# Prediction settings -------------------------------------------------------------------------------------------------- source: # source directory for images or videos show: False # show results if possible save_txt: False # save results as .txt file save_conf: False # save results with confidence scores save_crop: False # save cropped images with results hide_labels: False # hide labels hide_conf: False # hide confidence scores vid_stride: 1 # video frame-rate stride line_thickness: 3 # bounding box thickness (pixels) visualize: False # visualize model features augment: False # apply image augmentation to prediction sources agnostic_nms: False # class-agnostic NMS classes: # filter results by class, i.e. class=0, or class=[0,2,3] retina_masks: False # use high-resolution segmentation masks boxes: True # Show boxes in segmentation predictions解释
时间: 2023-08-15 20:47:48 浏览: 205
这些参数是用于目标检测任务的模型预测设置,具体含义如下:
- source:目标检测任务的输入源,可以是图片或视频的目录。
- show:是否在屏幕上显示结果。
- save_txt:是否将结果保存为.txt文件。
- save_conf:是否将结果保存为包括置信度得分的结果。
- save_crop:是否保存裁剪后的图像及其结果。
- hide_labels:是否隐藏结果中的标签。
- hide_conf:是否隐藏结果中的置信度得分。
- vid_stride:在视频帧中按多少步长执行预测。
- line_thickness:边界框的线条粗细(像素)。
- visualize:是否可视化模型的特征。
- augment:是否对预测源应用图像增强。
- agnostic_nms:是否采用无类别NMS。
- classes:过滤特定类别的结果,例如class=0或class=[0,2,3]。
- retina_masks:是否使用高分辨率分割掩模。
- boxes:在分割预测中是否显示边界框。
相关问题
### ------- input/output length settings -------------- parser.add_argument('--seq_len', type=int, default=96, help='input sequence length of LightTS, look back window') parser.add_argument('--pred_len', type=int, default=48, help='prediction sequence length, horizon') parser.add_argument('--lastWeight', type=float, default=1.0)
这段代码是在创建一些命令行参数,用于设置输入和输出序列的长度。具体来说,它使用了 `add_argument()` 方法来添加三个参数:
1. `--seq_len`:表示输入序列的长度,即LightTS的窗口大小,它是一个整数类型,可以被指定但不是必须的, 默认为 `96`。
2. `--pred_len`:表示预测序列的长度,即预测的时间步数,它是一个整数类型,可以被指定但不是必须的, 默认为 `48`。
3. `--lastWeight`:表示最后一个时间步的权重,它是一个浮点类型,可以被指定但不是必须的, 默认为 `1.0`。
这些参数的作用分别是:
- `seq_len`:决定了模型每次接收多少个时间步的输入序列。
- `pred_len`:决定了模型需要预测多少个时间步的输出序列。
- `lastWeight`:在计算损失函数时,最后一个时间步的预测值会乘以这个权重,用于调整最后一个时间步的预测精度。
用户可以根据自己的需求来指定这些参数的值。
# Ultralytics YOLO 🚀, AGPL-3.0 license # Default training settings and hyperparameters for medium-augmentation COCO training #中等增强的COCO训练的默认训练设置和超参数 task: detect # (str) YOLO task, i.e. detect, segment, classify, pose mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark # Train settings ------------------------------------------------------------------------------------------------------- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml data: # (str, optional) path to data file, i.e. coco128.yaml epochs: 100 # (int) number of epochs to train for time: # (float, optional) number of hours to train for, overrides epochs if supplied patience: 20 # (int) epochs to wait for no observable improvement for early stopping of training batch: 20 # (int) number of images per batch (-1 for AutoBatch)!!!!!!! imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes save: True # (bool) save train checkpoints and predict results save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) cache: False # (bool) True/ram, disk or False. Use cache for data loading device: 0 # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)!!!!!!! project: # (str, optional) project name name: # (str, optional) experiment name, results saved to 'project/name' directory exist_ok: False # (bool) whether to overwrite existing experiment pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] verbose: True # (bool) whether to print verbose output seed: 0 # (int) random seed for reproducibility deterministic: True # (bool) whether to enable deterministic mode single_cls: False # (bool) train multi-class data as single-class rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val' cos_lr: False # (bool) use cosine learning rate scheduler close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable) resume: False # (bool) resume training from last checkpoint amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training # Segmentation overlap_mask: True # (bool) masks should overlap during training (segment train only) mask_ratio: 2 # (int) mask downsample ratio (segment train only) # Classification dropout: 0.0 # (float) use dropout regularization (classify train only) # Val/Test settings ---------------------------------------------------------------------------------------------------- val: True # (bool) validate/test during training split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' save_json: False # (bool) save results to JSON file save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) conf: 0.3 # 置信度(float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) iou: 0.8 # (float) intersection over union (IoU) threshold for NMS max_det: 300 # (int) maximum number of detections per image half: False # (bool) use half precision (FP16) dnn: False # (bool) use OpenCV DNN for ONNX inference plots: True # (bool) save plots and images during train/val # Predict settings ----------------------------------------------------------------------------------------------------- source: # (str, optional) source directory for images or videos vid_stride: 1 # (int) video frame-rate stride stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False) visualize: False # (bool) visualize model features augment: False # (bool) apply image augmentation to prediction sources agnostic_nms: False # (bool) class-agnostic NMS classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3] retina_masks: True # (bool) use high-resolution segmentation masks # Visualize settings --------------------------------------------------------------------------------------------------- show: False # (bool) show predicted images and videos if environment allows save_frames: False # (bool) save predicted individual video frames save_txt: False # (bool) save results as .txt file save_conf: False # (bool) save results with confidence scores save_crop: False # (bool) save cropped images with results show_labels: True # (bool) show prediction labels, i.e. 'person' show_conf: True # (bool) show prediction confidence, i.e. '0.99' show_boxes: True # (bool) show prediction boxes line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None. # Export settings ------------------------------------------------------------------------------------------------------ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats keras: False # (bool) use Kera=s optimize: False # (bool) TorchScript: optimize for mobile int8: False # (bool) CoreML/TF INT8 quantization dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes simplify: False # (bool) ONNX: simplify model opset: # (int, optional) ONNX: opset version workspace: 4 # (int) TensorRT: workspace size (GB) nms: False # (bool) CoreML: add NMS # Hyperparameters ------------------------------------------------------------------------------------------------------ lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) lrf: 0.01 # (float) final learning rate (lr0 * lrf) momentum: 0.937 # (float) SGD momentum/Adam beta1 weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 warmup_epochs: 3.0 # (float) warmup epochs (fractions ok) warmup_momentum: 0.8 # (float) warmup initial momentum warmup_bias_lr: 0.1 # (float) warmup initial bias lr box: 7.5 # (float) box loss gain cls: 0.5 # (float) cls loss gain (scale with pixels) dfl: 1.5 # (float) dfl loss gain pose: 12.0 # (float) pose loss gain kobj: 1.0 # (float) keypoint obj loss gain label_smoothing: 0.0 # (float) label smoothing (fraction) nbs: 64 # (int) nominal batch size hsv_h: 0 # (float) image HSV-Hue augmentation (fraction) 0.015 hsv_s: 0 # (float) image HSV-Saturation augmentation (fraction)0.7 hsv_v: 0 # (float) image HSV-Value augmentation (fraction)0.4 degrees: 0.0 # (float) image rotation (+/- deg) translate: 0.1 # (float) image translation (+/- fraction) scale: 0.5 # (float) image scale (+/- gain) shear: 0.0 # (float) image shear (+/- deg) perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 flipud: 0 # (float) image flip up-down (probability)0.5 fliplr: 0 # (float) image flip left-right (probability)0.5 mosaic: 1 # (float) image mosaic (probability)1.0 mixup: 0.0 # (float) image mixup (probability) copy_paste: 0.0 # (float) segment copy-paste (probability) # Custom config.yaml --------------------------------------------------------------------------------------------------- cfg: # (str, optional) for overriding defaults.yaml # Tracker settings ------------------------------------------------------------------------------------------------------ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml] 帮我介绍一下这些参数
### Ultralytics YOLO 配置文件参数详解
Ultralytics YOLO 的配置文件(如 `yolov8s-seg.yaml`)用于定义模型的结构、训练参数和数据处理方式。理解这些参数的含义及其用途对于优化模型性能至关重要。
#### 模型结构参数
配置文件中的模型结构参数定义了网络的骨干(backbone)和检测头(head)的结构。这些参数直接影响模型的特征提取能力和推理速度。
- **backbone**:定义了模型的骨干网络,通常使用CSPDarknet结构。骨干网络负责从输入图像中提取多尺度特征。
- **head**:定义了检测头的结构,通常包含PANet(Path Aggregation Network)模块。检测头负责生成边界框、类别预测和掩膜预测。
- **depth_multiple**:控制网络深度的倍数。例如,`depth_multiple=0.33` 表示将标准网络的深度缩小为原来的三分之一。
- **width_multiple**:控制网络宽度的倍数。例如,`width_multiple=0.5` 表示将标准网络的宽度缩小为原来的一半。
#### 数据处理参数
数据处理参数定义了输入图像的预处理方式和数据增强策略。这些参数对模型的泛化能力和鲁棒性有重要影响。
- **imgsz**:输入图像的尺寸。例如,`imgsz=640` 表示输入图像的大小为640×640像素。
- **augment**:是否启用数据增强。数据增强可以提高模型的泛化能力。
- **hsv_h**、**hsv_s**、**hsv_v**:定义HSV颜色空间的随机增强范围。这些参数用于调整图像的色调、饱和度和亮度。
- **degrees**、**translate**、**scale**、**shear**:定义图像的旋转、平移、缩放和剪切增强范围。
- **flipud**、**fliplr**:定义图像的上下翻转和左右翻转概率。
#### 训练参数
训练参数定义了模型的训练过程,包括优化器、学习率和损失函数。
- **optimizer**:指定优化器的类型,如SGD或Adam。
- **lr0**:初始学习率。
- **lrf**:学习率的最终值,通常用于学习率衰减。
- **momentum**:动量参数,用于优化器。
- **weight_decay**:权重衰减系数,用于防止过拟合。
- **warmup_epochs**:学习率预热的轮数。
- **cos_lr**:是否使用余弦学习率衰减策略。
- **loss**:指定损失函数的类型,如CIoU损失或DIoU损失。
#### 推理参数
推理参数定义了模型在推理阶段的行为,包括置信度阈值和非极大值抑制(NMS)阈值。
- **conf**:置信度阈值,用于过滤低置信度的预测框。
- **iou**:NMS的IoU阈值,用于去除重叠的预测框。
#### 配置文件示例
以下是一个典型的YOLOv8配置文件示例:
```yaml
# YOLOv8 configuration for segmentation tasks
# Model parameters
backbone:
name: CSPDarknet
depth_multiple: 0.33
width_multiple: 0.5
out_indices: [2, 3, 4]
head:
name: SegmentationHead
in_channels: [128, 256, 512]
num_classes: 80
mask_resolution: 160
# Data parameters
imgsz: 640
augment: True
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
flipud: 0.5
fliplr: 0.5
# Training parameters
optimizer: SGD
lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3
cos_lr: True
loss: CIoULoss
# Inference parameters
conf: 0.25
iou: 0.45
```
#### 相关问题
1. 如何在YOLOv8中调整数据增强策略?
2. YOLOv8的配置文件支持自定义模型结构吗?
3. 如何在YOLOv8中设置不同的损失函数?
阅读全文
相关推荐














有网页的源码,怎么在idea里用vue复现,运用element-UI组件,view-source:https://rloopbase.nju.edu.cn/ ,源码如下:
<html xmlns="http://www.w3.org/1999/xhtml " xml:lang="en" lang="en">
<head>
<title>R-loopBase</title>
</head>
<body>
Introduction
The R-loop, a three-stranded nucleic acid structure composed of an RNA:DNA hybrid and a displaced single-stranded DNA, plays versatile roles in many physiological and pathological processes. However, its controversial genomic localization and
incomplete understanding of its regulatory network raise great challenges for R-loop research. Here, we present R-loopBase to tackle these pressing issues by systematic integration of a huge amount of genomics and literature data. A reference set of human R-loop zones is computed
with confidence scores and detailed annotations (Search, Help and Download),
all of which can be visualized in well-annotated genomic context in a local genome browser (Browser). A list of 1,185 R-loop regulators is manually curated from PubMed literatures
and annotated with most up-to-date multi-omics data (Regulator).
We have also manually curated 24 R-loop regulators in mouse, 63 in yeast (saccharomyces cerevisiae) and 21 in Escherichia coli to facilicate R-loop research in these model organisms (Regulator).
We further deduce the functional relationship between individual R-loops and their putative regulators
(Regulator and Download). In total, we have generated billions of entries of functional annotations, which can be easily accessed in our
user-friendly interfaces (Help).
The regulator summary and genomic annotation of R-loop regions will be constantly updated along the research progress of field. You are welcome to contribute to updating R-loop regulators and related literatures (Regulator Updating System on Regulator page).
Any suggestions and feedbacks from you are also welcome
(Contact).
Show more
R-loopBase
<input id="searchText" type="text" name="" placeholder="e.g. BRCA2 or chr1:154572702-154628593" onkeypress="handle(event)">
search
Browser
Regulator
Tool
Download
Help
Contact
News
2023.10.01 Online of DeepER, an R-loop prediction tool.
2022.02.19 A new preprint by R-loopBase team.
2021.11.18 Published on Nucleic Acids Res.
2021.06.20 Official release of R-loopBase v1.0.
2021.06.15 Internal evaluation before public release.
2021.05.10 Build-up of R-loopBase genome browser.
2021.03.31 Data freeze for R-loopBase v1.0.
2021.01.18 Launching R-loopBase project.
2020.10.10 Systematic evalation of all R-loop mapping technologies.
Show more
Latest Publications
LUC7L3 is a downstream factor of SRSF1 and prevents genomic instability. Cell Insight. 2024.
Smartphone-based device for rapid and single-step detection of piRNA-651 using anti-DNA:RNA hybrid antibody and enzymatic signal amplification. Anal Chim Acta. 2024.
Split activator of CRISPR/Cas12a for direct and sensitive detection of microRNA. Anal Chim Acta. 2024.
More publications in PubMed
© 2020-2025 NANJING UNIVERSITY. ALL RIGHTS RESERVED.
CONDITIONS OF USE
</body>
</html>
<script type="text/javascript" language="JavaScript">
function handle(e){
if(e.keyCode === 13){
e.preventDefault(); // Ensure it is only this code that runs
toGeneList();
}
}
function toGeneList(){
//var type = document.getElementById('searchSelect').value;
var type;
var value = document.getElementById('searchText').value;
if(value==''){
alert("Please input keyword!");
}else if(value.match(/[^a-zA-Z0-9:-]/)){
alert("Only numbers, letters, \":\" and \"-\" are allowed!");
}else{
//top.location = '/geneList.jsp?searchFor=' + type + '&keyword=' + value;
if(value.match(/^chr.+:\d+-\d+$/)){
type="location";
}else{
type="symbols";
}
top.location = '/rloopList.jsp?searchFor=' + type + '&keyword=' + value;
}
}
function changeLiSize(){
var selectId = document.getElementById("myNavigator");
}
function showMoreOrLess(){
var selectId = document.getElementById("showIntroduction");
var selectText = document.getElementById("introductionText");
if(selectId.innerText == "Show more"){
selectText.style.height="auto";
selectId.innerText="Show less";
}else{
selectText.style.height="120px";
selectId.innerText="Show more";
}
}
function showMoreOrLess2(){
var selectId2 = document.getElementById("showNews");
var selectText2 = document.getElementById("newsDiv");
if(selectId2.innerText == "Show more"){
selectText2.style.height="auto";
selectId2.innerText="Show less";
}else{
selectText2.style.height="220px";
selectId2.innerText="Show more";
}
}
var publicationDivHeight = document.getElementById('publicationDiv').clientHeight;
</script>


