ros2编译pointcloud_to_laserscan

时间: 2024-11-06 21:22:03 AIGC 浏览: 317
在ROS2 (Robot Operating System) 中,`pointcloud_to_laserscan`是一个转换节点,它主要用于将点云数据(通常是由传感器产生的点云消息)转换为激光扫描数据(laser scan),这是一种常见于机器人导航中的数据格式。这个过程通常用于整合来自多种传感器的数据,并使其更适应SLAM( simultaneous localization and mapping,同时定位和建图)等高级功能。 要在ROS2中编译`pointcloud_to_laserscan`,首先你需要确保已经安装了必要的ROS2包,包括`rclcpp`、`sensor_msgs`、`tf2_ros`等。然后,通常是在项目的`CMakeLists.txt`文件中配置,例如: ```cmake find_package(rclcpp REQUIRED) find_package(sensor_msgs REQUIRED) find_package(tf2_ros REQUIRED) add_executable(pointcloud_to_laserscan src/pointcloud_to_laserscan.cpp) target_link_libraries(pointcloud_to_laserscan rclcpp::rclcpp sensor_msgs::msg::PointCloud2 tf2_ros::lib) ``` 这里假设`src/pointcloud_to_laserscan.cpp`是包含转换逻辑的源码文件。接下来,运行`colcon build`命令来构建该节点及其依赖项。如果你在第一次编译时遇到问题,可能需要安装相关的包或者检查系统的包管理状态。
阅读全文

相关推荐

WARNING: disk usage in log directory [/home/sx/.ros/log] is over 1GB. It's recommended that you use the 'rosclean' command. started roslaunch server http://sx-NUC8i5BEH:34675/ SUMMARY ======== PARAMETERS * /common/imu_topic: /livox/imu * /common/lid_topic: /livox/lidar * /common/time_offset_lidar_to_imu: 0.0 * /common/time_sync_en: False * /cube_side_length: 1000.0 * /feature_extract_enable: False * /filter_size_map: 0.5 * /filter_size_surf: 0.5 * /mapping/acc_cov: 0.1 * /mapping/b_acc_cov: 0.0001 * /mapping/b_gyr_cov: 0.0001 * /mapping/det_range: 100.0 * /mapping/extrinsic_R: [1, 0, 0, 0, 1, 0... * /mapping/extrinsic_T: [-0.011, -0.02329... * /mapping/extrinsic_est_en: False * /mapping/fov_degree: 360 * /mapping/gyr_cov: 0.1 * /max_iteration: 3 * /pcd_save/interval: -1 * /pcd_save/pcd_save_en: False * /pcd_save_en: False * /point_filter_num: 3 * /pointcloud_to_laserscan/angle_increment: 0.0087 * /pointcloud_to_laserscan/angle_max: 3.14159 * /pointcloud_to_laserscan/angle_min: -3.14159 * /pointcloud_to_laserscan/concurrency_level: 1 * /pointcloud_to_laserscan/inf_epsilon: 1.0 * /pointcloud_to_laserscan/max_height: 1.0 * /pointcloud_to_laserscan/min_height: 0.0 * /pointcloud_to_laserscan/range_max: 30.0 * /pointcloud_to_laserscan/range_min: 0.05 * /pointcloud_to_laserscan/scan_time: 10 * /pointcloud_to_laserscan/transform_tolerance: 0.01 * /pointcloud_to_laserscan/use_inf: True * /preprocess/blind: 0.5 * /preprocess/lidar_type: 1 * /preprocess/scan_line: 4 * /publish/dense_publish_en: True * /publish/path_en: False * /publish/scan_bodyframe_pub_en: True * /publish/scan_publish_en: True * /rosdistro: noetic * /rosversion: 1.17.0 * /runtime_pos_log_enable: False NODES / global_localization (fast_lio_localization/global_localization.py) laserMapping (fast_lio/fastlio_mapping) map_publishe (pcl_ros/pcd_to_pointcloud) map_server (map_server/map_server) pointcloud_to_laserscan (pointcloud_to_laserscan/po

colcon build --symlink-install Starting >>> livox_ros_driver2 Starting >>> linefit_ground_segmentation Starting >>> fake_vel_transform Starting >>> imu_complementary_filter Starting >>> pb_rm_simulation Starting >>> pointcloud_to_laserscan Starting >>> rm_nav_bringup Starting >>> rm_navigation Finished <<< rm_nav_bringup [0.08s] Finished <<< pb_rm_simulation [0.09s] Finished <<< rm_navigation [0.10s] Finished <<< fake_vel_transform [0.21s] Finished <<< imu_complementary_filter [0.24s] Finished <<< pointcloud_to_laserscan [0.28s] --- stderr: livox_ros_driver2 /usr/include/apr-1.0 apr-1 Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'numpy' CMake Error at /opt/ros/humble/share/rosidl_generator_py/cmake/rosidl_generator_py_generate_interfaces.cmake:204 (message): execute_process(/home/chen/miniconda3/envs/ros_env/bin/python3 -c 'import numpy;print(numpy.get_include())') returned error code 1 Call Stack (most recent call first): /opt/ros/humble/share/ament_cmake_core/cmake/core/ament_execute_extensions.cmake:48 (include) /opt/ros/humble/share/rosidl_cmake/cmake/rosidl_generate_interfaces.cmake:286 (ament_execute_extensions) CMakeLists.txt:241 (rosidl_generate_interfaces) --- Failed <<< livox_ros_driver2 [1.55s, exited with code 1] Aborted <<< linefit_ground_segmentation [3.71s] Summary: 6 packages finished [3.78s] 1 package failed: livox_ros_driver2 1 package aborted: linefit_ground_segmentation 1 package had stderr output: livox_ros_driver2 3 packages not processed

colcon build --symlink-install Starting >>> livox_ros_driver2 Starting >>> costmap_converter_msgs Starting >>> linefit_ground_segmentation Starting >>> fake_vel_transform Starting >>> imu_complementary_filter Starting >>> pb_rm_simulation Starting >>> pointcloud_to_laserscan Starting >>> rm_nav_bringup Starting >>> rm_navigation Finished <<< rm_nav_bringup [0.10s] Finished <<< rm_navigation [0.11s] Finished <<< pb_rm_simulation [0.13s] --- stderr: costmap_converter_msgs CMake Error at /opt/ros/humble/share/rosidl_adapter/cmake/rosidl_adapt_interfaces.cmake:59 (message): execute_process(/home/chen/miniconda3/bin/python3 -m rosidl_adapter --package-name costmap_converter_msgs --arguments-file /home/chen/files/pb_rmsimulation/build/costmap_converter_msgs/rosidl_adapter__arguments__costmap_converter_msgs.json --output-dir /home/chen/files/pb_rmsimulation/build/costmap_converter_msgs/rosidl_adapter/costmap_converter_msgs --output-file /home/chen/files/pb_rmsimulation/build/costmap_converter_msgs/rosidl_adapter/costmap_converter_msgs.idls) returned error code 1: AttributeError processing template 'msg.idl.em' Traceback (most recent call last): File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/resource/__init__.py", line 51, in evaluate_template em.BUFFERED_OPT: True, AttributeError: module 'em' has no attribute 'BUFFERED_OPT' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/chen/miniconda3/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/chen/miniconda3/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/__main__.py", line 19, in <module> sys.exit(main()) File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/main.py", line 53, in main abs_idl_file = convert_to_idl( File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/__init__.py", line 19, in convert_to_idl return convert_msg_to_idl( File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/msg/__init__.py", line 39, in convert_msg_to_idl expand_template('msg.idl.em', data, output_file, encoding='iso-8859-1') File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/resource/__init__.py", line 23, in expand_template content = evaluate_template(template_name, data) File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/resource/__init__.py", line 69, in evaluate_template _interpreter.shutdown() AttributeError: 'NoneType' object has no attribute 'shutdown' Call Stack (most recent call first): /opt/ros/humble/share/rosidl_cmake/cmake/rosidl_generate_interfaces.cmake:130 (rosidl_adapt_interfaces) CMakeLists.txt:20 (rosidl_generate_interfaces) --- Failed <<< costmap_converter_msgs [0.33s, exited with code 1] Aborted <<< livox_ros_driver2 [1.44s] Aborted <<< linefit_ground_segmentation [3.91s] Aborted <<< fake_vel_transform [6.36s] Aborted <<< imu_complementary_filter [13.7s] Aborted <<< pointcloud_to_laserscan [19.9s] Summary: 3 packages finished [20.0s] 1 package failed: costmap_converter_msgs 5 packages aborted: fake_vel_transform imu_complementary_filter linefit_ground_segmentation livox_ros_driver2 pointcloud_to_laserscan 2 packages had stderr output: costmap_converter_msgs livox_ros_driver2 8 packages not processed (base) chen@chen-R16:~/files/pb_rmsimulation$

zy@zy-Lenovo-Legion-R7000P2020H:~/autoware$ colcon build --symlink-install \ --cmake-args \ -DCMAKE_BUILD_TYPE=Release \ -DCUDAToolkit_ROOT=/usr/local/cuda-12.4 \ -DCMAKE_CUDA_COMPILER=/usr/local/cuda-12.4/bin/nvcc \ --continue-on-error \ --allow-overriding can_msgs Starting >>> autoware_lint_common Starting >>> autoware_planning_msgs Starting >>> autoware_simple_object_merger --- stderr: autoware_probabilistic_occupancy_grid_map In this package, headers install destination is set to include by ament_auto_package. It is recommended to install include/autoware_probabilistic_occupancy_grid_map instead and will be the default behavior of ament_auto_package from ROS 2 Kilted Kaiju. On distributions before Kilted, ament_auto_package behaves the same way when you use USE_SCOPED_HEADER_INSTALL_DIR option. CMake Warning: Manually-specified variables were not used by the project: CMAKE_CUDA_COMPILER CUDAToolkit_ROOT /usr/bin/ccache: invalid option -- 'E' nvcc fatal : Failed to preprocess host compiler properties. CMake Error at autoware_probabilistic_occupancy_grid_map_cuda_generated_utils_kernel.cu.o.Release.cmake:220 (message): Error generating /home/zy/autoware/build/autoware_probabilistic_occupancy_grid_map/CMakeFiles/autoware_probabilistic_occupancy_grid_map_cuda.dir/lib/utils/./autoware_probabilistic_occupancy_grid_map_cuda_generated_utils_kernel.cu.o gmake[2]: *** [CMakeFiles/autoware_probabilistic_occupancy_grid_map_cuda.dir/build.make:105:CMakeFiles/autoware_probabilistic_occupancy_grid_map_cuda.dir/lib/utils/autoware_probabilistic_occupancy_grid_map_cuda_generated_utils_kernel.cu.o] 错误 1 gmake[1]: *** [CMakeFiles/Makefile2:150:CMakeFiles/autoware_probabilistic_occupancy_grid_map_cuda.dir/all] 错误 2 gmake: *** [Makefile:146:all] 错误 2 --- Failed <<< autoware_probabilistic_occupancy_grid_map [29.1s, exited with code 2] Starting >>> autoware_pid_longitudinal_controller --- stderr: autoware_lidar_transfusion In this package, headers install destination is set to include by ament_auto_package. It is recommended to install include/autoware_lidar_transfusion instead and will be the default behavior of ament_auto_package from ROS 2 Kilted Kaiju. On distributions before Kilted, ament_auto_package behaves the same way when you use USE_SCOPED_HEADER_INSTALL_DIR option. sh: 1: cicc: not found CMake Error at autoware_lidar_transfusion_cuda_lib_generated_preprocess_kernel.cu.o.Release.cmake:280 (message): Error generating file /home/zy/autoware/build/autoware_lidar_transfusion/CMakeFiles/autoware_lidar_transfusion_cuda_lib.dir/lib/preprocess/./autoware_lidar_transfusion_cuda_lib_generated_preprocess_kernel.cu.o gmake[2]: *** [CMakeFiles/autoware_lidar_transfusion_cuda_lib.dir/build.make:411:CMakeFiles/autoware_lidar_transfusion_cuda_lib.dir/lib/preprocess/autoware_lidar_transfusion_cuda_lib_generated_preprocess_kernel.cu.o] 错误 1 gmake[1]: *** [CMakeFiles/Makefile2:192:CMakeFiles/autoware_lidar_transfusion_cuda_lib.dir/all] 错误 2 gmake: *** [Makefile:146:all] 错误 2 --- Failed <<< autoware_lidar_transfusion [34.7s, exited with code 2] Starting >>> autoware_pure_pursuit --- stderr: autoware_planning_validator In this package, headers install destination is set to include by ament_auto_package. It is recommended to install include/autoware_planning_validator instead and will be the default behavior of ament_auto_package from ROS 2 Kilted Kaiju. On distributions before Kilted, ament_auto_package behaves the same way when you use USE_SCOPED_HEADER_INSTALL_DIR option. CMake Warning: Manually-specified variables were not used by the project: CMAKE_CUDA_COMPILER CUDAToolkit_ROOT /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidFiniteValueFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0xa4): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xf0): undefined reference to autoware::planning_validator::PlanningValidator::checkValidFiniteValue(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x120): undefined reference to autoware::planning_validator::PlanningValidator::checkValidFiniteValue(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x153): undefined reference to autoware::planning_validator::PlanningValidator::checkValidFiniteValue(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidIntervalFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0x4f9): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x549): undefined reference to autoware::planning_validator::PlanningValidator::checkValidInterval(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x59b): undefined reference to autoware::planning_validator::PlanningValidator::checkValidInterval(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x5e0): undefined reference to autoware::planning_validator::PlanningValidator::checkValidInterval(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x638): undefined reference to autoware::planning_validator::PlanningValidator::checkValidInterval(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidCurvatureFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0xb24): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xb70): undefined reference to autoware::planning_validator::PlanningValidator::checkValidCurvature(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidRelativeAngleFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0xde7): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xe64): undefined reference to autoware::planning_validator::PlanningValidator::checkValidRelativeAngle(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xec5): undefined reference to autoware::planning_validator::PlanningValidator::checkValidRelativeAngle(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xf28): undefined reference to autoware::planning_validator::PlanningValidator::checkValidRelativeAngle(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xfef): undefined reference to autoware::planning_validator::PlanningValidator::checkValidRelativeAngle(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidLateralJerkFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0x14b9): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x150a): undefined reference to autoware::planning_validator::PlanningValidator::checkValidLateralJerk(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x15ea): undefined reference to autoware::planning_validator::PlanningValidator::checkValidLateralJerk(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1662): undefined reference to autoware::planning_validator::PlanningValidator::checkValidLateralJerk(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x17f5): undefined reference to autoware::planning_validator::PlanningValidator::checkValidLateralJerk(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkTrajectoryShiftFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0x1d2b): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1dda): undefined reference to autoware::planning_validator::PlanningValidator::checkTrajectoryShift(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, geometry_msgs::msg::Pose_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1e2a): undefined reference to autoware::planning_validator::PlanningValidator::checkTrajectoryShift(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, geometry_msgs::msg::Pose_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1e77): undefined reference to autoware::planning_validator::PlanningValidator::checkTrajectoryShift(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, geometry_msgs::msg::Pose_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1ec6): undefined reference to autoware::planning_validator::PlanningValidator::checkTrajectoryShift(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, geometry_msgs::msg::Pose_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_pubsub.cpp.o: in function prepareTest(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, nav_msgs::msg::Odometry_<std::allocator<void> > const&, geometry_msgs::msg::AccelWithCovarianceStamped_<std::allocator<void> > const&)': test_planning_validator_pubsub.cpp:(.text+0x3164): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_node_interface.cpp.o: in function generateNode()': test_planning_validator_node_interface.cpp:(.text+0x14d5): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' collect2: error: ld returned 1 exit status gmake[2]: *** [CMakeFiles/test_autoware_planning_validator.dir/build.make:736:test_autoware_planning_validator] 错误 1 gmake[1]: *** [CMakeFiles/Makefile2:761:CMakeFiles/test_autoware_planning_validator.dir/all] 错误 2 gmake: *** [Makefile:146:all] 错误 2 --- Failed <<< autoware_planning_validator [54.8s, exited with code 2] Summary: 400 packages finished [12min 14s] 13 packages failed: autoware_behavior_path_goal_planner_module autoware_costmap_generator autoware_cuda_pointcloud_preprocessor autoware_dummy_perception_publisher autoware_lidar_centerpoint autoware_lidar_transfusion autoware_obstacle_cruise_planner autoware_planning_validator autoware_probabilistic_occupancy_grid_map autoware_tensorrt_plugins autoware_tensorrt_yolox bevdet_vendor trt_batched_nms 393 packages had stderr output: agnocast_e2e_test agnocast_ioctl_wrapper agnocast_sample_application agnocast_sample_interfaces agnocastlib astra_camera astra_camera_msgs autoware_accel_brake_map_calibrator autoware_adapi_adaptors autoware_adapi_specs autoware_adapi_v1_msgs autoware_adapi_version_msgs autoware_agnocast_wrapper autoware_ar_tag_based_localizer autoware_auto_common autoware_automatic_pose_initializer autoware_autonomous_emergency_braking autoware_bag_time_manager_rviz_plugin autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_planner autoware_behavior_velocity_planner_common autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_stop_line_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_bezier_sampler autoware_bluetooth_monitor autoware_boundary_departure_checker autoware_bytetrack autoware_cluster_merger autoware_collision_detector autoware_compare_map_segmentation autoware_component_interface_specs autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_component_monitor autoware_component_state_monitor autoware_control_evaluator autoware_control_msgs autoware_control_performance_analysis autoware_control_validator autoware_core autoware_core_control autoware_core_localization autoware_core_map autoware_core_perception autoware_core_planning autoware_core_sensing autoware_core_vehicle autoware_costmap_generator autoware_crop_box_filter autoware_crosswalk_traffic_light_estimator autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_default_adapi autoware_detected_object_feature_remover autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_dummy_perception_publisher autoware_duplicated_node_checker autoware_ekf_localizer autoware_elevation_map_loader autoware_euclidean_cluster autoware_euclidean_cluster_object_detector autoware_external_api_msgs autoware_external_cmd_converter autoware_external_cmd_selector autoware_external_velocity_limit_selector autoware_fake_test_node autoware_fault_injection autoware_freespace_planner autoware_freespace_planning_algorithms autoware_frenet_planner autoware_geo_pose_projector autoware_geography_utils autoware_global_parameter_loader autoware_glog_component autoware_gnss_poser autoware_goal_distance_calculator autoware_grid_map_utils autoware_ground_filter autoware_ground_segmentation autoware_gyro_odometer autoware_hazard_status_converter autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_internal_localization_msgs autoware_interpolation autoware_iv_external_api_adaptor autoware_iv_internal_api_adaptor autoware_joy_controller autoware_kalman_filter autoware_kinematic_evaluator autoware_landmark_manager autoware_lane_departure_checker autoware_lanelet2_extension autoware_lanelet2_extension_python autoware_lanelet2_map_visualizer autoware_lanelet2_utils autoware_learning_based_vehicle_model autoware_lidar_centerpoint autoware_lidar_marker_localizer autoware_lidar_transfusion autoware_livox_tag_filter autoware_localization_error_monitor autoware_localization_evaluator autoware_localization_msgs autoware_localization_rviz_plugin autoware_localization_util autoware_map_based_prediction autoware_map_height_fitter autoware_map_loader autoware_map_msgs autoware_map_projection_loader autoware_map_tf_generator autoware_mission_details_overlay_rviz_plugin autoware_mission_planner autoware_mission_planner_universe autoware_motion_utils autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_stop_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_planner autoware_motion_velocity_planner_common autoware_motion_velocity_run_out_module autoware_mpc_lateral_controller autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_msgs autoware_multi_object_tracker autoware_ndt_scan_matcher autoware_node autoware_object_merger autoware_object_range_splitter autoware_object_recognition_utils autoware_object_velocity_splitter autoware_objects_of_interest_marker_interface autoware_obstacle_collision_checker autoware_obstacle_cruise_planner autoware_obstacle_stop_planner autoware_occupancy_grid_map_outlier_filter autoware_operation_mode_transition_manager autoware_osqp_interface autoware_overlay_rviz_plugin autoware_path_distance_calculator autoware_path_generator autoware_path_optimizer autoware_path_sampler autoware_path_smoother autoware_pcl_extensions autoware_perception_objects_converter autoware_perception_online_evaluator autoware_perception_rviz_plugin autoware_pid_longitudinal_controller autoware_planning_evaluator autoware_planning_factor_interface autoware_planning_rviz_plugin autoware_planning_test_manager autoware_planning_topic_converter autoware_planning_validator autoware_point_types autoware_pointcloud_preprocessor autoware_polar_grid autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_initializer autoware_pose_instability_detector autoware_predicted_path_checker autoware_probabilistic_occupancy_grid_map autoware_processing_time_checker autoware_pure_pursuit autoware_pyplot autoware_qp_interface autoware_radar_crossing_objects_noise_filter autoware_radar_fusion_to_detected_object autoware_radar_object_clustering autoware_radar_object_tracker autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_msgs_converter autoware_radar_tracks_noise_filter autoware_raw_vehicle_cmd_converter autoware_remaining_distance_time_calculator autoware_route_handler autoware_rtc_interface autoware_sampler_common autoware_scenario_selector autoware_scenario_simulator_v2_adapter autoware_sensing_msgs autoware_shape_estimation autoware_shift_decider autoware_signal_processing autoware_simple_object_merger autoware_simple_planning_simulator autoware_simple_pure_pursuit autoware_smart_mpc_trajectory_follower autoware_steer_offset_estimator autoware_stop_filter autoware_string_stamped_rviz_plugin autoware_surround_obstacle_checker autoware_system_diagnostic_monitor autoware_system_monitor autoware_system_msgs autoware_tensorrt_classifier autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_test_node autoware_test_utils autoware_testing autoware_time_utils autoware_topic_relay_controller autoware_topic_state_monitor autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_selector autoware_traffic_light_utils autoware_traffic_light_visualization autoware_trajectory autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_twist2accel autoware_universe_utils autoware_utils autoware_utils_debug autoware_utils_diagnostics autoware_utils_geometry autoware_utils_logging autoware_utils_math autoware_utils_pcl autoware_utils_rclcpp autoware_utils_system autoware_utils_tf autoware_utils_uuid autoware_utils_visualization autoware_v2x_msgs autoware_vehicle_cmd_gate autoware_vehicle_door_simulator autoware_vehicle_info_utils autoware_vehicle_msgs autoware_vehicle_velocity_converter autoware_velocity_smoother autoware_velodyne_monitor awapi_awiv_adapter awsim_labs_sensor_kit_description awsim_labs_sensor_kit_launch awsim_labs_vehicle_description awsim_labs_vehicle_launch awsim_sensor_kit_description awsim_sensor_kit_launch bevdet_vendor boost_io_context boost_serial_driver boost_tcp_driver boost_udp_driver camera_description can_bridge can_msgs cartop common_awsim_labs_sensor_launch common_sensor_launch continental_msgs continental_srvs cubtek_can cubtek_can_msgs cubtek_radar_adapter cuda_blackboard demo_cpp_tf dummy_status_publisher eagleye_coordinate eagleye_fix2kml eagleye_geo_pose_converter eagleye_geo_pose_fusion eagleye_gnss_converter eagleye_msgs eagleye_navigation eagleye_rt eagleye_tf glog imu_description imu_release livox_description llh_converter managed_transform_buffer morai_msgs mussp nebula_common nebula_decoders nebula_examples nebula_hw_interfaces nebula_msgs nebula_ros nebula_sensor_driver nebula_tests negotiated_examples pandar_description pandar_msgs perception_utils pointcloud_to_laserscan radar_description robosense_msgs ros2_wit_imu rtklib_bridge rtklib_msgs sample_sensor_kit_description sample_sensor_kit_launch sample_vehicle_description sample_vehicle_launch seyond single_lidar_common_launch single_lidar_sensor_kit_description single_lidar_sensor_kit_launch tier4_adapi_rviz_plugin tier4_api_msgs tier4_api_utils tier4_auto_msgs_converter tier4_autoware_api_launch tier4_camera_view_rviz_plugin tier4_control_launch tier4_control_msgs tier4_datetime_rviz_plugin tier4_debug_msgs tier4_deprecated_api_adapter tier4_dummy_object_rviz_plugin tier4_external_api_msgs tier4_hmi_msgs tier4_localization_launch tier4_localization_msgs tier4_localization_rviz_plugin tier4_map_launch tier4_map_msgs tier4_metric_msgs tier4_perception_msgs tier4_planning_factor_rviz_plugin tier4_planning_msgs tier4_rtc_msgs tier4_sensing_launch tier4_simulation_msgs tier4_state_rviz_plugin tier4_system_launch tier4_system_msgs tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_v2x_msgs tier4_vehicle_launch tier4_vehicle_msgs tier4_vehicle_rviz_plugin tmlidar_msg tmlidar_sdk trt_batched_nms velodyne_description vls_description yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer 11 packages not processed zy@zy-Lenovo-Legion-R7000P2020H:~/autoware$

[rviz2-20] [ERROR] [1751273079.904134286] [rviz2]: PluginlibFactory: The plugin for class 'grid_map_rviz_plugin/GridMap' failed to load. Error: According to the loaded plugin descriptions the class grid_map_rviz_plugin/GridMap with base class type rviz_common::Display does not exist. Declared types are autoware_auto_perception_rviz_plugin/DetectedObjects autoware_auto_perception_rviz_plugin/PredictedObjects autoware_auto_perception_rviz_plugin/TrackedObjects rviz_default_plugins/AccelStamped rviz_default_plugins/Axes rviz_default_plugins/Camera rviz_default_plugins/DepthCloud rviz_default_plugins/Effort rviz_default_plugins/FluidPressure rviz_default_plugins/Grid rviz_default_plugins/GridCells rviz_default_plugins/Illuminance rviz_default_plugins/Image rviz_default_plugins/InteractiveMarkers rviz_default_plugins/LaserScan rviz_default_plugins/Map rviz_default_plugins/Marker rviz_default_plugins/MarkerArray rviz_default_plugins/Odometry rviz_default_plugins/Path rviz_default_plugins/PointCloud rviz_default_plugins/PointCloud2 rviz_default_plugins/PointStamped rviz_default_plugins/Polygon rviz_default_plugins/Pose rviz_default_plugins/PoseArray rviz_default_plugins/PoseWithCovariance rviz_default_plugins/Range rviz_default_plugins/RelativeHumidity rviz_default_plugins/RobotModel rviz_default_plugins/TF rviz_default_plugins/Temperature rviz_default_plugins/TwistStamped rviz_default_plugins/Wrench rviz_plugins/AccelerationMeter rviz_plugins/ConsoleMeter rviz_plugins/Float32MultiArrayStampedPieChart rviz_plugins/MaxVelocity rviz_plugins/MrmSummaryOverlayDisplay rviz_plugins/Path rviz_plugins/PathWithLaneId rviz_plugins/PolarGridDisplay rviz_plugins/PoseWithUuidStamped rviz_plugins/SteeringAngle rviz_plugins/Trajectory rviz_plugins/TurnSignal rviz_plugins/VelocityHistory rviz_plugins::PoseHistory rviz_plugins::PoseHistoryFootprint

NODES / joint_state_publisher (joint_state_publisher/joint_state_publisher) move_group (moveit_ros_move_group/move_group) robot_state_publisher (robot_state_publisher/robot_state_publisher) rviz_ubuntu_2861_4993542575836972810 (rviz/rviz) auto-starting new master process[master]: started with pid [2872] ROS_MASTER_URI=http://localhost:11311 setting /run_id to 1966f85e-0efb-11f0-850d-000c29c69146 process[rosout-1]: started with pid [2883] started core service [/rosout] process[joint_state_publisher-2]: started with pid [2886] process[robot_state_publisher-3]: started with pid [2891] ERROR: cannot launch node of type [moveit_ros_move_group/move_group]: moveit_ros_move_group ROS path [0]=/opt/ros/melodic/share/ros ROS path [1]=/home/fcy/catkin_ws/src ROS path [2]=/opt/ros/melodic/share process[rviz_ubuntu_2861_4993542575836972810-5]: started with pid [2892] [ INFO] [1743513208.619101648]: rviz version 1.13.30 [ INFO] [1743513208.619277497]: compiled against Qt version 5.9.5 [ INFO] [1743513208.619412670]: compiled against OGRE version 1.9.0 (Ghadamon) [ INFO] [1743513208.623547025]: Forcing OpenGl version 0. [ INFO] [1743513208.875174005]: Stereo is NOT SUPPORTED [ INFO] [1743513208.875654555]: OpenGL device: llvmpipe (LLVM 10.0.0, 256 bits) [ INFO] [1743513208.875857719]: OpenGl version: 3.1 (GLSL 1.4). [ERROR] [1743513209.002316614]: PluginlibFactory: The plugin for class 'moveit_rviz_plugin/MotionPlanning' failed to load. Error: According to the loaded plugin descriptions the class moveit_rviz_plugin/MotionPlanning with base class type rviz::Display does not exist. Declared types are rviz/Axes rviz/Camera rviz/DepthCloud rviz/Effort rviz/FluidPressure rviz/Grid rviz/GridCells rviz/Illuminance rviz/Image rviz/InteractiveMarkers rviz/LaserScan rviz/Map rviz/Marker rviz/MarkerArray rviz/Odometry rviz/Path rviz/PointCloud rviz/PointCloud2 rviz/PointStamped rviz/Polygon rviz/Pose rviz/PoseArray rviz/PoseWithCovariance rviz/Range rviz/RelativeHumidity rviz/RobotModel rviz/TF rviz/Temperature rviz/WrenchStamped rviz_plugin_tutorials/Imu

最新推荐

recommend-type

cloudhsm-jvm-1.4.51-sources.jar

cloudhsm-jvm-1.4.51-sources.jar
recommend-type

sparkling-water-doc_2.12-3.42.0.3-1-3.4.jar

sparkling-water-doc_2.12-3.42.0.3-1-3.4.jar
recommend-type

Node.js构建的运动咖啡馆RESTful API介绍

标题《sportscafeold:体育咖啡馆》指出了项目名称为“体育咖啡馆”,这个名字暗示了该项目可能是一个结合了运动和休闲主题的咖啡馆相关的网络服务平台。该项目运用了多种技术栈,核心的开发语言为JavaScript,这从标签中可以得到明确的信息。 从描述中可以提取以下知识点: 1. **Node.js**:体育咖啡馆项目使用了Node.js作为服务器端运行环境。Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它能够使得JavaScript应用于服务器端开发。Node.js的事件驱动、非阻塞I/O模型使其适合处理大量并发连接,这对于RESTFUL API的构建尤为重要。 2. **Express Framework**:项目中使用了Express框架来创建RESTFUL API。Express是基于Node.js平台,快速、灵活且极简的Web应用开发框架。它提供了构建Web和移动应用的强大功能,是目前最流行的Node.js Web应用框架之一。RESTFUL API是一组遵循REST原则的应用架构,其设计宗旨是让Web服务通过HTTP协议进行通信,并且可以使用各种语言和技术实现。 3. **Mongoose ORM**:这个项目利用了Mongoose作为操作MongoDB数据库的接口。Mongoose是一个对象文档映射器(ODM),它为Node.js提供了MongoDB数据库的驱动。通过Mongoose可以定义数据模型,进行数据库操作和查询,从而简化了对MongoDB数据库的操作。 4. **Passport.js**:项目中采用了Passport.js库来实现身份验证系统。Passport是一个灵活的Node.js身份验证中间件,它支持多种验证策略,例如用户名和密码、OAuth等。它提供了标准化的方法来为用户登录提供认证,是用户认证功能的常用解决方案。 5. **版权信息**:项目的版权声明表明了Sportscafe 2015是版权所有者,这表明项目或其相关内容最早发布于2015年或之前。这可能表明该API背后有商业实体的支持或授权使用。 从【压缩包子文件的文件名称列表】中我们可以了解到,该文件的版本控制仓库使用的是“master”分支。在Git版本控制系统中,“master”分支通常用于存放当前可部署的稳定版本代码。在“master”分支上进行的更改通常都是经过测试且准备发布到生产环境的。 综上所述,我们可以知道体育咖啡馆项目是一个利用现代JavaScript技术栈搭建的后端服务。它包含了处理HTTP请求的Express框架、连接MongoDB数据库的Mongoose库和实现用户身份验证的Passport.js中间件。该项目可用于构建提供体育信息、咖啡馆菜单信息、预约服务等的Web应用或API服务,这为体育咖啡馆的营销、用户体验和数据管理提供了可能。 考虑到文档资料的提及,该项目的安装和API文档应该包含在项目资料中,可能在项目的README文件或其他说明文档中。对于项目的使用者或者开发者而言,这部分文档非常重要,因为它们可以提供详细的信息和指导,帮助用户快速部署和使用该API。 总结来说,这是一套针对体育咖啡馆相关业务的后端解决方案,它使用了流行的开源技术栈,可以灵活地应用于体育咖啡馆的网络服务中,如信息发布、在线预约、会员管理等。
recommend-type

【LNR优化与用户体验】:一文看透互操作优化如何提升用户感知

# 摘要 LNR(邻区关系优化)是提升移动通信网络性能与用户体验的关键技术。本文系统阐述了LNR优化的基本概念、理论基础与技术实现路径,构建了包括信道质量评估、干扰建模及关键性能指标分析在内的数学模型,并探讨了参数配置、邻区管理及AI与大数据在LNR优化中的应用。通过量化用户感知指标,分析了LNR优化对视频流畅度、页面加载速度及切换性能的实际改善效果,并结合典型场景验证了其优化成效。本文进一步展望了LNR技术在5G及未来网络中的发展趋势与技术挑战。
recommend-type

Java1.8 的编程语言、使用场景、版本号、厂商、是否开源、发行日期、终止日期、可替代产品、推荐产品是什么

以下是关于 **Java 1.8** 的全面信息汇总,涵盖其编程语言特性、使用场景、版本号、厂商、是否开源、发行日期、终止支持日期、可替代产品和推荐产品。 --- ## ✅ Java 1.8 综合信息表 | 项目 | 内容 | |------|------| | **编程语言** | Java | | **版本号** | Java 1.8(也称为 Java 8) | | **厂商** | Oracle、Adoptium、Amazon(Corretto)、Azul(Zulu)、Red Hat、IBM 等 | | **是否开源** | ✅ 是(OpenJDK 1.8 是开源的,Oracle
recommend-type

Java开发的教区牧民支持系统介绍

根据给定文件信息,下面将详细阐述相关知识点: ### 标题知识点 #### catecumenus-java: 教区牧民支持系统 - **Java技术栈应用**:标题提到的“catecumenus-java”表明这是一个使用Java语言开发的系统。Java是目前最流行的编程语言之一,广泛应用于企业级应用、Web开发、移动应用等,尤其是在需要跨平台运行的应用中。Java被设计为具有尽可能少的实现依赖,所以它可以在多种处理器上运行。 - **教区牧民支持系统**:从标题来看,这个系统可能面向的是教会管理或教区管理,用来支持牧民(教会领导者或牧师)的日常管理工作。具体功能可能包括教友信息管理、教区活动安排、宗教教育资料库、财务管理、教堂资源调配等。 ### 描述知识点 #### 儿茶类 - **儿茶素(Catechin)**:描述中提到的“儿茶类”可能与“catecumenus”(新信徒、教徒)有关联,暗示这个系统可能与教会或宗教教育相关。儿茶素是一类天然的多酚类化合物,常见于茶、巧克力等植物中,具有抗氧化、抗炎等多种生物活性,但在系统标题中可能并无直接关联。 - **系统版本号**:“0.0.1”表示这是一个非常初期的版本,意味着该系统可能刚刚开始开发,功能尚不完善。 ### 标签知识点 #### Java - **Java语言特点**:标签中明确提到了“Java”,这暗示了整个系统都是用Java编程语言开发的。Java的特点包括面向对象、跨平台(即一次编写,到处运行)、安全性、多线程处理能力等。系统使用Java进行开发,可能看重了这些特点,尤其是在构建可扩展、稳定的后台服务。 - **Java应用领域**:Java广泛应用于企业级应用开发中,包括Web应用程序、大型系统后台、桌面应用以及移动应用(Android)。所以,此系统可能也会涉及这些技术层面。 ### 压缩包子文件的文件名称列表知识点 #### catecumenus-java-master - **Git项目结构**:文件名称中的“master”表明了这是Git版本控制系统中的一个主分支。在Git中,“master”分支通常被用作项目的主干,是默认的开发分支,所有开发工作都是基于此分支进行的。 - **项目目录结构**:在Git项目中,“catecumenus-java”文件夹应该包含了系统的源代码、资源文件、构建脚本、文档等。文件夹可能包含各种子文件夹和文件,比如src目录存放Java源代码,lib目录存放相关依赖库,以及可能的build.xml文件用于构建过程(如Ant或Maven构建脚本)。 ### 结合以上信息的知识点整合 综合以上信息,我们可以推断“catecumenus-java: 教区牧民支持系统”是一个使用Java语言开发的系统,可能正处于初级开发阶段。这个系统可能是为了支持教会内部管理,提供信息管理、资源调度等功能。其使用Java语言的目的可能是希望利用Java的多线程处理能力、跨平台特性和强大的企业级应用支持能力,以实现一个稳定和可扩展的系统。项目结构遵循了Git版本控制的规范,并且可能采用了模块化的开发方式,各个功能模块的代码和资源文件都有序地组织在不同的子文件夹内。 该系统可能采取敏捷开发模式,随着版本号的增加,系统功能将逐步完善和丰富。由于是面向教会的内部支持系统,对系统的用户界面友好性、安全性和数据保护可能会有较高的要求。此外,考虑到宗教性质的敏感性,系统的开发和使用可能还需要遵守特定的隐私和法律法规。
recommend-type

LNR切换成功率提升秘籍:参数配置到网络策略的全面指南

# 摘要 LNR(LTE to NR)切换技术是5G网络部署中的关键环节,直接影
recommend-type

How to install watt toolkit in linux ?

安装 Watt Toolkit(原名 Steam++)在 Linux 系统上通常可以通过编译源码或者使用预编译的二进制文件来完成。Watt Toolkit 是一个开源工具,主要用于加速 Steam 平台的下载速度,支持跨平台运行,因此在 Linux 上也能够很好地工作。 ### 安装步骤 #### 方法一:使用预编译的二进制文件 1. 访问 [Watt Toolkit 的 GitHub 仓库](https://github.com/BeyondDimension/SteamTools) 并下载适用于 Linux 的最新版本。 2. 解压下载的压缩包。 3. 给予可执行权限: ```
recommend-type

PHP实现用户墙上帖子与评论的分享功能

根据给定文件信息,我们可以推导出与“userwallposts”相关的知识点。这里涉及的关键概念包括用户墙面墙(User Wall)、帖子(Posts)和评论(Comments),以及它们在编程语言PHP中的实现方式。用户墙是一种允许用户发布信息,并让他们的朋友或跟随者查看并参与讨论的功能,常见于社交网站。 ### 用户墙概念 用户墙类似于现实生活中的一面墙,用户可以在上面贴上“帖子”来分享自己的想法、照片、视频等信息。其他用户可以在这些帖子下面进行“评论”,类似于在墙上留言。这种互动方式构建了一个社区式的交流环境,增加了用户之间的互动性和参与感。 ### 用户墙的实现 在PHP中实现用户墙功能需要处理前端用户界面和后端服务器逻辑。前端负责展示用户墙、帖子和评论的界面,而后端则负责存储、检索和管理这些数据。 1. **前端实现**:前端可以使用HTML、CSS和JavaScript来构建用户墙的界面。使用AJAX技术可以让用户无需刷新页面即可提交和获取新的帖子和评论。此外,可能还会用到模板引擎(如Twig或Smarty)来动态生成页面内容。 2. **后端实现**:后端PHP代码将负责处理前端发送的请求,如帖子和评论的添加、删除和检索。数据库(如MySQL)将用于存储用户信息、帖子内容、评论以及它们之间的关联关系。 3. **数据库设计**: - 用户表(users):存储用户信息,例如用户名、密码(加密存储)、用户状态等。 - 帖子表(posts):存储帖子信息,例如帖子ID、帖子内容、发帖时间、所属用户ID等。 - 评论表(comments):存储评论信息,包括评论ID、评论内容、评论时间、所属帖子ID和用户ID等。 4. **PHP与数据库交互**:使用PDO(PHP Data Objects)或mysqli扩展来执行SQL语句与数据库进行交互。PDO提供了数据库访问的抽象层,可以连接多种数据库系统,而mysqli则针对MySQL进行了优化。 5. **安全性**: - 输入验证:为了防止SQL注入等安全问题,需要对用户输入进行验证和清理。 - 输出编码:在将数据输出到浏览器之前,应将特殊字符转换为HTML实体。 - 用户认证:用户登录系统时,应采取安全措施如使用会话管理(session management)和防止跨站请求伪造(CSRF)。 6. **功能实现细节**: - 发布帖子:用户输入帖子内容并提交,后端接收并存储到帖子表中。 - 显示帖子:从帖子表中检索所有帖子并展示在用户墙上,包括帖子标题、内容、发布时间和发帖人等信息。 - 发布评论:用户对特定帖子发表评论,后端接收评论信息并将其存储到评论表中。 - 显示评论:为每个帖子显示其下的所有评论,包括评论内容、时间、评论者等。 ### 开源项目实践 “userwallposts-master”暗示了可能存在一个与用户墙帖子和评论相关的开源项目或代码库。这个项目可能包含预设的代码和文件结构,允许开发者下载、安装和配置来创建他们自己的用户墙功能。开发人员可以使用这个项目作为起点,根据自己的需求进一步定制和扩展功能。 在实际开发过程中,还需要考虑系统的可扩展性和维护性。例如,可以设计RESTful API让前端和后端分离,或者使用现代的PHP框架(如Laravel、Symfony等)来简化开发流程和提高代码的组织性。 在总结上述内容后,我们可以了解到用户墙是社交平台中常见的一种功能,其核心功能包括发布帖子和评论。在PHP环境下实现这样的功能需要对前端界面和后端逻辑有深入的理解,以及对数据库设计和交互的安全性有一定的认识。开源项目如“userwallposts-master”可能提供了一个基础框架,帮助开发者快速构建和部署一个用户墙系统。
recommend-type

【LNR信令深度解析】:MR-DC双连接建立全过程技术揭秘

# 摘要 本文系统探讨了LNR信令与MR-DC双连接技术的基本原理、架构组成及其关键信令流程。深入分析了MR-DC的网络架构分类、核心网元功能、无线承载管理机制以及双连接建立过程中的关键信令交互路径。同时,文章解析了LNR信令消息的结构特征与关键字段,探讨了MR-DC场景下的性能评估指标与优化策略,包括信令压缩、负载均衡及节能调度机制。最后,文章展望了MR-DC技术在5G