj_team/data/code/CIF-MMIN/data/dataset/mositext/A/acoustic_noisy.h5 找到模态文件: visual -> /home/msj_team/data/code/CIF-MMIN/data/dataset/mositext/V/visual_noisy.h5 找到模态文件: text -> /home/msj_team/data/code/CIF-MMIN/data/dataset/mositext/L/deberta-v3-large_noisy.h5 模态 audio: 找到 2195 个样本 模态 visual: 找到 2195 个样本 模态 text: 找到 2195 个样本 加载标签文件: /home/msj_team/data/code/CIF-MMIN/data/dataset/mositext/labels/all_labels.npy, 总标签数: 2195 使用 audio 模态的顺序作为标签映射参考 回归任务标签标准化: mean=0.0710, std=1.5708 加载 val 数据集: 2195 个样本, 3 个模态 样本示例: ['0', '1', '10'], 标签示例: [ 0.46408388 0.84606296 -0.4272008 ] 标签统计: min=-1.9551, max=1.8647, mean=-0.0000, std=1.0000 训练集样本数: 2195 验证集样本数: 2195 发生错误: ReduceLROnPlateau.__init__() got an unexpected keyword argument 'verbose' Traceback (most recent call last): File "/home/msj_team/data/code/CIF-MMIN/data/dynamicfusion.py", line 430, in main scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: ReduceLROnPlateau.__init__() got an unexpected keyword argument 'verbose' 什么问题

# CN-RMA: Combined Network with Ray Marching Aggregation for 3D Indoor Object Detection from Multi-view Images This repository is an official implementation of [CN-RMA](https://arxiv.org/abs/2403.04198). ## Results | dataset | [email protected] | [email protected] | config | | :-----: | :------: | :-----: | :------------------------------------------------------------: | | ScanNet | 58.6 | 36.8 | [config](./projects/configs/mvsdetection/ray_marching_scannet.py) | | ARKit | 67.6 | 56.5 | [config](./projects/configs/mvsdetection/ray_marching_arkit.py) | Configuration, data processing and running the entire project is complicated. We provide all the detection results, visualization results and checkpoints of the validation set of the two datasets at [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/d/90bd36fe6f024ad58497/). Since our preparing and training procedure is complicated, you can directly download our results for [ScanNet](https://cloud.tsinghua.edu.cn/f/c4cb78b7d935467c8855/?dl=1) and [ARKitScenes](https://cloud.tsinghua.edu.cn/f/4c77c67123ab46b58605/?dl=1), or directly use our pre-trained weights for [ScanNet](https://cloud.tsinghua.edu.cn/f/b518872d3f11483aa121/?dl=1) and [ARKitScenes](https://cloud.tsinghua.edu.cn/f/17df2aa67e50407bb555/?dl=1) to validate. ## Prepare * Environments Linux, Python==3.8, CUDA == 11.3, pytorch == 1.10.0, mmdet3d == 0.15.0, MinkowskiEngine == 0.5.4 This implementation is built based on the [mmdetection3d](https://github.com/open-mmlab/mmdetection3d) framework and can be constructed as the [install.md](./doc/install.md). * Data Follow the mmdet3d to process the ScanNet and ARKitScenes datasets. You can process those datasets following [scannet.md](./doc/scannet.md) and [arkit.md](./doc/arkit.md). * Pretrained weights The required pretrained weights are put at [here](https://cloud.tsinghua.edu.cn/d/0b3af9884b7841ae8398/). * After preparation, you will be able to see the following directory structure: CN-RMA ├── mmdetection3d ├── projects │ ├── configs │ ├── mvsdetection ├── tools ├── data │ ├── scannet │ ├── arkit ├── doc │ ├── install.md │ ├── arkit.md │ ├── scannet.md │ ├── train_val.md ├── README.md ├── data_prepare ├── post_process ├── dist_test.sh ├── dist_train.sh ├── test.py ├── train.py ## How to Run To evaluate our method on ScanNet, you can download the [final checkpoint](https://cloud.tsinghua.edu.cn/f/b518872d3f11483aa121/?dl=1), set the 'work_dir' of projects/configs/mvsdetection/ray_marching_scannet.py to your desired path, and run: shell bash dist_test.sh projects/configs/mvsdetection/ray_marching_scannet.py {scannet_best.pth} 4 Similarly, to evaluate on ARKitScenes, you should download the [final checkpoint](https://cloud.tsinghua.edu.cn/f/17df2aa67e50407bb555/?dl=1), set the 'work_dir' of projects/configs/mvsdetection/ray_marching_arkit.py to your desired path, and run: shell bash dist_test.sh projects/configs/mvsdetection/ray_marching_arkit.py {arkit_best.pth} 4 After this, you should do nms post-processing to the data by running: shell python ./post_process/nms_bbox.py --result_path {your_work_dir}/results The pc_det_nms do not always work very well, if it fails, just run it again and again.... You can then evaluate the results by running shell ./post_process/evaluate_bbox.py --dataset {arkit/scannet} --data_path {your_arkit_or_scannet_source_path} --result_path {your_work_dir}/results And you can visualize the results by running shell ./post_process/visualize_results.py --dataset {arkit/scannet} --data_path {your_arkit_or_scannet_source_path} --save_path {your_work_dir}/results if the nms fails, you can discover many bounding boxes very close to each other on the visualized results, then you can run the nms again. Training the network from scratch is complicated. If you want to train the network from scratch, please follow [train_val.md](./doc/train_val.md) ## Citation If you find this project useful for your research, please consider citing: bibtex @InProceedings{Shen_2024_CVPR, author = {Shen, Guanlin and Huang, Jingwei and Hu, Zhihua and Wang, Bin}, title = {CN-RMA: Combined Network with Ray Marching Aggregation for 3D Indoor Object Detection from Multi-view Images}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {21326-21335} } ## Contact If you have any questions, feel free to open an issue or contact us at [email protected]

[rank1]: The above exception was the direct cause of the following exception: [rank1]: Traceback (most recent call last): [rank1]: File "/root/DriveDreamer/dreamer-train/dreamer_train/distributed/run_task.py", line 42, in <module> [rank1]: main() [rank1]: File "/root/DriveDreamer/dreamer-train/dreamer_train/distributed/run_task.py", line 38, in main [rank1]: run_tasks(args.config, args.runners) [rank1]: File "/root/DriveDreamer/dreamer-train/dreamer_train/distributed/run_task.py", line 27, in run_tasks [rank1]: runner.train() [rank1]: File "/root/DriveDreamer/dreamer-train/dreamer_train/trainers/trainer.py", line 513, in train [rank1]: batch_dict = next(dataloader_iter) [rank1]: ^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/opt/conda/lib/python3.11/site-packages/accelerate/data_loader.py", line 567, in __iter__ [rank1]: current_batch = next(dataloader_iter) [rank1]: ^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/opt/conda/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 733, in __next__ [rank1]: data = self._next_data() [rank1]: ^^^^^^^^^^^^^^^^^ [rank1]: File "/opt/conda/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1491, in _next_data [rank1]: idx, data = self._get_data() [rank1]: ^^^^^^^^^^^^^^^^ [rank1]: File "/opt/conda/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1453, in _get_data [rank1]: success, data = self._try_get_data() [rank1]: ^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/opt/conda/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1297, in _try_get_data [rank1]: raise RuntimeError( [rank1]: RuntimeError: DataLoader worker (pid(s) 41775) exited unexpectedly [rank0]:[W805 12:48:01.550438315 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0805 12:48:03.288000 41478 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 41615 closing signal SIGTERM E0805 12:48:03.502000 41478 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 41614) of binary: /opt/conda/bin/python3.11 Traceback (most recent call last): File "/opt/conda/bin/accelerate", line 8, in <module> sys.exit(main()) ^^^^^^ File "/opt/conda/lib/python3.11/site-packages/accelerate/commands/accelerate_cli.py", line 50, in main args.func(args) File "/opt/conda/lib/python3.11/site-packages/accelerate/commands/launch.py", line 1190, in launch_command multi_gpu_launcher(args) File "/opt/conda/lib/python3.11/site-packages/accelerate/commands/launch.py", line 815, in multi_gpu_launcher distrib_run.run(args) File "/opt/conda/lib/python3.11/site-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/opt/conda/lib/python3.11/site-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /root/DriveDreamer/dreamer-train/dreamer_train/distributed/run_task.py FAILED ------------------------------------------------------------

大家在看

recommend-type

芯片制作工艺流程.rar-综合文档

芯片制作工艺流程.rar
recommend-type

无外部基准电压时STM32L151精确采集ADC电压

当使用电池直接供电 或 外部供电低于LDO的输入电压时,会造成STM32 VDD电压不稳定,忽高忽低。 此时通过使用STM32的内部参考电压功能(Embedded internal reference voltage),可以准确的测量ADC管脚对应的电压值,精度 0.01v左右,可以满足大部分应用场景。 详情参考Blog: https://blog.csdn.net/ioterr/article/details/109170847
recommend-type

GKImagePicker:iOS中UIImagePicker的增强功能,可以以任何指定的大小进行图像裁剪以及图像旋转和缩放

GKImagePicker iOS中UIImagePicker的增强功能,可以以任何指定的大小进行图像裁剪以及图像旋转。 如此简单易用,即使您的计算机文盲奶奶也可以(大概)弄清楚这一点。 特征 从相机中获取新图像或从图库中获取现有图像 以您希望的任何方式缩放和裁剪 旋转图像(点击屏幕以显示菜单) 考虑到UIImageOrientation,因此图像将以预期的方式显示 裁剪后重新缩放图像,或保持图像缩放不变 设置 将GKImagePicker中的所有文件(包括子文件夹)复制到您的项目中。 确保将它们添加到“构建阶段”>“编译源”下的项目目标中。 用 短版 GKImagePicker *picker = [[GKImagePicker alloc] init]; self.picker.delegate = self; // (Optional) default: CGSizeMake(3
recommend-type

300解密软件

S7300解密软件,可以机密新型CPU,有存储卡的那种
recommend-type

基于UDP协议的Client/Server linux网络编程

通过UDP协议在CLIENT和SERVER间传文件,可支持多个CLIENT向一个SERVER请求数据,以及SERVER重启后的断点续传

最新推荐

recommend-type

随机阻塞下毫米波通信的多波束功率分配”.zip

1.版本:matlab2014a/2019b/2024b 2.附赠案例数据可直接运行。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

Mockingbird v2:PocketMine-MP新防作弊机制详解

标题和描述中所涉及的知识点如下: 1. Mockingbird反作弊系统: Mockingbird是一个正在开发中的反作弊系统,专门针对PocketMine-MP服务器。PocketMine-MP是Minecraft Pocket Edition(Minecraft PE)的一个服务器软件,允许玩家在移动平台上共同游戏。随着游戏的普及,作弊问题也随之而来,因此Mockingbird的出现正是为了应对这种情况。 2. Mockingbird的版本迭代: 从描述中提到的“Mockingbird的v1变体”和“v2版本”的变化来看,Mockingbird正在经历持续的开发和改进过程。软件版本迭代是常见的开发实践,有助于修复已知问题,改善性能和用户体验,添加新功能等。 3. 服务器性能要求: 描述中强调了运行Mockingbird的服务器需要具备一定的性能,例如提及“WitherHosting的$ 1.25计划”,这暗示了反作弊系统对服务器资源的需求较高。这可能是因为反作弊机制需要频繁处理大量的数据和事件,以便及时检测和阻止作弊行为。 4. Waterdog问题: Waterdog是另一种Minecraft服务器软件,特别适合 PocketMine-MP。描述中提到如果将Mockingbird和Waterdog结合使用可能会遇到问题,这可能是因为两者在某些机制上的不兼容或Mockingbird对Waterdog的特定实现尚未完全优化。 5. GitHub使用及问题反馈: 作者鼓励用户通过GitHub问题跟踪系统来报告问题、旁路和功能建议。这是一个公共代码托管平台,广泛用于开源项目协作,便于开发者和用户进行沟通和问题管理。作者还提到请用户在GitHub上发布问题而不是在评论区留下不好的评论,这体现了良好的社区维护和用户交流的实践。 6. 软件标签: “pocketmine”和“anticheat”(反作弊)作为标签,说明Mockingbird是一个特别为PocketMine-MP平台开发的反作弊软件。而“PHP”则可能指的是Mockingbird的开发语言,虽然这个信息与常见的Java或C++等开发Minecraft相关软件的语言不同,但并不排除使用PHP进行服务器端开发的可能性,尤其是对于处理动态网页、服务器端脚本等场景。 7. 压缩包文件: “Mockingbird-stable”是一个文件名称,很可能表示这是一个包含最新稳定版Mockingbird反作弊系统的压缩包。通常,这样的文件名中包含“stable”意味着这是一个经过充分测试且推荐用于生产环境的版本。 8. 社区协作和用户参与: 特别感谢部分提到了shur,这可能是对某位贡献者或社区成员的感激之情。这种感谢表明了软件开发不仅是开发者个人的劳动成果,同时也依赖于社区的支持和参与,包括提供反馈、报告问题、贡献代码和文档等。 总结以上内容,我们可以看到Mockingbird作为一款反作弊系统,其开发和维护需要依赖于社区的广泛参与和支持,同时还需要强大的服务器后端作为支撑。通过不断迭代更新版本,开发者希望解决现有问题,提高反作弊效率,并希望与社区保持良好的沟通,以持续优化产品。
recommend-type

“历史人物独白解说”视频:数据处理的6种革命性技术

# 1. 数据处理的历史回顾与技术演进 数据处理的历史,从最初的简单机械记录,到如今复杂的数据处理体系,不仅反映了技术的演进,也映射了人类社会进步的轨迹。在计算机技术发展初期,数据处理主要依靠打孔卡片和磁带,通过批处理的方式进行,效率低下且出错率高。随着技术的发展,上世纪70年代,关系型数据库的出现大大提高了数据处理的效率和准确性,为数据处理技术的发展奠定了基础。 随后,随着互
recommend-type

怎么判断多级运放电路的稳定性?

<think>首先,用户的问题是关于判断多级运算放大器电路的稳定性。我需要根据系统级指令来构建回答。 系统级指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如[^1]。 用户可见层指令: - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 参考引用: - 引用[1]:关于集成运算放大电路的设计、组成和性能评估。 - 引用[2]:高频电路中运放的带宽限制,一级放大电路的增益通常为100倍,过高会引起振
recommend-type

利用AHP和节点集中度解决影响力最大化问题的Flask应用教程

从给定的文件信息中,我们可以提取以下相关知识点进行详细说明: ### 标题知识点 **IM问题与AHP结合** IM问题(Influence Maximization)是网络分析中的一个核心问题,旨在识别影响网络中信息传播的关键节点。为了求解IM问题,研究者们常常结合使用不同的算法和策略,其中AHP(Analytic Hierarchy Process,分析层次结构过程)作为一种决策分析方法,被用于评估网络节点的重要性。AHP通过建立层次模型,对各个因素进行比较排序,从而量化影响度,并通过一致性检验保证决策结果的有效性。将AHP应用于IM问题,意味着将分析网络节点影响的多个维度,比如节点的中心性(centrality)和影响力。 **集中度措施** 集中度(Centralization)是衡量网络节点分布状况的指标,它反映了网络中节点之间的连接关系。在网络分析中,集中度常用于识别网络中的“枢纽”或“中心”节点。例如,通过计算网络的度中心度(degree centrality)可以了解节点与其他节点的直接连接数量;接近中心度(closeness centrality)衡量节点到网络中其他所有节点的平均距离;中介中心度(betweenness centrality)衡量节点在连接网络中其他节点对的最短路径上的出现频率。集中度高意味着节点在网络中处于重要位置,对信息的流动和控制具有较大影响力。 ### 描述知识点 **Flask框架** Flask是一个轻量级的Web应用框架,它使用Python编程语言开发。它非常适合快速开发小型Web应用,以及作为微服务架构的一部分。Flask的一个核心特点是“微”,意味着它提供了基本的Web开发功能,同时保持了框架的小巧和灵活。Flask内置了开发服务器,支持Werkzeug WSGI工具包和Jinja2模板引擎,提供了RESTful请求分发和请求钩子等功能。 **应用布局** 一个典型的Flask应用会包含以下几个关键部分: - `app/`:这是应用的核心目录,包含了路由设置、视图函数、模型和控制器等代码文件。 - `static/`:存放静态文件,比如CSS样式表、JavaScript文件和图片等,这些文件的内容不会改变。 - `templates/`:存放HTML模板文件,Flask将使用这些模板渲染最终的HTML页面。模板语言通常是Jinja2。 - `wsgi.py`:WSGI(Web Server Gateway Interface)是Python应用程序和Web服务器之间的一种标准接口。这个文件通常用于部署到生产服务器时,作为应用的入口点。 **部署到Heroku** Heroku是一个支持多种编程语言的云平台即服务(PaaS),它允许开发者轻松部署、运行和管理应用。部署Flask应用到Heroku,需要几个步骤:首先,创建一个Procfile文件,告知Heroku如何启动应用;其次,确保应用的依赖关系被正确管理,通常通过一个requirements.txt文件列出所有依赖;最后,使用Git将应用推送到Heroku提供的仓库,Heroku会自动识别Procfile并开始部署过程。 ### 标签知识点 **HTML** HTML(HyperText Markup Language,超文本标记语言)是用于创建网页和Web应用的标准标记语言。它定义了网页的结构和内容。HTML文件由一系列元素组成,这些元素通过标签(tags)来表示,如`<p>`代表段落,`<a>`代表链接,`<img>`代表图像等。HTML5是当前使用的最新版本,支持更多的特性,如离线存储、多媒体和图形等。 ### 压缩包子文件的文件名称列表知识点 **IMproblem-using-AHP-and-centralisation-of-nodes-master** 这里的文件名称“IMproblem-using-AHP-and-centralisation-of-nodes-master”表明了一个GitHub仓库的名称,其中包含了源代码以及与项目相关的所有文件。从名称中可以看出,该仓库是关于如何结合AHP和节点集中度分析来解决IM问题的Flask应用程序。文件名中的“master”表明这是仓库的主分支(现在叫做main分支),它是项目最新的、可部署的代码版本。 综合来看,本段信息为我们提供了构建和部署一个使用Flask框架、针对IM问题使用AHP和节点集中度分析的Web应用的方法和步骤。同时,介绍了应用在不同环节中所需技术和组件的详细知识点。
recommend-type

视频内容自动生成算法:突破性的8大最新进展

# 1. 视频内容自动生成算法概述 ## 算法发展背景 随着人工智能技术的迅速发展,视频内容自动生成算法已经成为媒体和娱乐行业的重要工具。这些算法能够自动编辑和合成视频内容,使内容创作者能够以较低的成本和时间生成高质量的视频。从社交媒体动态到在线教育内容,视频内容自动生成的应用场景正在不断扩大。 ## 核心技术简述 视
recommend-type

Softmax函数实际应用举例

<think>嗯,用户现在想了解Softmax函数的实际应用场景,这和我之前详细解释过的Softmax原理是直接相关的。用户特意提到要参考站内引用,看来是想看到具体案例支撑。 从用户提问方式看,ta应该已经理解了Softmax的基本数学原理(毕竟我上次用向量[2,1,0.1]的例子详细演示过计算过程),现在需要落地到实践层面。这种从理论到应用的递进很合理,可能是个正在学习机器学习的学生,或者需要解决实际问题的工程师。 我注意到用户提供的引用里有些关键线索:引用[1]提到图像分类和概率解释,引用[4]强调指数放大的特性,引用[5]则对比了Sigmoid在多标签分类的应用差异。这些正好能支撑我
recommend-type

WDI项目1:PriceIsRight游戏开发实践

### 标题解析 标题“price-is-right:WDI项目1-PriceIsRight游戏”表明这是一个名为“Price Is Right”的游戏项目,这是WDI(Web Development Immersive,全栈网页开发沉浸式课程)的第一个项目。WDI是一种常用于IT培训机构的课程名称,旨在通过实战项目来培养学员的全栈网页开发能力。 ### 描述解析 描述中提到,该游戏的目的是为了练习基本的JavaScript技能。这表明游戏被设计成一个编程练习,让开发者通过实现游戏逻辑来加深对JavaScript的理解。描述中也提到了游戏是一个支持两个玩家的版本,包含了分配得分、跟踪得分以及宣布获胜者等逻辑,这是游戏开发中常见的功能实现。 开发者还提到使用了Bootstrap框架来增加网站的可伸缩性。Bootstrap是一个流行的前端框架,它让网页设计和开发工作更加高效,通过提供预设的CSS样式和JavaScript组件,让开发者能够快速创建出响应式的网站布局。此外,开发者还使用了HTML5和CSS进行网站设计,这表明项目也涉及到了前端开发的基础技能。 ### 标签解析 标签“JavaScript”指出了该游戏中核心编程语言的使用。JavaScript是一种高级编程语言,常用于网页开发中,负责实现网页上的动态效果和交互功能。通过使用JavaScript,开发者可以在不离开浏览器的情况下实现复杂的游戏逻辑和用户界面交互。 ### 文件名称解析 压缩包子文件的文件名称列表中仅提供了一个条目:“price-is-right-master”。这里的“master”可能指明了这是项目的主分支或者主版本,通常在版本控制系统(如Git)中使用。文件名中的“price-is-right”与标题相呼应,表明该文件夹内包含的代码和资源是与“Price Is Right”游戏相关的。 ### 知识点总结 #### 1. JavaScript基础 - **变量和数据类型**:用于存储得分等信息。 - **函数和方法**:用于实现游戏逻辑,如分配得分、更新分数。 - **控制结构**:如if-else语句和循环,用于实现游戏流程控制。 - **事件处理**:监听玩家的输入(如点击按钮)和游戏状态的变化。 #### 2. Bootstrap框架 - **网格系统**:实现响应式布局,让游戏界面在不同设备上都能良好展示。 - **预设组件**:可能包括按钮、表单、警告框等,用于快速开发用户界面。 - **定制样式**:根据需要自定义组件样式来符合游戏主题。 #### 3. HTML5与CSS - **语义化标签**:使用HTML5提供的新标签来构建页面结构,如`<header>`, `<section>`, `<footer>`等。 - **CSS布局**:使用Flexbox或Grid等布局技术对页面元素进行定位和排版。 - **样式设计**:通过CSS为游戏界面增添美观的视觉效果。 #### 4. 项目结构和版本控制 - **主分支管理**:`master`分支通常保存着项目的稳定版本,用于部署生产环境。 - **代码组织**:合理的文件结构有助于维护和扩展项目。 #### 5. 前端开发最佳实践 - **分离关注点**:将样式、脚本和内容分离,确保代码清晰易维护。 - **响应式设计**:确保游戏在多种设备和屏幕尺寸上均有良好的用户体验。 - **可访问性**:考虑键盘导航、屏幕阅读器等无障碍功能,让游戏更加友好。 #### 6. 交互式游戏开发 - **游戏逻辑实现**:创建一个简单的游戏循环,管理玩家输入和得分更新。 - **状态管理**:游戏中的得分和其他游戏状态需要妥善保存和更新。 - **用户界面反馈**:提供即时的视觉和听觉反馈,增强玩家体验。 通过上述知识点的解析,可以看出“Price Is Right”游戏项目不仅仅是一个简单的编程练习,它还融合了多种前端技术,包括JavaScript、Bootstrap、HTML5和CSS,以实现一个完整的、可交互的游戏体验。此项目也反映了开发者在掌握前端开发技能的同时,了解了如何组织代码、维护项目结构和实践开发最佳实践。
recommend-type

人工智能视频编辑:如何利用技术进步提升内容创作质量

# 1. 人工智能视频编辑概述 随着人工智能技术的飞速发展,视频编辑领域正在经历一场前所未有的革命。AI的介入,不仅极大地提升了视频编辑的效率,还赋予了内容创作者全新的表达方式。本章旨在概述人工智能视频编辑的概念、发展历程和当前的应用现状,为读者提供一个全面而深入的了解。 ## 1.1 人工智能视频编辑的兴起 人工智能视频编辑是将先进的机器学习算法与传统视频处理技术相
recommend-type

反激变换器

<think>首先,用户意图是了解反激变换器的工作原理或设计方法。用户的问题是:“反激变换器工作原理及设计指南”。所以我需要基于这个意图和问题,通过调用网络搜索工具进行检索。 我的任务是: 1. 调用网络搜索工具来检索相关内容。 2. 整合检索到的内容,生成详细、清晰、实用、可操作的回答。 3. 禁止将所有引用内容集中在回答末尾;引用应该融入回答中。 4. 避免使用第一人称如“我”。 5. 避免步骤词汇如“首先”、“然后”。 6. 将答案组织为多个方法或步骤,并在每个步骤间换行。 7. 对于代码和公式,遵循特定格式: - 行内公式:$公式内容$ - 独立公式:$$公式内容$$