(mianshiapp) PS C:\Users\29380> & D:/Anaconda/envs/mianshiapp/python.exe c:/Users/29380/Desktop/app/表情分析.py Using cache found in C:\Users\29380/.cache\torch\hub\pytorch_vision_v0.10.0 Traceback (most recent call last): File "c:\Users\29380\Desktop\app\表情分析.py", line 85, in <module> avg_energy = detect_and_quantify_expression(video_path) File "c:\Users\29380\Desktop\app\表情分析.py", line 50, in detect_and_quantify_expression results = yolo_model(frame) File "D:\Anaconda\envs\mianshiapp\lib\site-packages\ultralytics\engine\model.py", line 185, in __call__ return self.predict(source, stream, **kwargs) File "D:\Anaconda\envs\mianshiapp\lib\site-packages\ultralytics\engine\model.py", line 555, in predict return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) File "D:\Anaconda\envs\mianshiapp\lib\site-packages\ultralytics\engine\predictor.py", line 227, in __call__ return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one File "D:\Anaconda\envs\mianshiapp\lib\site-packages\torch\utils\_contextlib.py", line 36, in generator_context response = gen.send(None) File "D:\Anaconda\envs\mianshiapp\lib\site-packages\ultralytics\engine\predictor.py", line 337, in stream_inference self.results = self.postprocess(preds, im, im0s) File "D:\Anaconda\envs\mianshiapp\lib\site-packages\ultralytics\models\yolo\detect\predict.py", line 56, in postprocess preds = ops.non_max_suppression( File "D:\Anaconda\envs\mianshiapp\lib\site-packages\ultralytics\utils\ops.py", line 330, in non_max_suppression i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS File "C:\Users\29380/.cache\torch\hub\pytorch_vision_v0.10.0\torchvision\ops\boxes.py", line 34, in nms _assert_has_ops() File "C:\Users\29380/.cache\torch\hub\pytorch_vision_v0.10.0\torchvision\extension.py", line 62, in _assert_has_ops raise RuntimeError( RuntimeError: Couldn't load custom C++ ops. This can happen if your PyTorch and torchvision versions are incompatible, or if you had errors while compiling torchvision from source. For further information on the compatible versions, check https://github.com/pytorch/vision#installation for the compatibility matrix. Please check your PyTorch version with torch.__version__ and your torchvision version with torchvision.__version__ and verify if they are compatible, and if not please reinstall torchvision so that it matches your PyTorch install.
时间: 2025-08-04 22:43:03 浏览: 11
<think>Hmm用户遇到了PyTorch和torchvision版本不兼容导致的RuntimeError,具体是关于无法加载自定义C++操作的问题,尤其是提到nms(非极大值抑制)操作。用户提供的两个引用都明确指出这是版本冲突造成的。从引用1看,这个错误明确说明是版本不匹配引起的,并提示要检查torch.__version__和torchvision.__version__的兼容性。引用2给出了具体解决方案:安装支持CUDA12.x的PyTorch2.2.0和torchvision0.17.0组合。用户可能是在运行物体检测相关的代码时触发了nms操作失败,因为nms是检测算法中的关键后处理操作。考虑到用户引用了nmssolution这个词,ta应该已经尝试过某些方法但未解决,现在需要具体指导。有趣的是用户提到"并不是用户真正的需求",这提示我们引用内容可能来自文档而非用户原始报错。但核心问题很清晰:需要修复版本冲突。用户身份很可能是计算机视觉研究者或工程师,正在使用PyTorch实现检测模型。值得注意的细节是引用2中CUDA版本的说明——CUDA12.4其实向下兼容12.1,所以安装12.1版本的PyTorch即可。用户环境可能是较新的显卡(RTX30/40系列),所以才涉及CUDA12.x。解决方案需要分三层:首先是验证当前版本是否匹配,其次提供标准安装命令,最后补充conda环境的替代方案。考虑到Windows用户可能遇到路径问题,应该提醒添加环境变量。检查方法要具体到importtorch后如何打印版本号,这对新手很重要。考虑到用户上次问题可能涉及环境配置,解决方案要给出完整步骤链:验证->卸载->安装->验证。最后用动态版本查询的链接作为弹性补充,因为PyTorch官网经常更新。</think>
根据报错信息和兼容性要求,以下是解决PyTorch和torchvision版本不兼容导致`nms`等C++操作加载失败的完整方案:
---
### **解决方案步骤**
#### 1. **验证当前版本兼容性**
```python
import torch, torchvision
print(f"PyTorch: {torch.__version__}\ntorchvision: {torchvision.__version__}")
```
✅ 检查[PyTorch与torchvision官方兼容表](https://github.com/pytorch/vision#installation),确认版本匹配关系(例如PyTorch 2.2.0需匹配torchvision 0.17.0)。
#### 2. **卸载冲突版本**
```bash
pip uninstall -y torch torchvision
```
#### 3. **安装兼容版本**
根据CUDA版本选择对应命令:
- **CUDA 12.x 用户**(推荐):
```bash
pip install torch==2.2.0 torchvision==0.17.0 --index-url https://download.pytorch.org/whl/cu121
```
- **CUDA 11.x 用户**:
```bash
pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu118
```
- **CPU用户**:
```bash
pip install torch==2.2.0 torchvision==0.17.0
```
#### 4. **检查C++扩展加载**
```python
from torchvision.ops import nms # 显式触发nms加载
print("C++ ops loaded successfully!") # 无报错即成功
```
#### 5. **常见避坑指南**
- **Windows用户**:安装VC++ Redistributable([下载链接](https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist))
- **源码编译错误**:添加`--no-cache-dir`避免旧编译缓存干扰
- **环境隔离**:建议使用`conda create -n pytorch_env python=3.10`
---
### **兼容性参考表**
| PyTorch | torchvision | CUDA要求 | Python版本 |
|----------|-------------|----------|-----------|
| 2.2.0 | 0.17.0 | ≥12.1 | ≥3.8 |
| 2.1.0 | 0.16.0 | 11.8 | ≥3.8 |
| 2.0.1 | 0.15.2 | 11.7 | ≥3.7 |
> 📌 **重要提示**:若仍报错`nms`未定义,需检查:
> ```python
> # 确认是否禁用编译扩展
> print(torchvision._is_compiled()) # 应为True
> ```
---
### 相关问题
1. 如何诊断PyTorch与CUDA的兼容性问题?
2. 不同CUDA版本的PyTorch性能差异有多大?
3. 源码编译torchvision的正确方法是什么?
4. Windows环境使用C++扩展需要哪些额外配置?
[^1]: RuntimeError的根本原因分析
[^2]: CUDA向下兼容原理及安装建议
阅读全文
相关推荐




















