活动介绍

Duplicated tag: 'groupld' (position: START_TAG seen ..</packaging>\ninin <groupld>... @12:14)

时间: 2025-03-11 07:08:18 浏览: 39
### 解决Maven项目中`groupId`标签重复导致的构建错误 当遇到Maven项目构建过程中由于`groupId`标签重复而引发的错误时,通常是因为POM文件结构不正确或者存在多个相同级别的`groupId`定义。为了有效解决问题并确保项目的正常构建,可以采取以下措施: #### 检查POM文件结构 确认所有的父级和子模块之间的继承关系设置无误,并且只在一个地方指定`groupId`。如果是在多模块项目里,则只需要在最顶层的父POM中声明一次`groupId`即可[^1]。 #### 清理不必要的依赖项 有时开发者可能会不小心引入了多余的依赖库或者是复制粘贴代码时不慎带入了额外的内容。仔细审查整个POM文档,移除任何冗余或不再使用的部分,特别是那些可能导致冲突的地方[^2]。 #### 使用IDE工具辅助排查 现代集成开发环境(IDE),比如IntelliJ IDEA 或 Eclipse,提供了强大的功能来帮助管理复杂的Maven工程。利用这些工具内置的功能来进行项目刷新、清理缓存以及自动修复可能存在的语法问题是非常有帮助的[^3]。 ```xml <!-- 正确的方式 --> <project> ... <groupId>com.example</groupId> <!-- 不要在同一级别再次定义 groupId --> ... </project> <!-- 错误的方式 --> <project> ... <groupId>com.example</groupId> <dependencyManagement> <dependencies> <dependency> <groupId>com.example</groupId> <!-- 这里不应该再出现 groupId 定义 --> ... </dependency> </dependencies> </dependencyManagement> ... </project> ``` 对于上述提到的情况,在处理完POM文件内的逻辑错误后,还需要执行如下命令以确保更改生效: ```bash mvn clean install ``` 这会强制清除本地仓库中的旧版本构件,并重新下载所需资源,从而避免因缓存引起的新问题。
阅读全文

相关推荐

C:\Users\26945\.jdks\ms-17.0.15\bin\java.exe -Dmaven.multiModuleProjectDirectory=C:\Users\26945\Desktop\java\xuesheng -Djansi.passthrough=true "-Dmaven.home=C:\Program Files\JetBrains\IntelliJ IDEA 2024.1.4\plugins\maven\lib\maven3" "-Dclassworlds.conf=C:\Program Files\JetBrains\IntelliJ IDEA 2024.1.4\plugins\maven\lib\maven3\bin\m2.conf" "-Dmaven.ext.class.path=C:\Program Files\JetBrains\IntelliJ IDEA 2024.1.4\plugins\maven\lib\maven-event-listener.jar" "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA 2024.1.4\lib\idea_rt.jar=62850:C:\Program Files\JetBrains\IntelliJ IDEA 2024.1.4\bin" -Dfile.encoding=UTF-8 -classpath "C:\Program Files\JetBrains\IntelliJ IDEA 2024.1.4\plugins\maven\lib\maven3\boot\plexus-classworlds-2.7.0.jar;C:\Program Files\JetBrains\IntelliJ IDEA 2024.1.4\plugins\maven\lib\maven3\boot\plexus-classworlds.license" org.codehaus.classworlds.Launcher -Didea.version=2024.1.4 tomcat9:run [INFO] Scanning for projects... [ERROR] [ERROR] Some problems were encountered while processing the POMs: [FATAL] Non-parseable POM C:\Users\26945\Desktop\java\xuesheng\pom.xml: Duplicated tag: 'plugins' (position: START_TAG seen ...\n ... @104:18) @ line 104, column 18 @ [ERROR] The build could not read 1 project -> [Help 1] [ERROR] [ERROR] The project (C:\Users\26945\Desktop\java\xuesheng\pom.xml) has 1 error [ERROR] Non-parseable POM C:\Users\26945\Desktop\java\xuesheng\pom.xml: Duplicated tag: 'plugins' (position: START_TAG seen ...\n ... @104:18) @ line 104, column 18 -> [Help 2] [ERROR] [ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch. [ERROR] Re-run Maven using the -X switch to enable full debug logging. [ERROR] [ERROR] For more information about the errors and possible solutions, please read the following articles: [ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/ProjectBuildingException [ERROR] [Help 2] http://cwiki.apache.org/confluence/display/MAVEN/ModelParseException 进程已结束,退出代码为 1

# settings.mk is not under source control. Put variables into this # file to avoid having to adding the to the make command line. -include settings.mk # ============================================================================== # Uncomment or add the design to run # ============================================================================== DESIGN_CONFIG=./designs/nangate45/counter/config.mk # DESIGN_CONFIG=./designs/nangate45/aes/config.mk # DESIGN_CONFIG=./designs/nangate45/ariane133/config.mk # DESIGN_CONFIG=./designs/nangate45/ariane136/config.mk # DESIGN_CONFIG=./designs/nangate45/black_parrot/config.mk # DESIGN_CONFIG=./designs/nangate45/bp_be_top/config.mk # DESIGN_CONFIG=./designs/nangate45/bp_fe_top/config.mk # DESIGN_CONFIG=./designs/nangate45/bp_multi_top/config.mk # DESIGN_CONFIG=./designs/nangate45/bp_quad/config.mk # DESIGN_CONFIG=./designs/nangate45/dynamic_node/config.mk # DESIGN_CONFIG=./designs/nangate45/gcd/config.mk # DESIGN_CONFIG=./designs/nangate45/ibex/config.mk # DESIGN_CONFIG=./designs/nangate45/jpeg/config.mk # DESIGN_CONFIG=./designs/nangate45/mempool_group/config.mk # DESIGN_CONFIG=./designs/nangate45/swerv/config.mk # DESIGN_CONFIG=./designs/nangate45/swerv_wrapper/config.mk # DESIGN_CONFIG=./designs/nangate45/tinyRocket/config.mk # DESIGN_CONFIG=./designs/gf12/aes/config.mk # DESIGN_CONFIG=./designs/gf12/ariane/config.mk # DESIGN_CONFIG=./designs/gf12/ca53/config.mk # DESIGN_CONFIG=./designs/gf12/coyote/config.mk # DESIGN_CONFIG=./designs/gf12/gcd/config.mk # DESIGN_CONFIG=./designs/gf12/ibex/config.mk # DESIGN_CONFIG=./designs/gf12/jpeg/config.mk # DESIGN_CONFIG=./designs/gf12/swerv_wrapper/config.mk # DESIGN_CONFIG=./designs/gf12/tinyRocket/config.mk # DESIGN_CONFIG=./designs/gf12/ariane133/config.mk # DESIGN_CONFIG=./designs/gf12/bp_dual/config.mk # DESIGN_CONFIG=./designs/gf12/bp_quad/config.mk # DESIGN_CONFIG=./designs/gf12/bp_single/config.mk # DESIGN_CONFIG=./designs/sky130hd/aes/config.mk # DESIGN_CONFIG=./designs/sky130hd/chameleon/config.mk # DESIGN_CONFIG=./designs/sky130hd/gcd/config.mk # DESIGN_CONFIG=./designs/sky130hd/ibex/config.mk # DESIGN_CONFIG=./designs/sky130hd/jpeg/config.mk # DESIGN_CONFIG=./designs/sky130hd/microwatt/config.mk # DESIGN_CONFIG=./designs/sky130hd/riscv32i/config.mk # DESIGN_CONFIG=./designs/sky130hs/aes/config.mk # DESIGN_CONFIG=./designs/sky130hs/gcd/config.mk # DESIGN_CONFIG=./designs/sky130hs/ibex/config.mk # DESIGN_CONFIG=./designs/sky130hs/jpeg/config.mk # DESIGN_CONFIG=./designs/sky130hs/riscv32i/config.mk # DESIGN_CONFIG=./designs/asap7/aes/config.mk # DESIGN_CONFIG=./designs/asap7/ethmac/config.mk # DESIGN_CONFIG=./designs/asap7/gcd/config.mk # DESIGN_CONFIG=./designs/asap7/ibex/config.mk # DESIGN_CONFIG=./designs/asap7/jpeg/config.mk # DESIGN_CONFIG=./designs/asap7/megaboom/config.mk # DESIGN_CONFIG=./designs/asap7/mock-array/config.mk # DESIGN_CONFIG=./designs/asap7/riscv32i/config.mk # DESIGN_CONFIG=./designs/asap7/swerv_wrapper/config.mk # DESIGN_CONFIG=./designs/asap7/uart/config.mk # DESIGN_CONFIG=./designs/intel16/aes/config.mk # DESIGN_CONFIG=./designs/intel16/gcd/config.mk # DESIGN_CONFIG=./designs/intel22/ibex/config.mk # DESIGN_CONFIG=./designs/intel22/jpeg/config.mk # DESIGN_CONFIG=./designs/gf180/aes/config.mk # DESIGN_CONFIG=./designs/gf180/ibex/config.mk # DESIGN_CONFIG=./designs/gf180/jpeg/config.mk # DESIGN_CONFIG=./designs/gf180/riscv32i/config.mk # DESIGN_CONFIG=./designs/gf180/uart-blocks/config.mk #DESIGN_CONFIG=./designs/ihp-sg13g2/aes/config.mk #DESIGN_CONFIG=./designs/ihp-sg13g2/ibex/config.mk #DESIGN_CONFIG=./designs/ihp-sg13g2/gcd/config.mk #DESIGN_CONFIG=./designs/ihp-sg13g2/spi/config.mk #DESIGN_CONFIG=./designs/ihp-sg13g2/riscv32i/config.mk #DESIGN_CONFIG=./designs/ihp-sg13g2/i2c-gpio-expander/config.mk # Default design DESIGN_CONFIG ?= ./designs/nangate45/gcd/config.mk export DESIGN_CONFIG include $(DESIGN_CONFIG) export DESIGN_DIR = $(dir $(DESIGN_CONFIG)) # default value "base" is duplicated from variables.yaml because we need it # earlier in the flow for BLOCKS. BLOCKS is a feature specific to the # ORFS Makefile. export FLOW_VARIANT?=base # BLOCKS is a ORFS make flow specific feature. ifneq ($(BLOCKS),) # Normally this comes from variables.yaml, but we need it here to set up these variables # which are part of the DESIGN_CONFIG. BLOCKS is a Makefile specific concept. $(foreach block,$(BLOCKS),$(eval BLOCK_LEFS += ./results/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/${block}.lef)) $(foreach block,$(BLOCKS),$(eval BLOCK_LIBS += ./results/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/${block}.lib)) $(foreach block,$(BLOCKS),$(eval BLOCK_GDS += ./results/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/6_final.gds)) $(foreach block,$(BLOCKS),$(eval BLOCK_CDL += ./results/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/6_final.cdl)) $(foreach block,$(BLOCKS),$(eval BLOCK_LOG_FOLDERS += ./logs/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/)) export ADDITIONAL_LEFS += $(BLOCK_LEFS) export ADDITIONAL_LIBS += $(BLOCK_LIBS) export ADDITIONAL_GDS += $(BLOCK_GDS) export GDS_FILES += $(BLOCK_GDS) ifneq ($(CDL_FILES),) export CDL_FILES += $(BLOCK_CDL) endif endif # ============================================================================== # ____ _____ _____ _ _ ____ # / ___|| ____|_ _| | | | _ \ # \___ \| _| | | | | | | |_) | # ___) | |___ | | | |_| | __/ # |____/|_____| |_| \___/|_| # # ============================================================================== # Disable make's implicit rules MAKEFLAGS += --no-builtin-rules .SUFFIXES: #------------------------------------------------------------------------------- # Default target when invoking without specific target. .DEFAULT_GOAL := finish #------------------------------------------------------------------------------- # Proper way to initiate SHELL for make SHELL := /usr/bin/env bash .SHELLFLAGS := -o pipefail -c #------------------------------------------------------------------------------- # Setup variables to point to root / head of the OpenROAD directory # - the following settings allowed user to point OpenROAD binaries to different # location # - default is current install / clone directory ifeq ($(origin FLOW_HOME), undefined) FLOW_HOME := $(abspath $(dir $(firstword $(MAKEFILE_LIST)))) endif export FLOW_HOME include $(FLOW_HOME)/scripts/variables.mk define GENERATE_ABSTRACT_RULE ifeq ($(wildcard $(3)),) # There is no unique config.mk for this module, use the shared # block.mk that, by convention, is in the same folder as config.mk # of the parent macro. # # At an early stage, before refining each of the macros, a shared # block.mk file can be useful to run through the flow to explore # more global concerns instead of getting mired in the details of # each macro. block := $(patsubst ./designs/$(PLATFORM)/$(DESIGN_NICKNAME)/%,%,$(dir $(3))) $(1) $(2) &: $$(UNSET_AND_MAKE) DESIGN_NAME=${block} DESIGN_NICKNAME=$$(DESIGN_NICKNAME)_${block} DESIGN_CONFIG=$$(shell dirname $$(DESIGN_CONFIG))/block.mk generate_abstract else # There is a unique config.mk for this Verilog module $(1) $(2) &: $$(UNSET_AND_MAKE) DESIGN_CONFIG=$(3) generate_abstract endif endef # Targets to harden Blocks in case of hierarchical flow is triggered .PHONY: build_macros build_macros: $(BLOCK_LEFS) $(BLOCK_LIBS) $(foreach block,$(BLOCKS),$(eval $(call GENERATE_ABSTRACT_RULE,./results/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/${block}.lef,./results/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/${block}.lib,$(shell dirname $(DESIGN_CONFIG))/${block}/config.mk))) $(foreach block,$(BLOCKS),$(eval ./results/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/6_final.gds: ./results/$(PLATFORM)/$(DESIGN_NICKNAME)_$(block)/$(FLOW_VARIANT)/${block}.lef)) # Utility to print tool version information #------------------------------------------------------------------------------- .PHONY: versions.txt versions.txt: mkdir -p $(OBJECTS_DIR) @if [ -z "$(YOSYS_EXE)" ]; then \ echo >> $(OBJECTS_DIR)/$@ "yosys not installed"; \ else \ $(YOSYS_EXE) -V > $(OBJECTS_DIR)/$@; \ fi @echo openroad $(OPENROAD_EXE) -version >> $(OBJECTS_DIR)/$@ @if [ -z "$(KLAYOUT_CMD)" ]; then \ echo >> $(OBJECTS_DIR)/$@ "klayout not installed"; \ else \ $(KLAYOUT_CMD) -zz -v >> $(OBJECTS_DIR)/$@; \ fi # Pre-process libraries # ============================================================================== # Create temporary Liberty files which have the proper dont_use properties set # For use with Yosys and ABC .SECONDEXPANSION: $(DONT_USE_LIBS): $$(filter %$$(@F) %$$(@F).gz,$(LIB_FILES)) @mkdir -p $(OBJECTS_DIR)/lib $(UTILS_DIR)/preprocessLib.py -i $^ -o $@ $(OBJECTS_DIR)/lib/merged.lib: $(DONT_USE_LIBS) $(UTILS_DIR)/mergeLib.pl $(PLATFORM)_merged $(DONT_USE_LIBS) > $@ # Pre-process KLayout tech # ============================================================================== $(OBJECTS_DIR)/klayout_tech.lef: $(TECH_LEF) $(UNSET_AND_MAKE) do-klayout_tech .PHONY: do-klayout_tech do-klayout_tech: @mkdir -p $(OBJECTS_DIR) cp $(TECH_LEF) $(OBJECTS_DIR)/klayout_tech.lef $(OBJECTS_DIR)/klayout.lyt: $(KLAYOUT_TECH_FILE) $(OBJECTS_DIR)/klayout_tech.lef $(UNSET_AND_MAKE) do-klayout .PHONY: do-klayout do-klayout: ifeq ($(KLAYOUT_ENV_VAR_IN_PATH),valid) SC_LEF_RELATIVE_PATH="$$\(env('FLOW_HOME')\)/$(shell realpath --relative-to=$(FLOW_HOME) $(SC_LEF))"; \ OTHER_LEFS_RELATIVE_PATHS=$$(echo "$(foreach file, $(OBJECTS_DIR)/klayout_tech.lef $(ADDITIONAL_LEFS),<lef-files>$$(realpath --relative-to=$(RESULTS_DIR) $(file))</lef-files>)"); \ sed 's,<lef-files>.*</lef-files>,<lef-files>'"$$SC_LEF_RELATIVE_PATH"'</lef-files>'"$$OTHER_LEFS_RELATIVE_PATHS"',g' $(KLAYOUT_TECH_FILE) > $(OBJECTS_DIR)/klayout.lyt else sed 's,<lef-files>.*</lef-files>,$(foreach file, $(OBJECTS_DIR)/klayout_tech.lef $(SC_LEF) $(ADDITIONAL_LEFS),<lef-files>$(shell realpath --relative-to=$(RESULTS_DIR) $(file))</lef-files>),g' $(KLAYOUT_TECH_FILE) > $(OBJECTS_DIR)/klayout.lyt endif sed -i 's,<map-file>.*</map-file>,$(foreach file, $(FLOW_HOME)/platforms/$(PLATFORM)/*map,<map-file>$(shell realpath $(file))</map-file>),g' $(OBJECTS_DIR)/klayout.lyt $(OBJECTS_DIR)/klayout_wrap.lyt: $(KLAYOUT_TECH_FILE) $(OBJECTS_DIR)/klayout_tech.lef $(UNSET_AND_MAKE) do-klayout_wrap .PHONY: do-klayout_wrap do-klayout_wrap: sed 's,<lef-files>.*</lef-files>,$(foreach file, $(OBJECTS_DIR)/klayout_tech.lef $(WRAP_LEFS),<lef-files>$(shell realpath --relative-to=$(OBJECTS_DIR)/def $(file))</lef-files>),g' $(KLAYOUT_TECH_FILE) > $(OBJECTS_DIR)/klayout_wrap.lyt $(WRAPPED_LEFS): mkdir -p $(OBJECTS_DIR)/lef $(OBJECTS_DIR)/def util/cell-veneer/wrap.tcl -cfg $(WRAP_CFG) -macro $(filter %$(notdir $(@:_mod.lef=.lef)),$(WRAP_LEFS)) mv $(notdir $@) $@ mv $(notdir $(@:lef=def)) $(dir $@)../def/$(notdir $(@:lef=def)) $(WRAPPED_LIBS): mkdir -p $(OBJECTS_DIR)/lib sed 's/library(\(.*\))/library(\1_mod)/g' $(filter %$(notdir $(@:_mod.lib=.lib)),$(WRAP_LIBS)) | sed 's/cell(\(.*\))/cell(\1_mod)/g' > $@ # ============================================================================== # ______ ___ _ _____ _ _ _____ ____ ___ ____ # / ___\ \ / / \ | |_ _| | | | ____/ ___|_ _/ ___| # \___ \\ V /| \| | | | | |_| | _| \___ \| |\___ \ # ___) || | | |\ | | | | _ | |___ ___) | | ___) | # |____/ |_| |_| \_| |_| |_| |_|_____|____/___|____/ # .PHONY: synth synth: $(RESULTS_DIR)/1_synth.v .PHONY: synth-report synth-report: synth $(UNSET_AND_MAKE) do-synth-report .PHONY: do-synth-report do-synth-report: ($(TIME_CMD) $(OPENROAD_CMD) $(SCRIPTS_DIR)/synth_metrics.tcl) 2>&1 | tee $(abspath $(LOG_DIR)/1_1_yosys_metrics.log) .PHONY: memory memory: if [ -f $(RESULTS_DIR)/mem_hierarchical.json ]; then \ python3 $(SCRIPTS_DIR)/mem_dump.py $(RESULTS_DIR)/mem_hierarchical.json; \ fi python3 $(SCRIPTS_DIR)/mem_dump.py $(RESULTS_DIR)/mem.json # ============================================================================== # Run Synthesis using yosys #------------------------------------------------------------------------------- $(SDC_FILE_CLOCK_PERIOD): $(SDC_FILE) mkdir -p $(dir $@) echo $(ABC_CLOCK_PERIOD_IN_PS) > $@ .PHONY: yosys-dependencies yosys-dependencies: $(YOSYS_DEPENDENCIES) .PHONY: do-yosys do-yosys: $(DONT_USE_SC_LIB) $(SCRIPTS_DIR)/synth.sh $(SYNTH_SCRIPT) $(LOG_DIR)/1_1_yosys.log .PHONY: do-yosys-canonicalize do-yosys-canonicalize: yosys-dependencies $(DONT_USE_SC_LIB) $(SCRIPTS_DIR)/synth.sh $(SCRIPTS_DIR)/synth_canonicalize.tcl $(LOG_DIR)/1_1_yosys_canonicalize.log $(RESULTS_DIR)/1_synth.rtlil: $(YOSYS_DEPENDENCIES) $(UNSET_AND_MAKE) do-yosys-canonicalize $(RESULTS_DIR)/1_1_yosys.v: $(RESULTS_DIR)/1_synth.rtlil $(UNSET_AND_MAKE) do-yosys .PHONY: do-synth do-synth: mkdir -p $(RESULTS_DIR) $(LOG_DIR) $(REPORTS_DIR) cp $(RESULTS_DIR)/1_1_yosys.v $(RESULTS_DIR)/1_synth.v $(RESULTS_DIR)/1_synth.v: $(RESULTS_DIR)/1_1_yosys.v $(UNSET_AND_MAKE) do-synth .PHONY: clean_synth clean_synth: rm -f $(RESULTS_DIR)/1_* $(RESULTS_DIR)/mem*.json rm -f $(REPORTS_DIR)/synth_* rm -f $(LOG_DIR)/1_* rm -f $(SYNTH_STATS) rm -f $(SDC_FILE_CLOCK_PERIOD) rm -rf _tmp_yosys-abc-* # ============================================================================== # _____ _ ___ ___ ____ ____ _ _ _ _ # | ___| | / _ \ / _ \| _ \| _ \| | / \ | \ | | # | |_ | | | | | | | | | |_) | |_) | | / _ \ | \| | # | _| | |__| |_| | |_| | _ <| __/| |___ / ___ \| |\ | # |_| |_____\___/ \___/|_| \_\_| |_____/_/ \_\_| \_| # .PHONY: floorplan floorplan: $(RESULTS_DIR)/2_floorplan.odb \ $(RESULTS_DIR)/2_floorplan.sdc # ============================================================================== UNSET_VARS = for var in $(UNSET_VARIABLES_NAMES); do unset $$var; done # FILE_MAKEFILE is needed when ORFS is invoked with # make --file=$FLOW_DIR/Makefile or make --directory $FLOW_DIR. # # However, on some versions of make, MAKEFILE_LIST can be empty, so # don't expand it in that case. FILE_MAKEFILE ?= $(if $(firstword $(MAKEFILE_LIST)),--file=$(firstword $(MAKEFILE_LIST)),) SUB_MAKE = $(MAKE) $(foreach V,$(COMMAND_LINE_ARGS), $(if $($V),$V=$(shell echo "$($V)" | $(FLOW_HOME)/scripts/escape.sh),$V='')) --no-print-directory $(FILE_MAKEFILE) DESIGN_CONFIG=$(DESIGN_CONFIG) UNSET_AND_MAKE = @bash -c '$(UNSET_VARS); $(SUB_MAKE) $$@' -- $(OBJECTS_DIR)/copyright.txt: @$(OPENROAD_CMD) $(SCRIPTS_DIR)/noop.tcl mkdir -p $(OBJECTS_DIR) @touch $(OBJECTS_DIR)/copyright.txt define OPEN_GUI_SHORTCUT .PHONY: gui_$(1) open_$(1) gui_$(1): gui_$(2) open_$(1): open_$(2) endef define OPEN_GUI .PHONY: open_$(1) gui_$(1) open_$(1): $(2)=$(RESULTS_DIR)/$(1) $(OPENROAD_NO_EXIT_CMD) $(SCRIPTS_DIR)/open.tcl gui_$(1): $(2)=$(RESULTS_DIR)/$(1) $(OPENROAD_GUI_CMD) $(SCRIPTS_DIR)/open.tcl endef # Separate dependency checking and doing a step. This can # be useful to retest a stage without having to delete the # target, or when building a wafer thin layer on top of # ORFS using CMake, Ninja, Bazel, etc. where makefile # dependency checking only gets in the way. # # Note that there is no "do-synth" step as it is a special # first step that for usecases such as Bazel where it should # always be built when invoked. Latter stages in the build process # are conditionally built by the Bazel implementation. # # A "do-synth" step would be welcomed, but it isn't strictly necessary # for the Bazel use-case. # # do-floorplan, do-place, do-cts, do-route, do-finish are the # supported interface to execute those stages without checking # for dependencies. # # The do- substeps of each of these stages are subject to change. # # $(1) stem, e.g. 2_1_floorplan # $(2) dependencies # $(3) tcl script step # $(4) extension of result, default .odb # $(5) folder of target, default $(RESULTS_DIR) define do-step $(if $(5),$(5),$(RESULTS_DIR))/$(1)$(if $(4),$(4),.odb): $(2) $$(UNSET_AND_MAKE) do-$(1) ifeq ($(if $(4),$(4),.odb),.odb) .PHONY: $(1) $(1): $(RESULTS_DIR)/$(1).odb $(eval $(call OPEN_GUI_SHORTCUT,$(1),$(1).odb)) endif .PHONY: do-$(1) do-$(1): $(OBJECTS_DIR)/copyright.txt $(SCRIPTS_DIR)/flow.sh $(1) $(3) endef # generate make rules to copy a file, if a dependency change and # a do- sibling rule that copies the file unconditionally. # # The file is copied within the $(RESULTS_DIR) # # $(1) stem of target, e.g. 2_1_floorplan # $(2) basename of file to be copied # $(3) further dependencies # $(4) target extension, default .odb define do-copy $(RESULTS_DIR)/$(1)$(if $(4),$(4),.odb): $(RESULTS_DIR)/$(2) $(3) $$(UNSET_AND_MAKE) do-$(1)$(if $(4),$(4),) .PHONY: do-$(1)$(if $(4),$(4),) do-$(1)$(if $(4),$(4),): cp $(RESULTS_DIR)/$(2) $(RESULTS_DIR)/$(1)$(if $(4),$(4),.odb) endef # STEP 1: Translate verilog to odb #------------------------------------------------------------------------------- $(eval $(call do-step,2_1_floorplan,$(RESULTS_DIR)/1_synth.v $(RESULTS_DIR)/1_synth.sdc $(TECH_LEF) $(SC_LEF) $(ADDITIONAL_LEFS) $(FOOTPRINT) $(SIG_MAP_FILE) $(FOOTPRINT_TCL) $(DONT_USE_SC_LIB),floorplan)) $(eval $(call do-copy,2_floorplan,2_1_floorplan.sdc,,.sdc)) # STEP 2: Macro Placement #------------------------------------------------------------------------------- $(eval $(call do-step,2_2_floorplan_macro,$(RESULTS_DIR)/2_1_floorplan.odb $(RESULTS_DIR)/1_synth.v $(RESULTS_DIR)/1_synth.sdc $(MACRO_PLACEMENT) $(MACRO_PLACEMENT_TCL),macro_place)) # STEP 3: Tapcell and Welltie insertion #------------------------------------------------------------------------------- $(eval $(call do-step,2_3_floorplan_tapcell,$(RESULTS_DIR)/2_2_floorplan_macro.odb $(TAPCELL_TCL),tapcell)) # STEP 4: PDN generation #------------------------------------------------------------------------------- $(eval $(call do-step,2_4_floorplan_pdn,$(RESULTS_DIR)/2_3_floorplan_tapcell.odb $(PDN_TCL),pdn)) $(eval $(call do-copy,2_floorplan,2_4_floorplan_pdn.odb,)) $(RESULTS_DIR)/2_floorplan.sdc: $(RESULTS_DIR)/2_1_floorplan.odb .PHONY: do-floorplan do-floorplan: $(UNSET_AND_MAKE) do-2_1_floorplan do-2_2_floorplan_macro do-2_3_floorplan_tapcell do-2_4_floorplan_pdn do-2_floorplan do-2_floorplan.sdc .PHONY: clean_floorplan clean_floorplan: rm -f $(RESULTS_DIR)/2_*floorplan*.odb $(RESULTS_DIR)/2_floorplan.sdc $(RESULTS_DIR)/2_*.v $(RESULTS_DIR)/2_*.def rm -f $(REPORTS_DIR)/2_* rm -f $(LOG_DIR)/2_* # ============================================================================== # ____ _ _ ____ _____ # | _ \| | / \ / ___| ____| # | |_) | | / _ \| | | _| # | __/| |___ / ___ \ |___| |___ # |_| |_____/_/ \_\____|_____| # .PHONY: place place: $(RESULTS_DIR)/3_place.odb \ $(RESULTS_DIR)/3_place.sdc # ============================================================================== # STEP 1: Global placement without placed IOs, timing-driven, and routability-driven. #------------------------------------------------------------------------------- $(eval $(call do-step,3_1_place_gp_skip_io,$(RESULTS_DIR)/2_floorplan.odb $(RESULTS_DIR)/2_floorplan.sdc $(LIB_FILES),global_place_skip_io)) $(eval $(call do-step,3_2_place_iop,$(RESULTS_DIR)/3_1_place_gp_skip_io.odb $(IO_CONSTRAINTS),io_placement)) # STEP 3: Global placement with placed IOs, timing-driven, and routability-driven. #------------------------------------------------------------------------------- $(eval $(call do-step,3_3_place_gp,$(RESULTS_DIR)/3_2_place_iop.odb $(RESULTS_DIR)/2_floorplan.sdc $(LIB_FILES),global_place)) # STEP 4: Resizing & Buffering #------------------------------------------------------------------------------- $(eval $(call do-step,3_4_place_resized,$(RESULTS_DIR)/3_3_place_gp.odb $(RESULTS_DIR)/2_floorplan.sdc,resize)) .PHONY: clean_resize clean_resize: rm -f $(RESULTS_DIR)/3_4_place_resized.odb # STEP 5: Detail placement #------------------------------------------------------------------------------- $(eval $(call do-step,3_5_place_dp,$(RESULTS_DIR)/3_4_place_resized.odb,detail_place)) $(eval $(call do-copy,3_place,3_5_place_dp.odb,)) $(eval $(call do-copy,3_place,2_floorplan.sdc,,.sdc)) .PHONY: do-place do-place: $(UNSET_AND_MAKE) do-3_1_place_gp_skip_io do-3_2_place_iop do-3_3_place_gp do-3_4_place_resized do-3_5_place_dp do-3_place do-3_place.sdc # Clean Targets #------------------------------------------------------------------------------- .PHONY: clean_place clean_place: rm -f $(RESULTS_DIR)/3_*place*.odb rm -f $(RESULTS_DIR)/3_place.sdc rm -f $(RESULTS_DIR)/3_*.def $(RESULTS_DIR)/3_*.v rm -f $(REPORTS_DIR)/3_* rm -f $(LOG_DIR)/3_* # ============================================================================== # ____ _____ ____ # / ___|_ _/ ___| # | | | | \___ \ # | |___ | | ___) | # \____| |_| |____/ # .PHONY: cts cts: $(RESULTS_DIR)/4_cts.odb \ $(RESULTS_DIR)/4_cts.sdc # ============================================================================== # Run TritonCTS # ------------------------------------------------------------------------------ $(eval $(call do-step,4_1_cts,$(RESULTS_DIR)/3_place.odb $(RESULTS_DIR)/3_place.sdc,cts)) $(RESULTS_DIR)/4_cts.sdc: $(RESULTS_DIR)/4_cts.odb $(eval $(call do-copy,4_cts,4_1_cts.odb)) .PHONY: do-cts do-cts: $(UNSET_AND_MAKE) do-4_1_cts do-4_cts .PHONY: clean_cts clean_cts: rm -rf $(RESULTS_DIR)/4_*cts*.odb $(RESULTS_DIR)/4_cts.sdc $(RESULTS_DIR)/4_*.v $(RESULTS_DIR)/4_*.def rm -f $(REPORTS_DIR)/4_* rm -rf $(LOG_DIR)/4_* # ============================================================================== # ____ ___ _ _ _____ ___ _ _ ____ # | _ \ / _ \| | | |_ _|_ _| \ | |/ ___| # | |_) | | | | | | | | | | || \| | | _ # | _ <| |_| | |_| | | | | || |\ | |_| | # |_| \_\\___/ \___/ |_| |___|_| \_|\____| # .PHONY: route route: $(RESULTS_DIR)/5_route.odb \ $(RESULTS_DIR)/5_route.sdc .PHONY: grt grt: $(RESULTS_DIR)/5_1_grt.odb # ============================================================================== # STEP 1: Run global route #------------------------------------------------------------------------------- $(eval $(call do-step,5_1_grt,$(RESULTS_DIR)/4_cts.odb $(FASTROUTE_TCL) $(PRE_GLOBAL_ROUTE),global_route)) # STEP 2: Run detailed route #------------------------------------------------------------------------------- $(eval $(call do-step,5_2_route,$(RESULTS_DIR)/5_1_grt.odb,detail_route)) $(eval $(call do-step,5_3_fillcell,$(RESULTS_DIR)/5_2_route.odb,fillcell)) $(eval $(call do-copy,5_route,5_3_fillcell.odb)) $(eval $(call do-copy,5_route,5_1_grt.sdc,,.sdc)) .PHONY: do-route do-route: $(UNSET_AND_MAKE) do-5_1_grt do-5_2_route do-5_3_fillcell do-5_route do-5_route.sdc .PHONY: do-grt do-grt: $(UNSET_AND_MAKE) do-5_1_grt .PHONY: clean_route clean_route: rm -rf output*/ results*.out.dmp layer_*.mps rm -rf *.gdid *.log *.met *.sav *.res.dmp rm -rf $(RESULTS_DIR)/route.guide $(RESULTS_DIR)/output_guide.mod $(RESULTS_DIR)/updated_clks.sdc rm -rf $(RESULTS_DIR)/5_*.odb $(RESULTS_DIR)/5_route.sdc $(RESULTS_DIR)/5_*.def $(RESULTS_DIR)/5_*.v rm -f $(REPORTS_DIR)/5_* rm -f $(LOG_DIR)/5_* .PHONY: klayout_tr_rpt klayout_tr_rpt: $(RESULTS_DIR)/5_route.def $(OBJECTS_DIR)/klayout.lyt $(call KLAYOUT_FOUND) $(KLAYOUT_CMD) -rd in_drc="$(REPORTS_DIR)/5_route_drc.rpt" \ -rd in_def="$<" \ -rd tech_file=$(OBJECTS_DIR)/klayout.lyt \ -rm $(UTILS_DIR)/viewDrc.py .PHONY: klayout_guides klayout_guides: $(RESULTS_DIR)/5_route.def $(OBJECTS_DIR)/klayout.lyt $(call KLAYOUT_FOUND) $(KLAYOUT_CMD) -rd in_guide="$(RESULTS_DIR)/route.guide" \ -rd in_def="$<" \ -rd net_name=$(GUIDE_NET) \ -rd tech_file=$(OBJECTS_DIR)/klayout.lyt \ -rm $(UTILS_DIR)/viewGuide.py # ============================================================================== # _____ ___ _ _ ___ ____ _ _ ___ _ _ ____ # | ___|_ _| \ | |_ _/ ___|| | | |_ _| \ | |/ ___| # | |_ | || \| || |\___ \| |_| || || \| | | _ # | _| | || |\ || | ___) | _ || || |\ | |_| | # |_| |___|_| \_|___|____/|_| |_|___|_| \_|\____| # .PHONY: finish finish: $(LOG_DIR)/6_report.log \ $(RESULTS_DIR)/6_final.v \ $(RESULTS_DIR)/6_final.sdc \ $(GDS_FINAL_FILE) $(UNSET_AND_MAKE) elapsed .PHONY: elapsed elapsed: -@$(UTILS_DIR)/genElapsedTime.py -d $(BLOCK_LOG_FOLDERS) $(LOG_DIR) # Useful when working with macros, see elapsed time for all macros in platform .PHONY: elapsed-all elapsed-all: @$(UTILS_DIR)/genElapsedTime.py -d $(shell find $(WORK_HOME)/logs/$(PLATFORM)/*/*/ -type d) $(eval $(call do-step,6_1_fill,$(RESULTS_DIR)/5_route.odb $(RESULTS_DIR)/5_route.sdc $(FILL_CONFIG),density_fill)) $(eval $(call do-copy,6_1_fill,5_route.sdc,,.sdc)) $(eval $(call do-copy,6_final,5_route.sdc,,.sdc)) $(eval $(call do-step,6_report,$(RESULTS_DIR)/6_1_fill.odb $(RESULTS_DIR)/6_1_fill.sdc,final_report,.log,$(LOG_DIR))) $(RESULTS_DIR)/6_final.def: $(LOG_DIR)/6_report.log # The final results are called 6_final.*, so it is convenient when scripting # to have the names of the artifacts match the name of the target .PHONY: do-final do-final: do-finish .PHONY: final final: finish .PHONY: do-finish do-finish: $(UNSET_AND_MAKE) do-6_1_fill do-6_1_fill.sdc do-6_final.sdc do-6_report do-gds elapsed .PHONY: generate_abstract generate_abstract: $(RESULTS_DIR)/6_final.gds $(RESULTS_DIR)/6_final.def $(RESULTS_DIR)/6_final.v $(RESULTS_DIR)/6_final.sdc $(UNSET_AND_MAKE) do-generate_abstract # Set ABSTRACT_SOURCE if you want to create an abstract from another stage than 6_final. .PHONY: do-generate_abstract do-generate_abstract: mkdir -p $(LOG_DIR) $(REPORTS_DIR) ($(TIME_CMD) $(OPENROAD_CMD) $(SCRIPTS_DIR)/generate_abstract.tcl -metrics $(LOG_DIR)/generate_abstract.json) 2>&1 | tee $(abspath $(LOG_DIR)/generate_abstract.log) .PHONY: clean_abstract clean_abstract: rm -f $(RESULTS_DIR)/$(DESIGN_NAME).lib $(RESULTS_DIR)/$(DESIGN_NAME).lef # Merge wrapped macros using Klayout #------------------------------------------------------------------------------- $(WRAPPED_GDSOAS): $(OBJECTS_DIR)/klayout_wrap.lyt $(WRAPPED_LEFS) $(call KLAYOUT_FOUND) ($(TIME_CMD) $(KLAYOUT_CMD) -zz -rd design_name=$(basename $(notdir $@)) \ -rd in_def=$(OBJECTS_DIR)/def/$(notdir $(@:$(STREAM_SYSTEM_EXT)=def)) \ -rd in_files="$(ADDITIONAL_GDSOAS)" \ -rd config_file=$(FILL_CONFIG) \ -rd seal_file="" \ -rd out_file=$@ \ -rd tech_file=$(OBJECTS_DIR)/klayout_wrap.lyt \ -rd layer_map=$(GDS_LAYER_MAP) \ -r $(UTILS_DIR)/def2stream.py) 2>&1 | tee $(abspath $(LOG_DIR)/6_merge_$(basename $(notdir $@)).log) # Merge GDS using Klayout #------------------------------------------------------------------------------- $(GDS_MERGED_FILE): $(RESULTS_DIR)/6_final.def $(OBJECTS_DIR)/klayout.lyt $(GDSOAS_FILES) $(WRAPPED_GDSOAS) $(SEAL_GDSOAS) $(UNSET_AND_MAKE) do-gds-merged .PHONY: do-gds-merged do-gds-merged: $(call KLAYOUT_FOUND) ($(TIME_CMD) $(STDBUF_CMD) $(KLAYOUT_CMD) -zz -rd design_name=$(DESIGN_NAME) \ -rd in_def=$(RESULTS_DIR)/6_final.def \ -rd in_files="$(GDSOAS_FILES) $(WRAPPED_GDSOAS)" \ -rd seal_file="$(SEAL_GDSOAS)" \ -rd out_file=$(GDS_MERGED_FILE) \ -rd tech_file=$(OBJECTS_DIR)/klayout.lyt \ -rd layer_map=$(GDS_LAYER_MAP) \ -r $(UTILS_DIR)/def2stream.py) 2>&1 | tee $(abspath $(LOG_DIR)/6_1_merge.log) $(RESULTS_DIR)/6_final.v: $(LOG_DIR)/6_report.log .PHONY: do-gds do-gds: $(UNSET_AND_MAKE) do-klayout_tech do-klayout do-klayout_wrap do-gds-merged cp $(GDS_MERGED_FILE) $(GDS_FINAL_FILE) $(GDS_FINAL_FILE): $(GDS_MERGED_FILE) cp $< $@ .PHONY: drc drc: $(REPORTS_DIR)/6_drc.lyrdb $(REPORTS_DIR)/6_drc.lyrdb: $(GDS_FINAL_FILE) $(KLAYOUT_DRC_FILE) ifneq ($(KLAYOUT_DRC_FILE),) $(call KLAYOUT_FOUND) ($(TIME_CMD) $(KLAYOUT_CMD) -zz -rd in_gds="$<" \ -rd report_file=$(abspath $@) \ -r $(KLAYOUT_DRC_FILE)) 2>&1 | tee $(abspath $(LOG_DIR)/6_drc.log) # Hacky way of getting DRV count (don't error on no matches) grep -c "<value>" $@ > $(REPORTS_DIR)/6_drc_count.rpt || [[ $$? == 1 ]] else echo "DRC not supported on this platform" > $@ endif $(RESULTS_DIR)/6_final.cdl: $(RESULTS_DIR)/6_final.v ($(TIME_CMD) $(OPENROAD_CMD) $(SCRIPTS_DIR)/cdl.tcl) 2>&1 | tee $(abspath $(LOG_DIR)/6_cdl.log) $(OBJECTS_DIR)/6_final_concat.cdl: $(RESULTS_DIR)/6_final.cdl $(CDL_FILE) cat $^ > $@ .PHONY: lvs lvs: $(RESULTS_DIR)/6_lvs.lvsdb $(RESULTS_DIR)/6_lvs.lvsdb: $(GDS_FINAL_FILE) $(KLAYOUT_LVS_FILE) $(OBJECTS_DIR)/6_final_concat.cdl ifneq ($(KLAYOUT_LVS_FILE),) $(call KLAYOUT_FOUND) ($(TIME_CMD) $(KLAYOUT_CMD) -b -rd in_gds="$<" \ -rd cdl_file=$(abspath $(OBJECTS_DIR)/6_final_concat.cdl) \ -rd report_file=$(abspath $@) \ -r $(KLAYOUT_LVS_FILE)) 2>&1 | tee $(abspath $(LOG_DIR)/6_lvs.log) else echo "LVS not supported on this platform" > $@ endif .PHONY: clean_finish clean_finish: rm -rf $(RESULTS_DIR)/6_*.gds $(RESULTS_DIR)/6_*.oas $(RESULTS_DIR)/6_*.odb $(RESULTS_DIR)/6_*.v $(RESULTS_DIR)/6_*.def $(RESULTS_DIR)/6_*.sdc $(RESULTS_DIR)/6_*.spef rm -rf $(REPORTS_DIR)/6_*.rpt rm -f $(LOG_DIR)/6_* # ============================================================================== # __ __ ___ ____ ____ # | \/ |_ _/ ___| / ___| # | |\/| || |\___ \| | # | | | || | ___) | |___ # |_| |_|___|____/ \____| # # ============================================================================== .PHONY: all all: synth floorplan place cts route finish .PHONY: clean clean: @echo @echo "Make clean disabled." @echo "Use make clean_all or clean individual steps:" @echo " clean_synth clean_floorplan clean_place clean_cts clean_route clean_finish" @echo .PHONY: clean_all clean_all: clean_synth clean_floorplan clean_place clean_cts clean_route clean_finish clean_metadata clean_abstract rm -rf $(OBJECTS_DIR) .PHONY: nuke nuke: clean_test clean_issues rm -rf ./results ./logs ./reports ./objects rm -rf layer_*.mps macrocell.list *best.plt *_pdn.def rm -rf *.rpt *.rpt.old *.def.v pin_dumper.log rm -f $(OBJECTS_DIR)/versions.txt $(OBJECTS_DIR)/copyright.txt dummy.guide # DEF/GDS/OAS viewer shortcuts #------------------------------------------------------------------------------- .PHONY: $(foreach file,$(RESULTS_DEF) $(RESULTS_GDS) $(RESULTS_OAS),klayout_$(file)) $(foreach file,$(RESULTS_DEF) $(RESULTS_GDS) $(RESULTS_OAS),klayout_$(file)): klayout_%: $(OBJECTS_DIR)/klayout.lyt $(KLAYOUT_CMD) -nn $(OBJECTS_DIR)/klayout.lyt $(RESULTS_DIR)/$* .PHONY: gui_synth gui_synth: $(OPENROAD_GUI_CMD) $(SCRIPTS_DIR)/sta-synth.tcl .PHONY: open_synth open_synth: $(OPENROAD_NO_EXIT_CMD) $(SCRIPTS_DIR)/sta-synth.tcl $(eval $(call OPEN_GUI_SHORTCUT,floorplan,2_floorplan.odb)) $(eval $(call OPEN_GUI_SHORTCUT,place,3_place.odb)) $(eval $(call OPEN_GUI_SHORTCUT,cts,4_cts.odb)) $(eval $(call OPEN_GUI_SHORTCUT,route,5_route.odb)) $(eval $(call OPEN_GUI_SHORTCUT,grt,5_1_grt.odb)) $(eval $(call OPEN_GUI_SHORTCUT,final,6_final.odb)) $(foreach file,$(RESULTS_DEF),$(eval $(call OPEN_GUI,$(file),DEF_FILE))) $(foreach file,$(RESULTS_ODB),$(eval $(call OPEN_GUI,$(file),ODB_FILE))) # Write a def for the corresponding odb $(foreach file,$(RESULTS_ODB),$(file).def): %.def: ODB_FILE=$(RESULTS_DIR)/$* DEF_FILE=$(RESULTS_DIR)/$@ $(OPENROAD_CMD) $(SCRIPTS_DIR)/write_def.tcl # # Write a verilog for the corresponding odb $(foreach file,$(RESULTS_ODB),$(file).v): %.v: ODB_FILE=$(RESULTS_DIR)/$* VERILOG_FILE=$(RESULTS_DIR)/$@ $(OPENROAD_CMD) $(SCRIPTS_DIR)/write_verilog.tcl # Drop into yosys with all environment variables, useful to for instance # debug synthesis, or run other commands aftewards, such as "show" to # generate a .dot file of the design to visualize designs. .PHONY: yosys yosys: $(YOSYS_EXE) # Drop into a bash shell with all environment variables, useful for debugging .PHONY: bash bash: bash --init-file <(echo "PS1='\[\e[32m\]Makefile Environment \[\e[0m\] \w $ '") .PHONY: all_defs all_defs : $(foreach file,$(RESULTS_ODB),$(file).def) .PHONY: all_verilog all_verilog : $(foreach file,$(RESULTS_ODB),$(file).v) .PHONY: handoff handoff : all_defs all_verilog .PHONY: test-unset-and-make-% test-unset-and-make-%: ; $(UNSET_AND_MAKE) $* .phony: klayout klayout: $(KLAYOUT_CMD) .phony: run run: @mkdir -p $(RESULTS_DIR) $(LOG_DIR) $(REPORTS_DIR) $(OBJECTS_DIR) ($(OPENROAD_CMD) -no_splash $(if $(filter %.py,$(RUN_SCRIPT)),-python) $(RUN_SCRIPT) 2>&1 | tee $(abspath $(LOG_DIR)/$(RUN_LOG_NAME_STEM).log)) export RUN_YOSYS_ARGS ?= -c $(SCRIPTS_DIR)/yosys_keep.tcl .phony: run-yosys run-yosys: $(YOSYS_EXE) $(RUN_YOSYS_ARGS) # Utilities #------------------------------------------------------------------------------- include $(UTILS_DIR)/utils.mk export PRIVATE_DIR ?= ../../private_tool_scripts -include $(PRIVATE_DIR)/private.mk 找到YOSYS_EXE定义的位置

# https://search.dangdang.com/?key=%B1%E0%B3%CC&act=input&page_index=1 # 导入requests import requests import time from bs4 import BeautifulSoup import mysql.connector import csv # 定义容器 用来存储所有数据 allContainer = [] for i in range(1, 36): # 判断当前是否为第一次循环 if i == 1: url = "https://search.dangdang.com/?key=%B1%E0%B3%CC&act=input&page_index=1" else: url = f"https://search.dangdang.com/?key=%B1%E0%B3%CC&act=input&page_index={i}" print(f"当前已完成第{i}次") # 循环休眠 防止检测 time.sleep(1) # 发起请求 # 请求头 header = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7", "Accept-Encoding": "gzip, deflate, br, zstd", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6", "Cache-Control": "max-age=0", "Connection": "keep-alive", "Cookie": "ddscreen=2; __permanent_id=20250609184530979156760224679480468; __visit_id=20250609184530993130404124438448889; __out_refer=1749465931%7C!%7Cwww.baidu.com%7C!%7C; dest_area=country_id%3D9000%26province_id%3D111%26city_id%3D0%26district_id%3D0%26town_id%3D0; __rpm=s_112100.155956512835%2C155956512836..1749466159510%7Cs_112100.155956512835%2C155956512836..1749466166450; search_passback=1e0bf85a587c99ab37bc4668fc0100003945670025bc4668; __trace_id=20250609184927332100480187110221325", "Host": "search.dangdang.com", "Referer": "https://search.dangdang.com/?key=%B1%E0%B3%CC&act=input&page_index=2", "Sec-Fetch-Dest": "document", "Sec-Fetch-Mode": "navigate", "Sec-Fetch-Site": "same-origin", "Sec-Fetch-User": "?1", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/137.0.0.0 Safari/537.36 Edg/137.0.0.0", } response = requests.get(url, headers=header) # 设置响应的编码格式 # response.encoding = 'utf-8' # 自动识别编码方式(关键!) response.encoding = response.apparent_encoding # 将响应先保存至本地,然后先测试对本地页面进行数据解析 然后再进行多次爬取 # with open('../data/当当网.html', 'w', encoding='utf-8') as f: # f.write(response.text) htmlTree = BeautifulSoup(response.text, 'html.parser') allulEle = htmlTree.find_all('ul', class_="bigimg") for ul in allulEle: # 根据每一个ul标签中的li 进行指定数据的获取 allw1 = ul.find_all('li', recursive=False) # 获取w1下的p标签 for li_tag in allw1: rowContainer = [] # 提取书名 title_tag = li_tag.find_all('p', class_='name') if title_tag: a_tag = li_tag.find_all('a') if a_tag: title = a_tag[0].get('title') href = a_tag[0].get('href') link = f"https:{href}" rowContainer.append(title) rowContainer.append(link) else: title = "" href = "" else: title = "" href = "" pre_price = li_tag.find_all('span', class_='search_pre_price') for p in pre_price: PrePrice = p.get_text(strip=True) rowContainer.append(PrePrice) # 提取评论数 comment_count = li_tag.find('a', class_='search_comment_num') if comment_count: CommentCount = comment_count.get_text(strip=True) else: CommentCount = '0条评论' rowContainer.append(CommentCount) # 提取作者、出版时间、出版社 author_info = li_tag.find('p', class_='search_book_author') for p in author_info: AuthorInfo = p.get_text(strip=True).replace('\\\\', '').replace('/', '') if not AuthorInfo: AuthorInfo = '' rowContainer.append(AuthorInfo) allContainer.append(rowContainer) for i in allContainer: print(i) # 导入数据库模块 import mysql.connector # 使用当前库中的内置对象来创建数据库连接 mydb = mysql.connector.connect( host='localhost', # 当前mysql运行服务的地址 port=3306, # mysql服务的端口号 user='root', # mysql用户名 password='root', # 密码 database='dangdang' ) # 创建游标对象 mycursor = mydb.cursor() # discount VARCHAR ( 20 ), -- 折扣 # 创建图书信息表 create_table_sql = """ CREATE TABLE IF NOT EXISTS books ( id INT AUTO_INCREMENT PRIMARY KEY, title VARCHAR ( 255 ) NOT NULL, -- 书名 link VARCHAR ( 512 ), -- 链接 now_price VARCHAR ( 20 ), -- 现价 comment_count VARCHAR ( 50 ), -- 评论数 author VARCHAR ( 100 ), -- 作者 publish_date VARCHAR ( 20 ), -- 出版时间 publisher VARCHAR ( 100 ), -- 出版社 action VARCHAR ( 100 ), unidentified VARCHAR ( 20 ) ) """ # 执行建表语句 mycursor.execute(create_table_sql) # 插入语句 insert_sql = """ INSERT INTO books (title, link, now_price, comment_count, author, publish_date, publisher, action, unidentified) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s) """ for book in allContainer: if len(book) == 8: book.insert(4, '') mycursor.execute(insert_sql, list(book)) # 提交事务 mydb.commit() print("✅ 数据插入完成,共插入", len(allContainer), "条记录") # 关闭连接 mycursor.close() mydb.close() import pandas as pd # 转成 DataFrame df = pd.DataFrame(allContainer, columns=["书名", "链接", "现价", "评论数", "作者", "出版时间", "出版社", "可选状态", "未知"]) # 插入序号列(从 1 开始) df.insert(0, '序号', range(1, len(df) + 1)) # 保存为 Excel 文件 df.to_excel("../data/当当网.xlsx", index=False) print("✅ 数据已成功保存为 Excel 文件!") import jieba import wordcloud # 读取excel 文件到当前代码中 import openpyxl from wordcloud import WordCloud # 获取当前excel 表格对象 wb = openpyxl.load_workbook('../data/当当网.xlsx') # 获取当前表格中的sheet sheet = wb.worksheets[0] # 遍历当前的execl 对象 # min row = 2 代表的是从当前表格中的第二行开始获取 # min col = 3 代表获取第三列 # max col = 3 最大的列是三,之确保我们获取当前第三列 # 定义一个列表用来存储当前获取的所有的数据 data = [] for row in sheet.iter_rows(min_row=2, min_col=2, max_col=5): data.append(row[0].value) # 获取每个单元格中的value值 # print(data) # 对当前的数组中的元素进行分割词组 seg_list = jieba.cut(''.join(data), cut_all=False) # print(type(seg_list)) # # print('/'.join(seg_list)) # 引入当前的字体 作为词云图的渲染字体 fonts = '../data/AlibabaPuHuiTi-2-65-Medium.ttf' wc = WordCloud( # 通过属性对当前的词云图进行赋值 width=1200, # 宽600px height=600, background_color='white', max_font_size=50, min_font_size=10, font_path=fonts ) # 将分隔完成的数据 加载到当前的wc对象中 wc.generate_from_text(''.join(seg_list)) # 保存当前的结果到指定文件夹中 wc.to_file("../data/词云图.png") import numpy as np import pandas as pd # 这些设置有助于调试时查看完整的 DataFrame 数据,适合开发阶段使用 pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) newXml = pd.read_excel("../data/当当网.xlsx") print(newXml.shape) # 查看行数列数 print(newXml.info()) # 查看各列的数据类型及缺失值 # # 检查重复行 duplicates = newXml.duplicated(keep='first') print("重复行数量:", duplicates.sum()) # # 删除重复行 cleaned_data = newXml.drop_duplicates() print("删除重复后数据形状:", cleaned_data.shape) # # 删除含有空值的行 dropna_data = newXml.dropna() print("删除空值后数据形状:", dropna_data.shape) # 或者填充空值 # filled_data = newXml.fillna({"未知": "默认值"}) df = newXml.drop(columns=['未知']) print(df) # filled_data = newXml.fillna({"CPU信息": "未知", "等级": 0}) df.to_excel("../data/new当当.xlsx", index=False) import pandas as pd import numpy as np import pandas as pd from pyecharts import options as opts from pyecharts.charts import Bar, Line, Scatter, Pie, Radar from pyecharts.globals import ThemeType # 读取文件 excel_file = pd.ExcelFile('../data/new当当.xlsx') # 获取指定工作表中的数据 df = excel_file.parse('Sheet1') # 将出版社列转换为字符串类型 df['出版社'] = df['出版社'].astype(str) # 获取出版社和书名列的数据 publishers = df['出版社'].to_numpy() book_names = df['书名'].to_numpy() # 获取唯一的出版社 unique_publishers = np.unique(publishers) # 统计每个出版社的书籍数量 book_counts = np.array([np.sum(publishers == publisher) for publisher in unique_publishers]) # 构建结果 DataFrame result_df = pd.DataFrame({ '出版社': unique_publishers, '书籍数量': book_counts }) print(result_df) # 读取数据 df = pd.read_excel('../data/new当当.xlsx') # 数据预处理 # 转换现价列,提取数字 df['现价'] = df['现价'].str.extract('(\d+\.?\d*)').astype(float) # 转换评论数列,提取数字 df['评论数'] = df['评论数'].str.extract('(\d+)').astype(int) # 转换出版时间列,提取年份 df['出版年份'] = pd.to_datetime(df['出版时间']).dt.year # 图表1:价格分布直方图 hist, bins = pd.cut(df['现价'], bins=20, retbins=True) hist_value = hist.value_counts().sort_index() # 使用 Bar 来模拟直方图 histogram = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT, width="800px", height="400px")) .add_xaxis([f"{bins[i]:.2f}-{bins[i + 1]:.2f}" for i in range(len(bins) - 1)]) .add_yaxis("书籍数量", hist_value.tolist(), category_gap=0) .set_global_opts( title_opts=opts.TitleOpts(title="价格分布柱状图"), xaxis_opts=opts.AxisOpts(name="价格区间"), yaxis_opts=opts.AxisOpts(name="数量"), ) ) # 图表2:不同出版社出版书籍数量柱状图 publisher_counts = df['出版社'].value_counts() bar_publisher = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT, width="800px", height="400px")) .add_xaxis(publisher_counts.index.tolist()) .add_yaxis("出版书籍数量", publisher_counts.tolist()) .set_global_opts( title_opts=opts.TitleOpts(title="不同出版社出版书籍数量柱状图"), xaxis_opts=opts.AxisOpts(name="出版社", axislabel_opts={"rotate": 90}), yaxis_opts=opts.AxisOpts(name="出版书籍数量"), ) ) # 图表3:每年出版书籍数量折线图 yearly_counts = df['出版年份'].value_counts().sort_index() line_yearly = ( Line(init_opts=opts.InitOpts(theme=ThemeType.LIGHT, width="800px", height="400px")) .add_xaxis(yearly_counts.index.astype(str).tolist()) .add_yaxis("出版书籍数量", yearly_counts.tolist(), is_smooth=True, symbol="circle") .set_global_opts( title_opts=opts.TitleOpts(title="每年出版书籍数量折线图"), xaxis_opts=opts.AxisOpts(name="出版年份"), yaxis_opts=opts.AxisOpts(name="出版书籍数量"), ) ) # 图表4:评论数前五书籍的书名与评论数柱状图 top_5_commented = df.nlargest(5, '评论数') bar_comment = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT, width="800px", height="400px")) .add_xaxis(top_5_commented['书名'].tolist()) .add_yaxis("评论数", top_5_commented['评论数'].tolist()) .set_global_opts( title_opts=opts.TitleOpts(title="评论数前五书籍的书名与评论数柱状图"), xaxis_opts=opts.AxisOpts(name="书名", axislabel_opts={"rotate": 90}), yaxis_opts=opts.AxisOpts(name="评论数"), ) ) # 图表5:价格与评论数的散点图 # 将现价列转换为字符串类型 df['现价'] = df['现价'].astype(str) # 提取价格数值 df['价格'] = df['现价'].str.extract(r'(\d+\.?\d*)').astype(float) # 检查价格列是否存在缺失值 print(f"价格列缺失值数量: {df['价格'].isna().sum()}") # 删除价格列为缺失值的行 df = df.dropna(subset=['价格']) # 定义价格区间 bins = [0, 50, 100, 150, 200, float('inf')] labels = ['0 - 50', '51 - 100', '101 - 150', '151 - 200', '200以上'] # 划分价格区间并统计数量 df['价格区间'] = pd.cut(df['价格'], bins=bins, labels=labels) price_range_counts = df['价格区间'].value_counts().reset_index(name='数量') # 使用 pyecharts 绘制饼状图 pie = ( Pie() .add( series_name="数量", data_pair=[list(z) for z in zip(price_range_counts['价格区间'], price_range_counts['数量'])], radius=["40%", "75%"], ) .set_global_opts( title_opts=opts.TitleOpts(title="价格区间与数量的饼状图"), legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"), ) .set_series_opts( label_opts=opts.LabelOpts(formatter="{b}: {d}%") ) ) # 将评论数列转换为字符串类型 df['评论数'] = df['评论数'].astype(str) # 提取评论数数值 df['评论数数值'] = df['评论数'].str.extract(r'(\d+\.?\d*)').astype(float) # 找出评论数前五的书籍 top_5_books = df.nlargest(5, '评论数数值', keep='all')[['书名', '评论数数值']] # 定义雷达图的指标 c_schema = [{"name": book_name, "max": top_5_books['评论数数值'].max()} for book_name in top_5_books['书名']] # 准备雷达图的数据 data = [[count for count in top_5_books['评论数数值'].values]] # 创建雷达图对象 ( Radar() .add_schema(schema=c_schema) .add( series_name="评论数", data=data, areastyle_opts=opts.AreaStyleOpts(opacity=0.2) ) .set_global_opts( title_opts=opts.TitleOpts(title="评论数前五的书籍的书名与评论数雷达图"), ) .render("../data/radar_chart_top5_books.html") ) # 统计不同出版社的书籍数量 publisher_book_count = df['出版社'].value_counts().reset_index() publisher_book_count.columns = ['出版社', '书籍数量'] # 选取书籍数量前 10 的出版社 top_10_publisher = publisher_book_count.nlargest(10, '书籍数量') # 创建散点图对象 scatter = ( Scatter() .add_xaxis(top_10_publisher['出版社'].tolist()) .add_yaxis( series_name="书籍数量", y_axis=top_10_publisher['书籍数量'].tolist(), symbol_size=10, label_opts=opts.LabelOpts(is_show=False) ) .set_global_opts( title_opts=opts.TitleOpts(title="不同出版社书籍数量前10的散点图"), xaxis_opts=opts.AxisOpts( name="出版社", type_="category", axislabel_opts=opts.LabelOpts(rotate=45, interval="auto") ), yaxis_opts=opts.AxisOpts(name="书籍数量"), ) ) # 保存图表 histogram.render("../data/price_distribution_histogram.html") bar_publisher.render("../data/publisher_book_count_bar.html") line_yearly.render("../data/yearly_book_count_line.html") bar_comment.render("../data/top_commented_books_bar.html") pie.render("../data/price_range_pie_chart.html") scatter.render("../data/scatter_top10_publisher_book_count.html") from flask import Flask, request, render_template_string, jsonify import requests # import requests # # # 定义一个message的变量,作为会话的容器 # messages = [{"role":"system","content":""}] # # # API KEY # API_KEY = "sk-ec2e933afb424766ba6bce9765960a3a" # # 设置请求头 # header = { # "Content-Type": "application/json", # 告知服务器我们传递的内容的数据类型 # "Authorization": f"Bearer {API_KEY}" # api_key # } # # # 请求地址 # url = "https://api.deepseek.com/chat/completions" # # # 因为要完成多轮对话 所以要有循环 # # 同时因为要完成用户的多次对话请求 # # def DeepSeekChat(userMessage): # # 1. 将用户输入的信息与角色进行拼接 从而变成一个完成的对话 # messages.append( {"role": "user", "content": userMessage}) # # # 2. 请求deepseek 请求过程中将我们携带的多个参数进行传递 # data = { # "model":"deepseek-chat", # "messages":messages, # "stream":False # } # # # 3. 发起请求 # response = requests.post(url, json=data, headers=header) # # # 4. 对response进行处理 # if response.status_code == 200: # # 获取响应内容 # result_json = response.json() # # 处理当前json中的内容 # airesult = result_json['choices'][0]['message']['content'] # # AI返回结果 # print(f"图书商城AI客服:{airesult}") # # 如何实现多轮对话 # # 将回复的内容继续追加到列表中,形成会话的闭合,结合上下文内容 # messages.append({"role": "assistant", "content": airesult}) # else: # print(response.text) # print("请求失败") # # print("图书商城欢迎您") # print("使用exit退出程序") # # while True: # userinput = input("你:") # if userinput == "exit": # print("退出当前程序") # break # else: # # 调用函数完成多次请求的发送 # # 将用户输入的内容作为参数调用函数 完成API的调用 # DeepSeekChat(userinput) 这是我写的代码,需要把爬虫得到的数据与deepseek相结合,使得可以在一个新页面上根据数据与ai对话,请你进行修改

def analyze_table(self): """执行表格分析(在后台线程中运行)""" try: # 重置分析状态 self.reset_analysis() self.header_row = self.header_row_var.get() file_ext = os.path.splitext(self.file_path)[1].lower() # 更新进度 self.progress = 10 time.sleep(0.1) if self.stop_analysis: return # 确保有原始数据 if self.raw_data is None: self.load_and_preview() if file_ext in ['.xlsx', '.xls']: # 读取Excel文件,指定表头行 self.df = pd.read_excel(self.file_path, header=self.header_row) self.workbook = load_workbook(self.file_path) self.sheet = self.workbook.active elif file_ext == '.csv': # 读取CSV文件,指定表头行 with open(self.file_path, 'rb') as f: result = chardet.detect(f.read()) encoding = result['encoding'] or 'utf-8' self.df = pd.read_csv( self.file_path, header=self.header_row, encoding=encoding, engine='c' ) elif file_ext == '.parquet': # 读取Parquet文件 self.df = pd.read_parquet(self.file_path) else: messagebox.showerror("错误", "不支持的文件类型") return # 确保DataFrame不为空 if self.df is None or self.df.empty: raise ValueError("加载的数据为空") # 清理列名 self.df.columns = [str(col).strip() for col in self.df.columns] # 初始化列底色信息 self.column_has_color = {col: False for col in self.df.columns} # 更新进度 self.progress = 30 time.sleep(0.1) if self.stop_analysis: return # 分析表头 self.analyze_headers() # 更新进度 self.progress = 50 time.sleep(0.1) if self.stop_analysis: return # 分析列格式 if file_ext in ['.xlsx', '.xls']: self.analyze_format() # 更新进度 self.progress = 70 time.sleep(0.1) if self.stop_analysis: return # 分析数据质量 self.analyze_data_quality() # 更新列选择框 self.col_combobox['values'] = list(self.df.columns) if self.df.columns.size > 0: self.col_combobox.current(0) self.update_stats() # 更新筛选控件(添加底色标记) display_columns = [] for col in self.df.columns: has_color = self.column_has_color.get(col, False) display_columns.append(f"{col} (有底色)" if has_color else f"{col} (无底色)") self.filter_col_combobox['values'] = display_columns # 更新联动统计控件(添加底色标记) display_columns = [] for col in self.df.columns: has_color = self.column_has_color.get(col, False) display_columns.append(f"{col} (有底色)" if has_color else f"{col} (无底色)") self.linkage_col_combobox['values'] = display_columns self.status_var.set("分析完成") # 更新进度 self.progress = 100 except Exception as e: error_msg = f"分析表格时出错: {str(e)}" logging.error(error_msg) logging.error(traceback.format_exc()) messagebox.showerror("分析错误", error_msg) self.status_var.set(f"错误: {error_msg}") def analyze_headers(self): # 清空表头表格 for item in self.headers_tree.get_children(): self.headers_tree.delete(item) # 添加表头信息 for i, col in enumerate(self.df.columns): if self.stop_analysis: return # 检查列是否有底色(只针对数据区域) has_color = self.column_has_color.get(col, False) col_display = f"{col} (有底色)" if has_color else f"{col} (无底色)" sample = "" # 获取前3个非空值作为示例 non_empty = self.df[col].dropna() if len(non_empty) > 0: sample = ", ".join(str(x) for x in non_empty.head(3).tolist()) # 推断数据类型 dtype = str(self.df[col].dtype) dtype_map = { 'object': '文本', 'int64': '整数', 'float64': '小数', 'bool': '布尔值', 'datetime64': '日期时间', 'category': '分类数据' } for k, v in dtype_map.items(): if k in dtype: dtype = v break # 唯一值统计 unique_count = self.df[col].nunique() # 空值率 null_count = self.df[col].isnull().sum() null_percent = f"{null_count / len(self.df):.1%}" if len(self.df) > 0 else "0%" self.headers_tree.insert("", "end", values=( i+1, col_display, # 使用带底色标记的列名 dtype, sample, unique_count, null_percent )) def analyze_format(self): """分析每个单元格的底色状态""" if not self.workbook or not self.sheet: return # 初始化底色状态DataFrame(与数据表相同形状) self.cell_bg_status = pd.DataFrame( "无底色", index=self.df.index, columns=self.df.columns ) # 分析每个单元格的底色 for row_idx in range(len(self.df)): for col_idx, col_name in enumerate(self.df.columns): # 转换为Excel坐标(行号从1开始) excel_row = self.header_row + 2 + row_idx col_letter = self.get_column_letter(col_idx + 1) cell = self.sheet[f"{col_letter}{excel_row}"] # 检测底色 has_bg = False if cell.fill and isinstance(cell.fill, PatternFill): if cell.fill.fgColor and cell.fill.fgColor.rgb: if cell.fill.fgColor.rgb != "00000000": # 排除透明 has_bg = True # 存储底色状态 self.cell_bg_status.iloc[row_idx, col_idx] = "有底色" if has_bg else "无底色" # 标记列是否有底色 if has_bg: self.column_has_color[col_name] = True def analyze_data_quality(self): """分析数据质量问题""" # 清空质量表格 for item in self.quality_tree.get_children(): self.quality_tree.delete(item) issues = [] total_rows = len(self.df) # 1. 检查空值 null_counts = self.df.isnull().sum() for col, count in null_counts.items(): if count > 0: severity = "高" if count / total_rows > 0.3 else "中" if count / total_rows > 0.1 else "低" issues.append({ "issue": "空值", "count": count, "severity": severity, "columns": col, "suggestion": f"考虑使用平均值/中位数填充或删除空值行" }) # 2. 检查重复行 duplicate_rows = self.df.duplicated().sum() if duplicate_rows > 0: severity = "高" if duplicate_rows / total_rows > 0.1 else "中" issues.append({ "issue": "重复行", "count": duplicate_rows, "severity": severity, "columns": "所有列", "suggestion": "删除重复行或分析重复原因" }) # 3. 检查数据类型不一致 for col in self.df.columns: if self.df[col].dtype == 'object': # 检查混合数据类型 type_counts = self.df[col].apply(type).value_counts() if len(type_counts) > 1: issues.append({ "issue": "数据类型不一致", "count": len(self.df[col]), "severity": "中", "columns": col, "suggestion": "统一数据类型或转换格式" }) # 4. 检查异常值(仅数值列) numeric_cols = self.df.select_dtypes(include=np.number).columns for col in numeric_cols: q1 = self.df[col].quantile(0.25) q3 = self.df[col].quantile(0.75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr outliers = self.df[(self.df[col] < lower_bound) | (self.df[col] > upper_bound)] outlier_count = len(outliers) if outlier_count > 0: severity = "高" if outlier_count / total_rows > 0.05 else "中" issues.append({ "issue": "异常值", "count": outlier_count, "severity": severity, "columns": col, "suggestion": "检查数据准确性或进行转换" }) # 添加到表格 for issue in issues: self.quality_tree.insert("", "end", values=( issue["issue"], issue["count"], issue["severity"], issue["columns"], issue["suggestion"] )) def get_column_letter(self, col_idx): """将列索引转换为Excel列字母""" letters = [] while col_idx: col_idx, remainder = divmod(col_idx - 1, 26) letters.append(chr(65 + remainder)) return ''.join(reversed(letters)) def update_filter_values(self, event=None): """更新筛选值列表(带底色标记)""" selected_col_display = self.filter_col_var.get() if not selected_col_display: return # 从显示列名中提取原始列名(移除底色标记) if " (有底色)" in selected_col_display: selected_col = selected_col_display.replace(" (有底色)", "") elif " (无底色)" in selected_col_display: selected_col = selected_col_display.replace(" (无底色)", "") else: selected_col = selected_col_display if not selected_col or selected_col not in self.df.columns: return # 获取列的值和对应的底色状态 values = self.df[selected_col].astype(str) # 创建带底色标记的值列表 unique_values = set() if not self.cell_bg_status.empty and selected_col in self.cell_bg_status: bg_status = self.cell_bg_status[selected_col] for val, bg in zip(values, bg_status): unique_values.add(f"{val} ({bg})") else: unique_values = set(values) # 如果唯一值太多,只显示前50个 if len(unique_values) > 50: unique_values = sorted(unique_values)[:50] messagebox.showinfo("提示", f"该列有超过50个唯一值,只显示前50个") # 更新值选择框 self.filter_value_combobox['values'] = sorted(unique_values) self.filter_value_combobox.set('') def apply_filter(self): """应用筛选条件(考虑底色状态)""" if self.df is None: messagebox.showwarning("警告", "请先分析表格") return selected_col_display = self.filter_col_var.get() selected_value_with_bg = self.filter_value_var.get() # 检查输入有效性 if not selected_col_display or not selected_value_with_bg: messagebox.showwarning("警告", "请选择列和值") return try: # 从显示列名中提取原始列名(移除底色标记) if " (有底色)" in selected_col_display: selected_col = selected_col_display.replace(" (有底色)", "") elif " (无底色)" in selected_col_display: selected_col = selected_col_display.replace(" (无底色)", "") else: selected_col = selected_col_display # 从带底色标记的值中提取原始值和底色状态 if " (有底色)" in selected_value_with_bg: selected_value = selected_value_with_bg.replace(" (有底色)", "") selected_bg = "有底色" elif " (无底色)" in selected_value_with_bg: selected_value = selected_value_with_bg.replace(" (无底色)", "") selected_bg = "无底色" else: selected_value = selected_value_with_bg selected_bg = None # 应用值筛选 if pd.api.types.is_numeric_dtype(self.df[selected_col]): try: selected_value = float(selected_value) value_condition = (self.df[selected_col] == selected_value) except: value_condition = (self.df[selected_col].astype(str) == selected_value) else: value_condition = (self.df[selected_col].astype(str) == selected_value) # 应用底色状态筛选(如果有) if selected_bg and not self.cell_bg_status.empty and selected_col in self.cell_bg_status: bg_condition = (self.cell_bg_status[selected_col] == selected_bg) condition = value_condition & bg_condition else: condition = value_condition # 应用组合筛选条件 self.filtered_df = self.df[condition] # 更新预览 self.update_preview(self.filtered_df) # 更新筛选信息 match_count = len(self.filtered_df) total_count = len(self.df) self.filter_info_var.set( f"筛选结果: {match_count} 行 (共 {total_count} 行, {match_count/total_count:.1%})" ) # 更新统计信息 if self.col_var.get(): self.update_stats() except Exception as e: messagebox.showerror("错误", f"筛选数据时出错: {str(e)}") def clear_filter(self): """清除筛选条件""" self.filtered_df = None # 重置筛选控件 self.filter_col_var.set('') self.filter_value_var.set('') self.filter_value_combobox['values'] = [] # 恢复原始数据预览 if self.df is not None: self.update_preview(self.df) # 更新筛选信息 self.filter_info_var.set("筛选已清除") # 更新统计信息 if self.col_var.get(): self.update_stats() # 清除联动统计 for item in self.linkage_tree.get_children(): self.linkage_tree.delete(item) self.linkage_info_var.set("未统计") def update_preview(self, df): """更新数据预览 - 增强健壮性""" try: # 确保有数据 if df is None or df.empty: logging.warning("尝试更新预览时数据为空") return # 创建带底色状态的预览副本 preview_df = df.copy().head(1000) # 添加底色状态列(如果存在) if not self.cell_bg_status.empty: for col in df.columns: if col in self.cell_bg_status: preview_df[f"{col}_底色状态"] = self.cell_bg_status[col].loc[preview_df.index] # 更新或创建表格 if self.pt is not None and self.pt_frame is not None: try: # 更新现有表格 self.pt.model = TableModel(dataframe=preview_df) self.pt.redraw() except Exception as e: logging.error(f"更新预览时出错: {str(e)}") # 尝试重新创建表格 self.safe_destroy_preview() self.create_preview_table(preview_df) else: # 创建新表格 self.create_preview_table(preview_df) except Exception as e: logging.error(f"更新预览失败: {str(e)}") messagebox.showerror("预览错误", f"无法更新预览: {str(e)}") def create_preview_table(self, df): """创建新的预览表格""" try: # 安全销毁旧组件 self.safe_destroy_preview() # 创建新框架 self.pt_frame = ttk.Frame(self.preview_table) self.pt_frame.pack(fill=tk.BOTH, expand=True) # 创建新表格 self.pt = Table( self.pt_frame, showtoolbar=False, showstatusbar=True, width=400, height=300 ) self.pt.model = TableModel(dataframe=df) self.pt.show() except Exception as e: logging.error(f"创建预览表格失败: {str(e)}") messagebox.showerror("预览错误", f"无法创建预览表格: {str(e)}") def update_linkage_stats(self, event=None): """更新联动统计结果(考虑底色状态)""" if not hasattr(self, 'df') or self.df.empty: messagebox.showwarning("警告", "请先分析表格") return target_col_display = self.linkage_col_var.get() if not target_col_display: return # 从显示列名中提取原始列名(移除底色标记) if " (有底色)" in target_col_display: target_col = target_col_display.replace(" (有底色)", "") elif " (无底色)" in target_col_display: target_col = target_col_display.replace(" (无底色)", "") else: target_col = target_col_display # 清空现有结果 for item in self.linkage_tree.get_children(): self.linkage_tree.delete(item) # 确定使用筛选数据还是完整数据 data_source = self.filtered_df if self.filtered_df is not None else self.df # 添加底色状态列(如果存在) if not self.cell_bg_status.empty and target_col in self.cell_bg_status: # 合并底色状态到数据中 temp_df = data_source.copy() temp_df['底色状态'] = self.cell_bg_status[target_col].loc[temp_df.index] # 统计值分布(包含底色状态) value_counts = temp_df.groupby([target_col, '底色状态']).size().reset_index(name='计数') total_count = len(data_source) # 添加到树状视图 for _, row in value_counts.iterrows(): percent = f"{row['计数'] / total_count:.1%}" self.linkage_tree.insert("", "end", values=( row[target_col], row['底色状态'], row['计数'], percent )) # 更新统计信息 self.linkage_info_var.set( f"共 {len(value_counts)} 个组合 (总计 {total_count} 行)" ) else: # 没有底色信息时的处理 value_counts = data_source[target_col].value_counts() total_count = len(data_source) for value, count in value_counts.items(): percent = f"{count / total_count:.1%}" self.linkage_tree.insert("", "end", values=(value, "", count, percent)) self.linkage_info_var.set( f"共 {len(value_counts)} 个唯一值 (总计 {total_count} 行)" ) def update_stats(self, event=None): """更新列统计信息""" # 清空统计表格 for item in self.stats_tree.get_children(): self.stats_tree.delete(item) selected_col_display = self.col_var.get() if not selected_col_display: return # 从显示列名中提取原始列名(移除底色标记) if " (有底色)" in selected_col_display: selected_col = selected_col_display.replace(" (有底色)", "") elif " (无底色)" in selected_col_display: selected_col = selected_col_display.replace(" (无底色)", "") else: selected_col = selected_col_display if not selected_col or selected_col not in self.df.columns: return col_data = self.df[selected_col] # 基本统计信息 self.stats_tree.insert("", "end", values=("列名", selected_col)) self.stats_tree.insert("", "end", values=("数据类型", str(col_data.dtype))) self.stats_tree.insert("", "end", values=("总行数", len(col_data))) non_null_count = col_data.count() null_count = len(col_data) - non_null_count self.stats_tree.insert("", "end", values=("非空值数量", non_null_count)) self.stats_tree.insert("", "end", values=("空值数量", null_count)) self.stats_tree.insert("", "end", values=("空值比例", f"{null_count/len(col_data):.2%}" if len(col_data) > 0 else "0%")) # 值统计 if pd.api.types.is_numeric_dtype(col_data): try: self.stats_tree.insert("", "end", values=("平均值", f"{col_data.mean():.4f}")) self.stats_tree.insert("", "end", values=("中位数", f"{col_data.median():.4f}")) self.stats_tree.insert("", "end", values=("最小值", f"{col_data.min():.4f}")) self.stats_tree.insert("", "end", values=("最大值", f"{col_data.max():.4f}")) self.stats_tree.insert("", "end", values=("标准差", f"{col_data.std():.4f}")) self.stats_tree.insert("", "end", values=("偏度", f"{col_data.skew():.4f}")) self.stats_tree.insert("", "end", values=("峰度", f"{col_data.kurtosis():.4f}")) self.stats_tree.insert("", "end", values=("总和", f"{col_data.sum():.4f}")) except: pass # 唯一值统计 unique_count = col_data.nunique() self.stats_tree.insert("", "end", values=("唯一值数量", unique_count)) unique_ratio = unique_count/non_null_count if non_null_count > 0 else 0 self.stats_tree.insert("", "end", values=("唯一值比例", f"{unique_ratio:.2%}")) # 最常出现的值 if non_null_count > 0: try: top_values = col_data.value_counts().head(3) top_str = ", ".join([f"{val} ({count})" for val, count in top_values.items()]) self.stats_tree.insert("", "end", values=("最常见值", top_str)) except: pass def perform_advanced_analysis(self): """执行高级分析""" if self.df is None or self.df.empty: messagebox.showwarning("警告", "请先分析表格") return self.status_var.set("执行高级分析...") self.progress_var.set(0) # 备份原始底色状态 original_bg_status = self.cell_bg_status.copy() if not self.cell_bg_status.empty else None try: # 缺失值处理 missing_strategy = self.missing_var.get() if missing_strategy != "不处理": numeric_cols = self.df.select_dtypes(include=np.number).columns categorical_cols = self.df.select_dtypes(include='object').columns if missing_strategy == "删除行": self.df = self.df.dropna() else: if missing_strategy == "平均值填充": strategy = 'mean' elif missing_strategy == "中位数填充": strategy = 'median' else: # 众数填充 strategy = 'most_frequent' # 数值列填充 if len(numeric_cols) > 0: num_imputer = SimpleImputer(strategy=strategy) self.df[numeric_cols] = num_imputer.fit_transform(self.df[numeric_cols]) # 分类列填充 if len(categorical_cols) > 0: cat_imputer = SimpleImputer(strategy='most_frequent') self.df[categorical_cols] = cat_imputer.fit_transform(self.df[categorical_cols]) # 异常值检测 if self.outlier_var.get(): numeric_cols = self.df.select_dtypes(include=np.number).columns if len(numeric_cols) > 0: clf = IsolationForest(contamination=0.05, random_state=42) outliers = clf.fit_predict(self.df[numeric_cols]) self.df['is_outlier'] = outliers == -1 # 在界面上显示异常值数量 outlier_count = self.df['is_outlier'].sum() messagebox.showinfo("异常值检测", f"检测到 {outlier_count} 个异常值\n已添加 'is_outlier' 列标记") # 数据标准化 if self.scale_var.get(): numeric_cols = self.df.select_dtypes(include=np.number).columns if len(numeric_cols) > 0: for col in numeric_cols: min_val = self.df[col].min() max_val = self.df[col].max() if max_val > min_val: self.df[col] = (self.df[col] - min_val) / (max_val - min_val) # 更新分析结果 self.analyze_headers() self.analyze_data_quality() # 更新列选择框 self.col_combobox['values'] = list(self.df.columns) if self.df.columns.size > 0: self.col_combobox.current(0) self.update_stats() # 高级分析后恢复底色状态 if original_bg_status is not None: # 只保留现有行的底色状态 self.cell_bg_status = original_bg_status.loc[self.df.index] # 处理新增列(如果没有底色状态,设为"无底色") for col in self.df.columns: if col not in self.cell_bg_status: self.cell_bg_status[col] = "无底色" self.status_var.set("高级分析完成") self.progress_var.set(100) except Exception as e: if original_bg_status is not None: self.cell_bg_status = original_bg_status messagebox.showerror("错误", f"高级分析时出错: {str(e)}") self.status_var.set(f"错误: {str(e)}") if __name__ == "__main__": # 设置未捕获异常的全局处理 def handle_exception(exc_type, exc_value, exc_traceback): """处理未捕获的异常""" error_msg = f"未捕获异常:\n{exc_type.__name__}: {exc_value}" logging.critical(error_msg) logging.critical(traceback.format_exc()) # 在GUI中显示错误 root = tk.Tk() root.withdraw() # 隐藏主窗口 messagebox.showerror("未捕获异常", error_msg) root.destroy() sys.exit(1) sys.excepthook = handle_exception try: root = tk.Tk() app = TableAnalyzer(root) root.mainloop() except Exception as e: error_msg = f"初始化应用失败: {str(e)}" logging.critical(error_msg) logging.critical(traceback.format_exc()) messagebox.showerror("致命错误", error_msg) sys.exit(1) 后面要怎么改

最新推荐

recommend-type

三菱FX3U三轴伺服电机与威纶通触摸屏组合程序详解:轴点动、回零与定位控制及全流程解析

三菱FX3U三轴伺服电机与威纶通触摸屏的程序编写方法及其应用。主要内容涵盖伺服电机主控程序、触摸屏程序、轴点动、回零及定位程序、通讯模块程序以及威纶显示器程序的分析。通过对各个模块的深入探讨,帮助读者理解每个部分的功能和实现方式,确保机械运动控制的准确性、高效性和稳定性。此外,文章还提供了关于程序编写过程中可能遇到的问题及解决方案。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对三菱FX3U三轴伺服电机和威纶通触摸屏有实际操作需求的专业人士。 使用场景及目标:适用于工业自动化项目中,旨在提高对三菱FX3U三轴伺服电机和威纶通触摸屏的理解和应用能力,掌握模块化编程技巧,解决实际工程中的编程难题。 其他说明:文中不仅讲解了各模块的具体实现细节,还强调了程序的安全性和可靠性,为项目的成功实施提供了有力的支持。
recommend-type

Pansophica开源项目:智能Web搜索代理的探索

Pansophica开源项目是一个相对较新且具有创新性的智能Web搜索代理,它突破了传统搜索引擎的界限,提供了一种全新的交互方式。首先,我们来探讨“智能Web搜索代理”这一概念。智能Web搜索代理是一个软件程序或服务,它可以根据用户的查询自动执行Web搜索,并尝试根据用户的兴趣、历史搜索记录或其他输入来提供个性化的搜索结果。 Pansophica所代表的不仅仅是搜索结果的展示,它还强调了一个交互式的体验,在动态和交互式虚拟现实中呈现搜索结果。这种呈现方式与现有的搜索体验有着根本的不同。目前的搜索引擎,如Google、Bing和Baidu等,多以静态文本和链接列表的形式展示结果。而Pansophica通过提供一个虚拟现实环境,使得搜索者可以“扭转”视角,进行“飞行”探索,以及“弹网”来浏览不同的内容。这种多维度的交互方式使得信息的浏览变得更加快速和直观,有望改变用户与网络信息互动的方式。 接着,我们关注Pansophica的“开源”属性。所谓开源,指的是软件的源代码可以被公众获取,任何个人或组织都可以自由地使用、学习、修改和分发这些代码。开源软件通常由社区进行开发和维护,这样的模式鼓励了协作创新并减少了重复性劳动,因为全世界的开发者都可以贡献自己的力量。Pansophica项目作为开源软件,意味着其他开发者可以访问和使用其源代码,进一步改进和扩展其功能,甚至可以为Pansophica构建新的应用或服务。 最后,文件名称“Pansophica-src-1.3”表明了我们讨论的特定版本的Pansophica开源代码。数字“1.3”很可能指的是该版本号,表明这是Pansophica项目的第1.3个公开版本。这个版本号对于开发者来说很重要,因为它可以帮助他们追踪更新的进度、比较版本间的差异以及选择最适合其项目的版本。 综合以上信息,Pansophica开源项目不仅在搜索代理领域引入了创新的交互方式,而且通过开源的方式,提供了技术共享和协作的可能性。对于IT行业来说,开源项目是推动技术发展的重要力量,它激发了社区的活力,促进了知识的传播和技术的进步。通过构建一个开源社区,Pansophica可以吸引来自世界各地的开发者和研究人员,共同探索如何将搜索技术与交互式虚拟现实技术结合起来,为用户带来更加丰富和有效的信息检索体验。同时,Pansophica的开源性质也使其更容易适应未来技术的发展,随着社区的不断贡献和反馈,这一平台有望在功能和性能上得到持续的优化和增强。
recommend-type

跨平台内容提取无忧:coze工作流应对社交媒体挑战

# 1. 社交媒体内容提取的必要性与挑战 ## 1.1 内容提取的必要性 在数字时代,社交媒体内容是信息与数据流动的主干道,公司、个人和研究者都在寻求从这些信息中提取价值。无论是为了市场趋势分析、品牌监控、消费者洞察还是公共舆论监测,有效的社交媒体内容提取变得至关重要。这不仅有助于企业做出数据驱动的决策,也能使个人更好地理
recommend-type

vrrp主设备发送的免费arp

<think>好的,我现在需要回答用户关于VRRP主设备发送免费ARP的目的和工作原理的问题。首先,我得回忆一下VRRP的基本概念和工作机制。VRRP,虚拟路由冗余协议,主要用于在局域网中提供默认网关的冗余备份,确保网络的高可用性。主设备(Master)负责转发流量,而备用设备(Backup)则在主设备故障时接管工作。 用户的问题集中在主设备发送免费ARP的目的和机制上。根据引用[2],免费ARP用于通知下游设备虚拟MAC地址的变更。当主设备被选举出来后,它需要让局域网内的其他设备知道虚拟IP对应的MAC地址已经指向自己,这样流量才会被正确路由到主设备。免费ARP的作用应该就是更新这些设备的
recommend-type

为Ghost博客平台打造的Meteor流星包装使用指南

从给定文件信息中,我们可以提炼出以下IT知识点: ### 标题知识点:流星Ghost软件包 1. **流星Ghost软件包的用途**:流星Ghost软件包是专为Ghost博客平台设计的流星(Meteor)应用程序。流星是一个开源的全栈JavaScript平台,用于开发高性能和易于编写的Web应用程序。Ghost是一个开源博客平台,它提供了一个简单且专业的写作环境。 2. **软件包的作用**:流星Ghost软件包允许用户在流星平台上轻松集成Ghost博客。这样做的好处是可以利用流星的实时特性以及易于开发和部署的应用程序框架,同时还能享受到Ghost博客系统的便利和美观。 ### 描述知识点:流星Ghost软件包的使用方法 1. **软件包安装方式**:用户可以通过流星的命令行工具添加名为`mrt:ghost`的软件包。`mrt`是流星的一个命令行工具,用于添加、管理以及配置软件包。 2. **初始化Ghost服务器**:描述中提供了如何在服务器启动时运行Ghost的基本代码示例。这段代码使用了JavaScript的Promise异步操作,`ghost().then(function (ghostServer) {...})`这行代码表示当Ghost服务器初始化完成后,会在Promise的回调函数中提供一个Ghost服务器实例。 3. **配置Ghost博客**:在`then`方法中,首先会获取到Ghost服务器的配置对象`config`,用户可以在此处进行自定义设置,例如修改主题、配置等。 4. **启动Ghost服务器**:在配置完成之后,通过调用`ghostServer.start()`来启动Ghost服务,使其能够处理博客相关的请求。 5. **Web浏览器导航**:一旦流星服务器启动并运行,用户便可以通过Web浏览器访问Ghost博客平台。 ### 标签知识点:JavaScript 1. **JavaScript作为流星Ghost软件包的开发语言**:标签指出流星Ghost软件包是使用JavaScript语言开发的。JavaScript是一种在浏览器端广泛使用的脚本语言,它也是流星平台的基础编程语言。 2. **流星和Ghost共同使用的语言**:JavaScript同样也是Ghost博客平台的开发语言。这表明流星Ghost软件包可以无缝集成,因为底层技术栈相同。 ### 压缩包子文件的文件名称列表知识点:meteor-ghost-master 1. **版本控制和软件包结构**:文件名称`meteor-ghost-master`暗示了该软件包可能托管在像GitHub这样的版本控制系统上。文件名中的`master`通常指的是主分支或主版本。 2. **软件包的目录结构**:通过文件名称可以推断出该软件包可能拥有一个标准的流星软件包结构,包含了初始化、配置、运行等必要的模块和文件。 3. **软件包的维护状态**:由于文件名没有包含特定的版本号,我们无法直接得知软件包的最新更新情况。通常,软件包维护者会将最新的版本代码放在`master`分支上。 ### 总结 流星Ghost软件包提供了一个有效的解决方案,使得流星平台的开发者能够在他们的应用中添加Ghost博客功能。软件包的使用简便,通过流星的命令行工具安装,并通过JavaScript代码配置和启动Ghost服务。通过流星Ghost软件包,开发者能够享受流星的实时特性以及Ghost博客系统的便利性。此外,软件包的命名和结构也暗示了其维护和版本控制的模式,有助于开发者更好地理解如何使用和维护这一软件包。
recommend-type

抖音标题生成自动化:用coze工作流释放创意

# 1. 抖音标题生成自动化的重要性 随着社交媒体平台的崛起,内容的吸引力很大程度上取决于标题的创意与精准性。抖音作为一个日活亿级的短视频平台,高质量的标题能够有效提高视频的点击率,增加内容的传播。但是,人工撰写标题不仅耗时耗力,而且很难做到快速响应热点,自动化标题生成工具应运而生。coze工作流,作为一种实现自动化生成抖音标题的工具,其重要性不言而喻。它能够利用大数据分析和机器学习技术,提高标题的吸引
recommend-type

spss消费结构因子分析

<think>好的,我现在需要帮助用户在SPSS中进行消费结构的因子分析。首先,我要回忆一下因子分析的基本步骤和SPSS的操作流程。用户可能对SPSS不太熟悉,所以步骤要详细,同时需要结合他们提供的引用内容,特别是引用[2]中的适用条件和检验方法。 首先,用户提到了消费结构的数据,这可能包括多个变量,如食品、住房、交通等支出。因子分析适用于这种情况,可以降维并找出潜在因子。根据引用[2],需要检查样本量是否足够,变量间是否有相关性,以及KMO和Bartlett检验的结果。 接下来,我需要按照步骤组织回答:数据准备、适用性检验、因子提取、因子旋转、命名解释、计算得分。每个步骤都要简明扼要,说
recommend-type

OpenMediaVault的Docker映像:快速部署与管理指南

根据提供的文件信息,我们将详细讨论与标题和描述中提及的Docker、OpenMediaVault以及如何部署OpenMediaVault的Docker镜像相关的一系列知识点。 首先,Docker是一个开源的应用容器引擎,允许开发者打包应用及其依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口(类似 iPhone 的 app)。 OpenMediaVault是一个基于Debian的NAS(网络附加存储)解决方案。它专为家庭或小型办公室提供文件共享、网络附加存储以及打印服务。它提供了一个易用的Web界面,通过这个界面用户可以管理服务器配置、网络设置、用户权限、文件服务等。 在描述中提到了一些Docker命令行操作: 1. `git clone`:用于克隆仓库到本地,这里的仓库指的是“docker-images-openmedivault”。 2. `docker build -t omv`:这是一个构建Docker镜像的命令,其中`-t`参数用于标记镜像名称和标签,这里是标记为“omv”。 3. `docker run`:运行一个容器实例,`-t`参数用于分配一个伪终端,`-i`参数用于交互式操作,`-p 80:80`则是将容器的80端口映射到宿主机的80端口。 启动服务的部分涉及OpenMediaVault的配置和初始化: - ssh服务:用于远程登录到服务器的协议。 - php5-fpm:是PHP的一个FastCGI实现,用于加速PHP的运行。 - nginx:是一个高性能的HTTP和反向代理服务器,常用于优化静态内容的分发。 - openmediavault引擎:指的是OpenMediaVault的核心服务。 - rrdcached:用于收集和缓存性能数据,这些数据可以被rrdtool图形化工具读取。 - collectd:是一个守护进程,用于收集系统性能和提供各种存储方式和传输方式来存储所收集的数据。 为了访问服务,需要在浏览器中输入"http:// IP_OF_DOCKER",其中`IP_OF_DOCKER`指的是运行Docker容器的主机IP地址。 描述中还提到了一个步骤:“在System-> Network-> Interfaces中添加带有dhcp的eth0”,这指的是需要在OpenMediaVault的Web管理界面中配置网络接口。`eth0`是网络接口的名称,通常代表第一个以太网接口。DHCP(动态主机配置协议)是一种自动为网络中的设备分配IP地址的协议,这样设备就可以连接网络并开始通信,无需手动配置IP地址。 【压缩包子文件的文件名称列表】中的“docker-images-openmediavault-master”暗示了这是一个包含Docker镜像文件的代码仓库。通常,“master”分支是代码的主分支,包含了代码库中最新且通常是最稳定的版本。用户可以通过克隆该仓库到本地来获取所有相关的Dockerfile、配置脚本及依赖文件,以便能够自行构建和运行OpenMediaVault的Docker镜像。 综上所述,这些知识点涵盖了从基本的Docker概念、Docker命令行操作、OpenMediaVault服务启动和管理,到具体的网络配置及Docker仓库操作,都是进行Docker化OpenMediaVault部署的关键步骤。
recommend-type

小红书文案提取一步到位:coze工作流操作全攻略

# 1. coze工作流概述 工作流系统是企业信息化和数字化转型的核心组件之一,它通过自动化流程管理提升效率,确保业务流程的顺畅执行。coze工作流作为当前市场上较为先进的工作流解决方案,它不仅仅是一套软件工具,更是一个集成化的平台,旨在通过流程自动化和智能化提升企业运营效率。 coze工作流的引入不仅有助于标准化和优化企业的业务流程,还可以通过可配置的流程设计,满足不同部门的特定需求。在组织的业务流程中
recommend-type

戴尔R630设置来电自动开机

<think>嗯,用户需要设置Dell R630服务器在断电恢复后自动开机。这个问题很实用,特别是对于托管在机房或需要远程管理的服务器来说,电源恢复后自动启动能减少运维压力。 从用户提到的R630型号来看,这是Dell PowerEdge系列的主流机型,设置方法应该和其他同代服务器类似。用户可能遇到意外断电后需要手动开机的情况,这会影响服务可用性。 我回忆Dell服务器的电源管理逻辑:主要有两个关键设置点。首先是BIOS里的电源恢复策略,选项包括"保持关机"、"自动开机"和"恢复断电前状态"。其次是iDRAC远程管理卡里的设置,这个更灵活但需要配置网络。 用户可能不熟悉服务器管理,所以需