python C:\Anaconda3\envs\python torch1.10 C:\Anaconda3\envs\torch1.10 root * C:\Anaconda3 这三个编译器为什么只有root可以找到内核,别的都无法打开内核
时间: 2024-04-22 10:25:45 浏览: 83
这个问题涉及到环境变量的设置。在Windows系统中,每个编译器或软件都有自己的安装路径。为了能够在命令行或终端中直接调用编译器或软件,需要将其所在路径添加到系统的环境变量中。
root编译器能够找到内核是因为它的安装路径已经添加到了系统的环境变量中。而其他两个编译器无法找到内核,可能是因为它们的安装路径没有被添加到系统的环境变量中。
要解决这个问题,你可以手动将这两个编译器的安装路径添加到系统的环境变量中。具体的步骤如下:
1. 打开控制面板,并进入"系统和安全" -> "系统" -> "高级系统设置"。
2. 在弹出的窗口中,点击"环境变量"按钮。
3. 在"系统变量"部分,找到名为"Path"的变量,并点击"编辑"按钮。
4. 在编辑窗口中,点击"新建"按钮,并输入第一个编译器的安装路径(例如C:\Anaconda3\envs\python)。
5. 点击"确定"保存修改,并重复步骤4和5,将第二个编译器的安装路径(例如C:\Anaconda3\envs\torch1.10)添加到环境变量中。
6. 关闭所有窗口,并重新启动命令行或终端。
现在,这两个编译器应该能够找到内核并正常运行了。请注意,如果你有多个Python环境,确保将需要使用的编译器的安装路径添加到环境变量中。
相关问题
ERROR: Exception: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher yield File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read data = self._fp_read(amt) if not fp_closed else b"" File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read return self._fp.read(amt) if amt is not None else self._fp.read() File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 90, in read data = self.__fp.read(amt) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 463, in read n = self.readinto(b) File "E:\Anaconda\envs\pytorch\lib\http\client.py", line 507, in readinto n = self.fp.readinto(b) File "E:\Anaconda\envs\pytorch\lib\socket.py", line 704, in readinto return self._sock.recv_into(b) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1242, in recv_into return self.read(nbytes, buffer) File "E:\Anaconda\envs\pytorch\lib\ssl.py", line 1100, in read return self._sslobj.read(len, buffer) socket.timeout: The read operation timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\cli\base_command.py", line 160, in exc_logging_wrapper status = run_func(*args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\cli\req_command.py", line 247, in wrapper return func(self, options, args) File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\commands\install.py", line 419, in run requirement_set = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 92, in resolve result = self._result = resolver.resolve( File "E:\Anaconda\envs\pytorch\lib\site-packages\pip\_vendor\resolvelib\resolvers.py"
看起来你在使用pip下载PyTorch时遇到了一个网络连接超时的错误。这通常是由于网络问题引起的。你可以尝试以下几种方法来解决这个问题:
1. 检查你的网络连接是否正常,确保你能够访问互联网。
2. 重试下载命令,有时候下载命令可能会因为网络问题而失败。你可以再次运行下载命令,看看问题是否得到解决。
3. 更换下载源,有时候下载源的问题也可能导致下载失败。你可以尝试切换到其他镜像源,比如清华大学的镜像源。
```
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
```
如果你需要下载支持CUDA的PyTorch版本,可以使用以下命令:
```
pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple
```
4. 如果以上方法都不起作用,你可以尝试等待一段时间,然后再次尝试下载命令。可能只是暂时的网络问题。
希望这些方法能够帮助解决你的问题!
Traceback (most recent call last): File "D:/faster-rcnn-pytorch-master/predict.py", line 82, in <module> r_image = frcnn.detect_image(image, crop=crop, count=count) File "D:\faster-rcnn-pytorch-master\frcnn.py", line 146, in detect_image roi_cls_locs, roi_scores, rois, _ = self.net(images) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\parallel\data_parallel.py", line 150, in forward return self.module(*inputs[0], **kwargs[0]) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "D:\faster-rcnn-pytorch-master\nets\frcnn.py", line 84, in forward roi_cls_locs, roi_scores = self.head.forward(base_feature, rois, roi_indices, img_size) File "D:\faster-rcnn-pytorch-master\nets\classifier.py", line 102, in forward fc7 = self.classifier(pool) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\container.py", line 92, in forward input = module(input) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\container.py", line 92, in forward input = module(input) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "D:\faster-rcnn-pytorch-master\nets\resnet50.py", line 31, in forward out = self.conv2(out) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\conv.py", line 343, in forward return self.conv2d_forward(input, self.weight) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\conv.py", line 340, in conv2d_forward self.padding, self.dilation, self.groups) RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED这是什么错误
这个错误是由于cuDNN执行失败引起的。cuDNN是一个在GPU上加速深度神经网络计算的库。CUDNN_STATUS_EXECUTION_FAILED表示cuDNN在执行过程中遇到了错误。
这个错误可能有多种原因,包括但不限于以下几点:
1. GPU驱动问题:请确保你的GPU驱动是最新的,并且与你使用的深度学习框架兼容。
2. CUDA版本问题:请确保你的CUDA版本与你使用的深度学习框架要求的CUDA版本匹配。
3. GPU显存不足:cuDNN可能需要大量的显存来执行计算。请确保你的GPU显存足够,并且没有被其他进程占用。
4. 网络结构问题:某些网络结构可能不适用于cuDNN加速,你可以尝试修改网络结构或者使用其他的深度学习框架。
如果以上解决方法都不起作用,你可以尝试搜索相关的错误信息来获取更多的帮助,或者向相关的开发者社区寻求支持。
阅读全文
相关推荐


















