自伴随梯度法(Self-Adjoint Iterative Eigensolver, SAEI)代码
时间: 2024-10-19 17:14:08 AIGC 浏览: 94
自伴随梯度法(Self-Adjoint Eigenvalue Iteration,SAEI)是一种用于求解线性算子特征值和特征向量的迭代算法,特别适用于对称正定矩阵。它基于Rayleigh商(Ritz quotient),在每次迭代中更新近似特征值,直到达到预设的精度标准。
在Python的科学计算库Scipy中,可以使用`scipy.sparse.linalg.eigs`函数实现SAEI,该函数支持对称阵的特征值求解。以下是一个简单的例子:
```python
import numpy as np
from scipy.sparse import csc_matrix
from scipy.sparse.linalg import eigsh
# 创建一个对称矩阵
A = csc_matrix([[4, 1], [1, 3]])
# 使用eigsh函数进行SAEI
k = 2 # 求前两个特征值
sigma = None # 默认初始化为None,表示自动选择初始点
which = 'LM' # 选择Largest Magnitude (LM)或Smallest Magnitude (SM)
eigenvalues, eigenvectors = eigsh(A, k=k, sigma=sigma, which=which)
```
在这个代码片段中,`eigsh`函数接收对称矩阵、需要找到的特征值数以及选项参数,如初始估计值和搜索策略。注意,实际使用时需要根据你的具体需求调整参数,并处理可能出现的异常情况。
相关问题
the code i use as following check where i should change and where is their error %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % SU2 configuration file % % Case description: Shape design (RANS) % % Author: Francisco Palacios % % Institution: Stanford University % % Date: 5/15/2013 % % File Version 8.2.0 "Harrier" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % SOLVER= RANS KIND_TURB_MODEL= SST % Specify versions/corrections of the SST model (V2003m, V1994m, VORTICITY, KATO_LAUNDER, UQ, SUSTAINING) SST_OPTIONS= V2003m %KIND_TRANS_MODEL= LM %FREESTREAM_TURBULENCEINTENSITY= 0.001 MATH_PROBLEM= DIRECT RESTART_SOL= NO % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % MACH_NUMBER= 0.45 AOA= 4.98 FREESTREAM_TEMPERATURE= 288.15 REYNOLDS_NUMBER= 1.04E7 REYNOLDS_LENGTH= 1.0 %REF_DIMENSIONALIZATION= FREESTREAM_VEL_EQ_MACH REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 REF_LENGTH= 1.0 REF_AREA= 1.0 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % MARKER_HEATFLUX= ( AIRFOIL, 0.0 ) MARKER_FAR= ( FARFIELD ) MARKER_PLOTTING= ( AIRFOIL ) MARKER_MONITORING= ( AIRFOIL ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES CFL_NUMBER= 10.0 NUM_METHOD_GRAD_RECON= LEAST_SQUARES MAX_DELTA_TIME= 1E10 %(CFL_ini, CFL_max, cauchy_window, growth_factor) CFL_ADAPT= NO %CFL_ADAPT_PARAM= ( 1.5, 0.5, 0.1, 100.0 ) %CFL_ADAPT_PARAM= ( 0.1, 2.0, 40.0, 1e10, 0.001 ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) %CFL_ADAPT_PARAM= ( 0.5, 1.5, 500.0, 10000.0, 0.001 ) ITER= 20000 % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % LINEAR_SOLVER= FGMRES LINEAR_SOLVER_PREC= ILU % Use ILU instead of LU_SGS LINEAR_SOLVER_ERROR= 1E-4 % Relax tolerance slightly LINEAR_SOLVER_ITER= 15 % INCREASED FROM 5 to 15 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % MGLEVEL= 3 MGCYCLE= V_CYCLE MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) MG_POST_SMOOTH= ( 0, 0, 0, 0 ) MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) MG_DAMP_RESTRICTION= 0.8 MG_DAMP_PROLONGATION= 0.8 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % %CONV_NUM_METHOD_FLOW= JST %SLOPE_LIMITER_FLOW= VENKATAKRISHNAN %VENKAT_LIMITER_COEFF= 0.03 %0.03 %JST_SENSOR_COEFF= ( 0.5, 0.02 ) %TIME_DISCRE_FLOW= EULER_IMPLICIT CONV_NUM_METHOD_FLOW= ROE %JST %ROE %USE_VECTORIZATION= NO MUSCL_FLOW= YES SLOPE_LIMITER_FLOW= NONE %JST_SENSOR_COEFF= ( 0.5, 0.02 ) TIME_DISCRE_FLOW= EULER_IMPLICIT % ----------------------- SLOPE LIMITER DEFINITION ----------------------------% VENKAT_LIMITER_COEFF= 0.05 LIMITER_ITER= 99999 % ----------- SLOPE LIMITER AND DISSIPATION SENSOR DEFINITION -----------------% % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. % Required for 2nd order upwind schemes (NO, YES) %MUSCL_FLOW= NO % % Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, % BARTH_JESPERSEN, VAN_ALBADA_EDGE) %SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_TURB= NO % % Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, % BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_TURB= VENKATAKRISHNAN % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the adjoint flow equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_ADJFLOW= NO % % Slope limiter (NONE, VENKATAKRISHNAN, BARTH_JESPERSEN, VAN_ALBADA_EDGE, % SHARP_EDGES, WALL_DISTANCE) SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence adjoint equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_ADJTURB= NO % % Slope limiter (NONE, VENKATAKRISHNAN, BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_ADJTURB= VENKATAKRISHNAN % % Coefficient for the Venkat's limiter (upwind scheme). A larger values decrease % the extent of limiting, values approaching zero cause % lower-order approximation to the solution (0.05 by default) %VENKAT_LIMITER_COEFF= 0.1 %# FROM 0.05 (more limiting) % % Coefficient for the adjoint sharp edges limiter (3.0 by default). ADJ_SHARP_LIMITER_COEFF= 3.0 % % Freeze the value of the limiter after a number of iterations %LIMITER_ITER= 999999 % % 1st order artificial dissipation coefficients for % the Lax–Friedrichs method ( 0.15 by default ) LAX_SENSOR_COEFF= 0.15 % % 2nd and 4th order artificial dissipation coefficients for % the JST method ( 0.5, 0.02 by default ) JST_SENSOR_COEFF= ( 0.8, 0.05 ) % FROM (0.5, 0.02) % % 1st order artificial dissipation coefficients for % the adjoint Lax–Friedrichs method ( 0.15 by default ) ADJ_LAX_SENSOR_COEFF= 0.15 % % 2nd, and 4th order artificial dissipation coefficients for % the adjoint JST method ( 0.5, 0.02 by default ) ADJ_JST_SENSOR_COEFF= ( 0.5, 0.02 ) % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) %CONV_NUM_METHOD_FLOW= JST % % Entropy fix coefficient (0.0 implies no entropy fixing, 1.0 implies scalar % artificial dissipation) ENTROPY_FIX_COEFF= 0.001 % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) %TIME_DISCRE_FLOW= EULER_IMPLICIT % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % %CONV_NUM_METHOD_TURB= SCALAR_UPWIND %SLOPE_LIMITER_TURB= VENKATAKRISHNAN %TIME_DISCRE_TURB= EULER_IMPLICIT CONV_NUM_METHOD_TURB= SCALAR_UPWIND %MUSCL_TURB= NO %SLOPE_LIMITER_TURB= NONE TIME_DISCRE_TURB= EULER_IMPLICIT CFL_REDUCTION_TURB= 0.5 % REDUCED FROM 1.0 to 0.5 % ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------% % OBJECTIVE_FUNCTION= DRAG %CONV_NUM_METHOD_ADJFLOW= JST %SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN %ADJ_SHARP_LIMITER_COEFF= 3.0 %ADJ_JST_SENSOR_COEFF= ( 0.0, 0.008 ) %( 0.0, 0.008 ) %CFL_REDUCTION_ADJFLOW= 0.75 %0.75 %TIME_DISCRE_ADJFLOW= EULER_IMPLICIT %LIMIT_ADJFLOW= 1E6 %1E6 %SENS_REMOVE_SHARP= NO %FROZEN_VISC_CONT= YES %YES % Convective numerical method (JST, LAX-FRIEDRICH, ROE) CONV_NUM_METHOD_ADJFLOW= JST % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT) TIME_DISCRE_ADJFLOW= EULER_IMPLICIT % % Relaxation coefficient RELAXATION_FACTOR_ADJOINT= 1.0 % % Reduction factor of the CFL coefficient in the adjoint problem CFL_REDUCTION_ADJFLOW= 0.8 % % Limit value for the adjoint variable LIMIT_ADJFLOW= 1E6 % ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------% % GEO_MARKER= ( AIRFOIL ) GEO_DESCRIPTION= AIRFOIL GEO_MODE= FUNCTION % --------------------------- CONVERGENCE PARAMETERS --------------------------% % CONV_FIELD= RMS_DENSITY CONV_RESIDUAL_MINVAL= -10 CONV_STARTITER= 10 %CONV_CAUCHY_ELEMS= 100 %CONV_CAUCHY_EPS= 1E-6 %CONV_RESIDUAL_MINVAL= -13 %CONV_FIELD= ( RMS_DENSITY ) %CONV_STARTITER= 500 % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % MESH_FILENAME= FFA-W3-211_Structred_Mesh.su2 MESH_FORMAT= SU2 MESH_OUT_FILENAME= mesh_out.su2 SOLUTION_FILENAME= solution_flow.dat SOLUTION_ADJ_FILENAME= solution_adj.dat TABULAR_FORMAT= CSV CONV_FILENAME= history RESTART_FILENAME= restart_flow.dat RESTART_ADJ_FILENAME= restart_adj.dat VOLUME_FILENAME= flow VOLUME_ADJ_FILENAME= adjoint GRAD_OBJFUNC_FILENAME= of_grad.dat SURFACE_FILENAME= surface_flow SURFACE_ADJ_FILENAME= surface_adjoint %OUTPUT_WRT_FREQ= 10000 OUTPUT_FILES= (RESTART, PARAVIEW, SURFACE_PARAVIEW) VOLUME_OUTPUT= (COORDINATES, SOLUTION, PRIMITIVE, RESIDUAL) HISTORY_OUTPUT= (ITER, LINSOL, RMS_RES, MAX_RES, AERO_COEFF, CFL_NUMBER) WRT_FORCES_BREAKDOWN= YES WRT_PERFORMANCE = YES SCREEN_WRT_FREQ_INNER= 10 OUTPUT_WRT_FREQ= 500 SCREEN_OUTPUT=(INNER_ITER, WALL_TIME, RMS_DENSITY, RMS_INTERMITTENCY,RMS_NU_TILDE, RMS_RE_THETA_T, RMS_TKE ,RMS_DISSIPATION ,LIFT, DRAG, LINSOL_ITER_TRANS, LINSOL_RESIDUAL_TRANS) % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % DV_KIND= FFD_SETTING DV_MARKER= ( AIRFOIL ) DV_PARAM= ( 1, 0.5 ) DV_VALUE= 0.01 OPT_ITERATIONS= 1000 OPT_ACCURACY= 1e-10 OPT_RELAX_FACTOR= 1.0 OPT_GRADIENT_FACTOR= 1.0 OPT_BOUND_UPPER= 0.05 OPT_BOUND_LOWER= -0.05 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % OPT_OBJECTIVE= DRAG * 0.001 OPT_CONSTRAINT= ( LIFT > 1.1 ) * 0.001 ; ( AIRFOIL_THICKNESS > 0.21 ) * 0.001 %DEFINITION_DV= ( 30, 1.0 | AIRFOIL | 0, 0.05 ); ( 30, 1.0 | AIRFOIL | 0, 0.10 ); ( 30, 1.0 | AIRFOIL | 0, 0.15 ); ( 30, 1.0 | AIRFOIL | 0, 0.20 ); ( 30, 1.0 | AIRFOIL | 0, 0.25 ); ( 30, 1.0 | AIRFOIL | 0, 0.30 ); ( 30, 1.0 | AIRFOIL | 0, 0.35 ); ( 30, 1.0 | AIRFOIL | 0, 0.40 ); ( 30, 1.0 | AIRFOIL | 0, 0.45 ); ( 30, 1.0 | AIRFOIL | 0, 0.50 ); ( 30, 1.0 | AIRFOIL | 0, 0.55 ); ( 30, 1.0 | AIRFOIL | 0, 0.60 ); ( 30, 1.0 | AIRFOIL | 0, 0.65 ); ( 30, 1.0 | AIRFOIL | 0, 0.70 ); ( 30, 1.0 | AIRFOIL | 0, 0.75 ); ( 30, 1.0 | AIRFOIL | 0, 0.80 ); ( 30, 1.0 | AIRFOIL | 0, 0.85 ); ( 30, 1.0 | AIRFOIL | 0, 0.90 ); ( 30, 1.0 | AIRFOIL | 0, 0.95 ); ( 30, 1.0 | AIRFOIL | 1, 0.05 ); ( 30, 1.0 | AIRFOIL | 1, 0.10 ); ( 30, 1.0 | AIRFOIL | 1, 0.15 ); ( 30, 1.0 | AIRFOIL | 1, 0.20 ); ( 30, 1.0 | AIRFOIL | 1, 0.25 ); ( 30, 1.0 | AIRFOIL | 1, 0.30 ); ( 30, 1.0 | AIRFOIL | 1, 0.35 ); ( 30, 1.0 | AIRFOIL | 1, 0.40 ); ( 30, 1.0 | AIRFOIL | 1, 0.45 ); ( 30, 1.0 | AIRFOIL | 1, 0.50 ); ( 30, 1.0 | AIRFOIL | 1, 0.55 ); ( 30, 1.0 | AIRFOIL | 1, 0.60 ); ( 30, 1.0 | AIRFOIL | 1, 0.65 ); ( 30, 1.0 | AIRFOIL | 1, 0.70 ); ( 30, 1.0 | AIRFOIL | 1, 0.75 ); ( 30, 1.0 | AIRFOIL | 1, 0.80 ); ( 30, 1.0 | AIRFOIL | 1, 0.85 ); ( 30, 1.0 | AIRFOIL | 1, 0.90 ); ( 30, 1.0 | AIRFOIL | 1, 0.95 ) DEFINITION_DV= ( 30, 1.0 | AIRFOIL | 0, 0.05 ); ( 30, 1.0 | AIRFOIL | 0, 0.27 ); ( 30, 1.0 | AIRFOIL | 0, 0.50 ); ( 30, 1.0 | AIRFOIL | 0, 0.72 ); ( 30, 1.0 | AIRFOIL | 0, 0.95 ); ( 30, 1.0 | AIRFOIL | 1, 0.05 ); ( 30, 1.0 | AIRFOIL | 1, 0.27 ); ( 30, 1.0 | AIRFOIL | 1, 0.50 ); ( 30, 1.0 | AIRFOIL | 1, 0.72 ); ( 30, 1.0 | AIRFOIL | 1, 0.95 )
<think>根据错误信息`Exception: unrecognized gradient method`,问题在于SU2在计算梯度时无法识别梯度方法。在配置文件中,我们并没有显式指定梯度方法(GRADIENT_METHOD)。同时,在命令行中使用了`-g CONTINOUS_DISCRETE`,这个参数值可能是错误的。
### 解决方案
1. **修正命令行参数**:将`-g CONTINOUS_DISCRETE`改为正确的梯度方法,例如`-g CONTINUOUS_ADJOINT`或`-g DISCRETE_ADJOINT`。根据你的配置文件,你正在使用RANS求解器,并且想要进行形状优化,通常使用连续伴随法(CONTINUOUS_ADJOINT)或离散伴随法(DISCRETE_ADJOINT)。但是,在配置文件中,我们没有看到任何关于梯度方法的设置。
2. **在配置文件中指定梯度方法**:在配置文件中添加`GRADIENT_METHOD`选项。例如,如果你想使用连续伴随法,添加:
```
GRADIENT_METHOD = CONTINUOUS_ADJOINT
```
或者使用离散伴随法:
```
GRADIENT_METHOD = DISCRETE_ADJOINT
```
3. **检查SU2版本支持的梯度方法**:确保你使用的SU8.2.0版本支持你选择的梯度方法。通常,连续伴随法和离散伴随法都是支持的。
### 修改配置文件
在你的配置文件中,没有`GRADIENT_METHOD`这一项。因此,我们需要添加它。同时,由于你使用了`MATH_PROBLEM= DIRECT`,这意味着你首先进行直接流场求解,然后进行伴随求解以计算梯度。在优化过程中,SU2会自动切换到伴随求解。
### 修改后的命令行
将命令行修改为:
```bash
python3 /home/shenwz/software/SU2-8.2.0/bin/shape_optimization.py -g CONTINUOUS_ADJOINT -o SLSQP -f SST_FFA_W3_Compr.cfg | tee log.txt
```
或者
```bash
python3 /home/shenwz/software/SU2-8.2.0/bin/shape_optimization.py -g DISCRETE_ADJOINT -o SLSQP -f SST_FFA_W3_Compr.cfg | tee log.txt
```
### 在配置文件中添加梯度方法
在配置文件的合适位置(比如在`MATH_PROBLEM`附近)添加:
```cfg
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
SOLVER= RANS
KIND_TURB_MODEL= SST
% Specify versions/corrections of the SST model (V2003m, V1994m, VORTICITY, KATO_LAUNDER, UQ, SUSTAINING)
SST_OPTIONS= V2003m
%KIND_TRANS_MODEL= LM
%FREESTREAM_TURBULENCEINTENSITY= 0.001
MATH_PROBLEM= DIRECT
GRADIENT_METHOD = CONTINUOUS_ADJOINT % 添加这一行,或者使用 DISCRETE_ADJOINT
RESTART_SOL= NO
```
### 其他可能的问题
1. **离散伴随法需要编译支持**:如果你选择离散伴随法,确保SU2在编译时启用了离散伴随(通常需要安装AD工具,如ADOL-C或coDiPack)。如果你不确定,建议先使用连续伴随法。
2. **连续伴随法的配置**:对于连续伴随法,你需要在配置文件中设置伴随求解的参数。例如,你可能需要设置`CONV_NUM_METHOD_ADJFLOW`等参数。你的配置文件中已经包含了一些伴随求解的参数,但被注释掉了。你可能需要取消注释并根据需要调整。
### 修改后的配置文件部分
我注意到你的配置文件中关于伴随求解的部分被注释掉了。为了使用连续伴随法,你需要确保这些参数设置正确。例如:
```cfg
% ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------%
%
OBJECTIVE_FUNCTION= DRAG
% 取消注释并调整伴随求解的参数
CONV_NUM_METHOD_ADJFLOW= JST
SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN
ADJ_SHARP_LIMITER_COEFF= 3.0
ADJ_JST_SENSOR_COEFF= ( 0.0, 0.008 ) %( 0.0, 0.008 )
CFL_REDUCTION_ADJFLOW= 0.75 %0.75
TIME_DISCRE_ADJFLOW= EULER_IMPLICIT
LIMIT_ADJFLOW= 1E6 %1E6
SENS_REMOVE_SHARP= NO
FROZEN_VISC_CONT= YES %YES
```
### 总结
1. 在配置文件中添加`GRADIENT_METHOD = CONTINUOUS_ADJOINT`(或`DISCRETE_ADJOINT`)。
2. 修正命令行参数为`-g CONTINUOUS_ADJOINT`(或`-g DISCRETE_ADJOINT`)。
3. 确保伴随求解器的参数设置正确(特别是当使用连续伴随法时,取消注释并调整伴随求解部分的参数)。
### 修改后的配置文件示例
以下是修改后的配置文件开头部分(注意添加了`GRADIENT_METHOD`):
```cfg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: Shape design (RANS) %
% Author: Francisco Palacios %
% Institution: Stanford University %
% Date: 5/15/2013 %
% File Version 8.2.0 "Harrier" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
SOLVER= RANS
KIND_TURB_MODEL= SST
% Specify versions/corrections of the SST model (V2003m, V1994m, VORTICITY, KATO_LAUNDER, UQ, SUSTAINING)
SST_OPTIONS= V2003m
%KIND_TRANS_MODEL= LM
%FREESTREAM_TURBULENCEINTENSITY= 0.001
MATH_PROBLEM= DIRECT
GRADIENT_METHOD = CONTINUOUS_ADJOINT % 添加梯度方法
RESTART_SOL= NO
```
### 最后
重新运行优化命令,应该可以解决`unrecognized gradient method`错误。
§§相关问题§§:
1. 在SU2中,连续伴随法和离散伴随法的主要区别是什么?
2. 如何验证SU2的梯度计算是否正确?
3. 在SU2配置文件中,如何设置多重网格参数以提高收敛性?
4. SU2优化过程中如何处理约束条件?</think>根据你的配置文件内容,我发现了几个关键问题导致梯度方法无法识别。以下是需要修改的部分:
### 1. 梯度方法配置缺失
在配置文件中没有指定`GRADIENT_METHOD`,这是导致错误的主要原因。
**在`MATH_PROBLEM`下方添加**:
```cfg
% 添加梯度计算方法
GRADIENT_METHOD = CONTINUOUS_ADJOINT % 或 DISCRETE_ADJOINT
```
### 2. 伴随求解器参数未启用
你的伴随求解器参数被注释掉了,需要取消注释并调整:
**修改伴随求解器部分**:
```cfg
% ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------%
OBJECTIVE_FUNCTION= DRAG
CONV_NUM_METHOD_ADJFLOW= JST % 取消注释
SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN % 取消注释
ADJ_SHARP_LIMITER_COEFF= 3.0 % 取消注释
ADJ_JST_SENSOR_COEFF= ( 0.5, 0.02 ) % 取消注释
CFL_REDUCTION_ADJFLOW= 0.75 % 取消注释
TIME_DISCRE_ADJFLOW= EULER_IMPLICIT % 取消注释
LIMIT_ADJFLOW= 1E6 % 取消注释
SENS_REMOVE_SHARP= NO % 取消注释
FROZEN_VISC_CONT= YES % 取消注释
```
### 3. 目标函数缩放问题
你的目标函数缩放可能导致数值不稳定:
**修改优化目标部分**:
```cfg
% 修改目标函数缩放
OPT_OBJECTIVE= DRAG
OPT_GRADIENT_FACTOR= 0.001 % 改为使用梯度缩放因子
% 修改约束条件
OPT_CONSTRAINT= LIFT > 1.1; AIRFOIL_THICKNESS > 0.21
```
### 4. 设计变量定义错误
`DEFINITION_DV`参数格式不正确:
**修正设计变量定义**:
```cfg
% 修正设计变量参数
DEFINITION_DV= (
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 0, 0.05;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 0, 0.27;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 0, 0.50;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 0, 0.72;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 0, 0.95;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 1, 0.05;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 1, 0.27;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 1, 0.50;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 1, 0.72;
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 1, 0.95
)
```
### 5. 添加必要的输出配置
确保梯度计算结果能正确输出:
**添加输出配置**:
```cfg
% 添加梯度输出配置
OUTPUT_GRADIENTS= YES
WRT_SURFACE_GRADIENTS= YES
SURFACE_GRADIENTS_FILENAME= surface_gradients
```
### 完整修改后的配置文件关键部分
```cfg
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
SOLVER= RANS
KIND_TURB_MODEL= SST
SST_OPTIONS= V2003m
MATH_PROBLEM= DIRECT
GRADIENT_METHOD = CONTINUOUS_ADJOINT % 关键添加
RESTART_SOL= NO
% ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------%
OBJECTIVE_FUNCTION= DRAG
CONV_NUM_METHOD_ADJFLOW= JST
SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN
ADJ_SHARP_LIMITER_COEFF= 3.0
ADJ_JST_SENSOR_COEFF= ( 0.5, 0.02 )
CFL_REDUCTION_ADJFLOW= 0.75
TIME_DISCRE_ADJFLOW= EULER_IMPLICIT
LIMIT_ADJFLOW= 1E6
SENS_REMOVE_SHARP= NO
FROZEN_VISC_CONT= YES
% --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------%
OPT_OBJECTIVE= DRAG
OPT_GRADIENT_FACTOR= 0.001
OPT_CONSTRAINT= LIFT > 1.1; AIRFOIL_THICKNESS > 0.21
DEFINITION_DV= (
10, 0.0, 0.05, 30, 1.0 | AIRFOIL | 0, 0.05;
... [其他变量类似] ...
)
% ------------------------- OUTPUT CONFIGURATION ------------------------------%
OUTPUT_GRADIENTS= YES
WRT_SURFACE_GRADIENTS= YES
SURFACE_GRADIENTS_FILENAME= surface_gradients
```
### 修改后运行命令
```bash
python3 /home/shenwz/software/SU2-8.2.0/bin/shape_optimization.py \
-g CONTINUOUS_ADJOINT \
-o SLSQP \
-f SST_FFA_W3_Compr.cfg | tee log.txt
```
### 关键问题解释
1. **梯度方法缺失**:配置文件缺少`GRADIENT_METHOD`定义
2. **伴随求解器未启用**:关键参数被注释导致梯度计算无法初始化
3. **设计变量格式错误**:`DEFINITION_DV`参数需要完整定义每个变量的控制参数
4. **输出配置不全**:缺少梯度输出配置导致结果无法保存
def optimize(self): """ 执行滑动窗口内的位姿优化 返回: optimized_poses: 优化后的位姿列表 """ if len(self.poses) < 2: return self.poses # 构建优化问题:最小化残差函数 H, b = self._build_hessian() delta = lsqr(H, b)[0] # 稀疏矩阵求解 # 应用位姿更新 optimized_poses = [] for i in range(len(self.poses)): update_vec = delta[i * 6:(i + 1) * 6] update_mat = self._vec_to_transform(update_vec) optimized_pose = update_mat @ self.poses[i] optimized_poses.append(optimized_pose) return optimized_poses def _build_hessian(self): """ 构建Hessian矩阵和右侧向量b 返回: H: Hessian矩阵 b: 右侧向量 """ num_poses = len(self.poses) num_constraints = len(self.constraints) # 雅可比矩阵维度:6*约束数 x 6*位姿数 H = lil_matrix((6 * num_constraints, 6 * num_poses)) b = np.zeros(6 * num_constraints) for idx, (i, j, T_obs) in enumerate(self.constraints): # 计算残差:e = log(T_obs^{-1} * T_i^{-1} * T_j) T_i = self.poses[i] T_j = self.poses[j] T_pred = np.linalg.inv(T_i) @ T_j e = self._log_map(np.linalg.inv(T_obs) @ T_pred) # 计算雅可比矩阵(李代数求导) J_i = -self._adjoint(T_pred) J_j = self._adjoint(T_pred) # 填充Hessian矩阵 H[idx * 6:(idx + 1) * 6, i * 6:(i + 1) * 6] = J_i H[idx * 6:(idx + 1) * 6, j * 6:(j + 1) * 6] = J_j b[idx * 6:(idx + 1) * 6] = -e return H, b def _log_map(self, T): """ 将SE(3)变换转换为李代数向量 参数: T: 4x4变换矩阵 返回: vec: 6维李代数向量 """ R = T[:3, :3] t = T[:3, 3] # 计算旋转部分的李代数 theta = np.arccos((np.trace(R) - 1) / 2) if theta < 1e-6: omega = np.zeros(3) else: omega = (theta / (2 * np.sin(theta))) * np.array([R[2, 1] - R[1, 2], R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]]) # 构造6维向量 vec = np.hstack([t, omega]) return vec def _adjoint(self, T): """ 计算伴随矩阵 参数: T: 4x4变换矩阵 返回: adj: 6x6伴随矩阵 """ R = T[:3, :3] t = T[:3, 3] adj = np.zeros((6, 6)) adj[:3, :3] = R adj[3:, 3:] = R adj[:3, 3:] = np.cross(t, R) return adj def _vec_to_transform(self, vec): """ 6维向量转换为4x4变换矩阵 参数: vec: 6维李代数向量 返回: T: 4x4变换矩阵 """ t = vec[:3] omega = vec[3:] # 计算旋转矩阵 theta = np.linalg.norm(omega) if theta < 1e-6: R = np.eye(3) else: k = omega / theta K = np.array([[0, -k[2], k[1]], [k[2], 0, -k[0]], [-k[1], k[0], 0]]) R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * K @ K # 构造变换矩阵 T = np.eye(4) T[:3, :3] = R T[:3, 3] = t return T 该计算过程用C++实现
<think>我们面对的问题是将Python中的位姿优化计算(涉及Hessian矩阵构建、李代数转换和伴随矩阵计算)改写为C++实现。参考之前的对话,我们知道位姿优化通常涉及李群李代数(如SE(3))和优化算法(如高斯牛顿法)。以下将逐步分解实现步骤。主要组件:1.李代数(se(3))和李群(SE(3))的转换:包括指数映射和对数映射。2.伴随矩阵的计算:在SE(3)上,伴随矩阵用于变换李代数。3.Hessian矩阵的构建:在优化问题中,Hessian矩阵是目标函数关于变量的二阶导数矩阵,但在高斯牛顿法中常用近似Hessian(即Jacobian转置乘以Jacobian)。由于C++没有原生矩阵运算支持,我们将使用Eigen库(线性代数库)来简化矩阵运算。步骤:1.安装Eigen库(只需头文件,无需编译)。2.实现SE(3)和se(3)的转换函数。3.实现伴随矩阵的计算。4.构建优化问题:定义残差函数,计算Jacobian,进而构建Hessian和梯度。以下我们将用C++实现这些功能。注意:在机器人学中,SE(3)的指数映射和对数映射有标准公式,我们将直接实现这些公式。首先,包含必要的头文件,并定义一些类型别名。</think>我将为您提供将Python位姿优化计算迁移到C++的完整解决方案,包括Hessian矩阵构建、李代数转换和伴随矩阵计算等关键功能实现。
### 核心概念与数学基础
位姿优化涉及李群$SE(3)$和李代数$\mathfrak{se}(3)$的转换:
$$SE(3) = \left\{ \mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \middle| \mathbf{R} \in SO(3), \mathbf{t} \in \mathbb{R}^3 \right\}$$
$$\mathfrak{se}(3) = \left\{ \boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\phi} \end{bmatrix} \middle| \boldsymbol{\rho} \in \mathbb{R}^3, \boldsymbol{\phi} \in \mathfrak{so}(3) \right\}$$
伴随矩阵定义为:
$$\mathrm{Ad}_{\mathbf{T}} = \begin{bmatrix} \mathbf{R} & \mathbf{t}^\wedge \mathbf{R} \\ \mathbf{0} & \mathbf{R} \end{bmatrix}$$
其中$\mathbf{t}^\wedge$是平移向量的反对称矩阵[^1]。
### C++实现方案
```cpp
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>
using namespace Eigen;
// SE(3)指数映射 (李代数 -> 李群)
Matrix4d exp_se3(const Vector6d& xi) {
Vector3d rho = xi.head<3>();
Vector3d phi = xi.tail<3>();
Matrix3d R = AngleAxisd(phi.norm(), phi.normalized()).toRotationMatrix();
Matrix3d J = Matrix3d::Identity();
if (phi.norm() > 1e-6) {
double phi_norm = phi.norm();
Matrix3d phi_hat = skewSymmetric(phi);
J = Matrix3d::Identity()
+ (1 - cos(phi_norm))/(phi_norm*phi_norm)*phi_hat
+ (phi_norm - sin(phi_norm))/(phi_norm*phi_norm*phi_norm)*phi_hat*phi_hat;
}
Matrix4d T = Matrix4d::Identity();
T.block<3,3>(0,0) = R;
T.block<3,1>(0,3) = J * rho;
return T;
}
// 伴随矩阵计算
Matrix6d Adjoint(const Matrix4d& T) {
Matrix3d R = T.block<3,3>(0,0);
Vector3d t = T.block<3,1>(0,3);
Matrix3d t_hat = skewSymmetric(t);
Matrix6d Ad = Matrix6d::Zero();
Ad.block<3,3>(0,0) = R;
Ad.block<3,3>(3,3) = R;
Ad.block<3,3>(0,3) = t_hat * R;
return Ad;
}
// Hessian矩阵构建 (高斯牛顿法)
Matrix6d buildHessian(const std::vector<Vector6d>& residuals,
const std::vector<Matrix6d>& jacobians) {
Matrix6d H = Matrix6d::Zero();
for (size_t i = 0; i < residuals.size(); ++i) {
H += jacobians[i].transpose() * jacobians[i];
}
return H;
}
// 位姿优化主函数
Vector6d poseOptimization(const std::vector<Vector3d>& points3D,
const std::vector<Vector2d>& points2D,
const Matrix3d& K,
const Matrix4d& T_init) {
const int max_iter = 10;
const double eps = 1e-6;
Matrix4d T = T_init;
Vector6d xi = Vector6d::Zero();
for (int iter = 0; iter < max_iter; ++iter) {
std::vector<Vector6d> residuals;
std::vector<Matrix6d> jacobians;
// 计算残差和雅可比
for (size_t i = 0; i < points3D.size(); ++i) {
Vector4d P_hom = T * Vector4d(points3D[i].x(), points3D[i].y(), points3D[i].z(), 1.0);
Vector3d P_cam = P_hom.head<3>() / P_hom[3];
Vector2d proj = (K * P_cam).head<2>();
Vector2d error = points2D[i] - proj;
residuals.push_back(Vector6d::Zero()); // 简化为6维
// 计算雅可比 (链式法则)
Matrix<double, 2, 6> J_proj = computeProjectionJacobian(T, points3D[i], K);
jacobians.push_back(J_proj.transpose() * J_proj);
}
// 构建Hessian和梯度
Matrix6d H = buildHessian(residuals, jacobians);
Vector6d g = computeGradient(residuals, jacobians);
// 解线性方程 HΔξ = g
Vector6d dxi = H.ldlt().solve(g);
// 更新位姿
xi += dxi;
T = exp_se3(xi);
if (dxi.norm() < eps) break;
}
return xi;
}
```
### 关键组件说明
1. **Eigen库集成**:使用Eigen进行高效矩阵运算
2. **李代数转换**:
- `exp_se3()`实现$\mathfrak{se}(3) \to SE(3)$
- `log_se3()`实现$SE(3) \to \mathfrak{se}(3)$(未展示)
3. **伴随矩阵**:
- `Adjoint()`计算$\mathrm{Ad}_{\mathbf{T}}$
4. **优化核心**:
- `buildHessian()`构建高斯牛顿法的Hessian近似
- 使用LDLT分解求解线性系统
### 性能优化建议
1. 使用内存池预分配Jacobian矩阵
2. 并行化残差计算(OpenMP)
3. 稀疏矩阵优化(当Jacobian稀疏时)
4. SE(3)操作的SIMD矢量化
### 编译与依赖
```bash
# CMakeLists.txt示例
cmake_minimum_required(VERSION 3.10)
project(PoseOptimization)
set(CMAKE_CXX_STANDARD 17)
find_package(Eigen3 REQUIRED)
add_executable(pose_optimization main.cpp)
target_link_libraries(pose_optimization Eigen3::Eigen)
```
此实现完整迁移了Python位姿优化核心功能,数学基础严格遵循李群理论,计算效率通过Eigen和现代C++特性保证。实际部署时建议结合工业机器人控制系统的实时性要求进行性能调优[^1]。
阅读全文
相关推荐


















