活动介绍

arm-linux-g++.br_real: error: unrecognized command line option ‘-mmmx’ 如何解决,交叉编译时报错

时间: 2024-04-18 13:24:13 浏览: 779
您好!对于该错误,可能是由于使用了支持的命令行选项导致的。'-mmmx'选项是为x86架构设计的,不适用于ARM架构。 要解决这个问题,您可以尝试以下几种方法: 1. 检查编译器版本:确保您使用的是适用于ARM架构的交叉编译器。您可以通过运行`arm-linux-g++ --version`来检查版本信息。如果版本不正确或过旧,尝试更新到最新版本的交叉编译器。 2. 检查编译选项:查看您的编译选项,确保没有错误地包含了'-mmmx'选项。您可以检查您的构建脚本或Makefile中的编译选项,并将其删除或注释掉。 3. 使用正确的编译选项:ARM架构通常使用'-march='和'-mcpu='选项来指定目标处理器架构和CPU型号。您可以根据您的目标处理器类型选择适当的选项。例如,对于ARM Cortex-A系列处理器,可以使用'-march=armv7-a'和'-mcpu=cortex-a9'等选项。 4. 检查交叉编译工具链:确保您正确设置了交叉编译工具链。交叉编译工具链应该是针对ARM架构的,而不是针对x86架构的。 希望这些提示能帮助您解决问题!如果问题仍然存在,请提供更多的细节和错误信息,以便我能够更好地帮助您。
相关问题

在make prepare时报错aarch64-none-linux-gnu-gcc: error: unrecognized argument in option '-mcmodel=kernel' aarch64-none-linux-gnu-gcc: note: valid arguments to '-mcmodel=' are: large small tiny aarch64-none-linux-gnu-gcc: error: unrecognized command-line option '-mno-sse'; did you mean '-fno-dse'? aarch64-none-linux-gnu-gcc: error: unrecognized command-line option '-mno-mmx' aarch64-none-linux-gnu-gcc: error: unrecognized command-line option '-mno-sse2' aarch64-none-linux-gnu-gcc: error: unrecognized command-line option '-mno-3dnow' aarch64-none-linux-gnu-gcc: error: unrecognized command-line option '-m64' aarch64-none-linux-gnu-gcc: error: unrecognized command-line option '-mno-red-zone' scripts/Makefile.build:273: recipe for target 'scripts/mod/empty.o' failed具体如何解决

这个错误可能是由于编译器版本不兼容或编译选项有误导致的。您可以尝试以下步骤来解决该问题: 1. 确认您使用的是正确版本的编译器。您可以尝试更新编译器或使用另一个版本的编译器。 2. 检查编译选项。在Makefile中,可能有一些选项需要根据您的编译器版本进行调整。 您可以尝试删除一些选项,或者添加一些适当的选项,例如: -mcmodel=large -mno-sse -fno-dse -mno-mmx -mno-sse2 -mno-3dnow -mno-red-zone 3. 检查您的内核配置。您可以尝试禁用CONFIG_STRICT_KERNEL_RWX选项,并重新编译内核。 希望这些解决方案可以帮助您解决问题。

usage: control_robot.py [-h] [--config_path str] [--robot str] [--robot.type {aloha,koch,koch_bimanual,moss,so101,so100,stretch,lekiwi}] [--robot.gripper_open_degree str] [--robot.max_relative_target str] [--robot.ip str] [--robot.port str] [--robot.video_port str] [--robot.cameras str] [--robot.calibration_dir str] [--robot.leader_arms str] [--robot.follower_arms str] [--robot.teleop_keys str] [--robot.mock str] [--control str] [--control.type {calibrate,teleoperate,record,replay,remote_robot}] [--control.arms str] [--control.teleop_time_s str] [--control.single_task str] [--policy str] [--control.policy.type {act,diffusion,pi0,smolvla,tdmpc,vqbet,pi0fast}] [--control.policy.replace_final_stride_with_dilation str] [--control.policy.pre_norm str] [--control.policy.dim_model str] [--control.policy.n_heads str] [--control.policy.dim_feedforward str] [--control.policy.feedforward_activation str] [--control.policy.n_encoder_layers str] [--control.policy.n_decoder_layers str] [--control.policy.use_vae str] [--control.policy.n_vae_encoder_layers str] [--control.policy.temporal_ensemble_coeff str] [--control.policy.kl_weight str] [--control.policy.optimizer_lr_backbone str] [--control.policy.drop_n_last_frames str] [--control.policy.use_separate_rgb_encoder_per_camera str] [--control.policy.down_dims str] [--control.policy.kernel_size str] [--control.policy.n_groups str] [--control.policy.diffusion_step_embed_dim str] [--control.policy.use_film_scale_modulation str] [--control.policy.noise_scheduler_type str] [--control.policy.num_train_timesteps str] [--control.policy.beta_schedule str] [--control.policy.beta_start str] [--control.policy.beta_end str] [--control.policy.prediction_type str] [--control.policy.clip_sample str] [--control.policy.clip_sample_range str] [--control.policy.num_inference_steps str] [--control.policy.do_mask_loss_for_padding str] [--control.policy.scheduler_name str] [--control.policy.attention_implementation str] [--control.policy.num_steps str] [--control.policy.train_expert_only str] [--control.policy.train_state_proj str] [--control.policy.optimizer_grad_clip_norm str] [--control.policy.vlm_model_name str] [--control.policy.load_vlm_weights str] [--control.policy.add_image_special_tokens str] [--control.policy.attention_mode str] [--control.policy.prefix_length str] [--control.policy.pad_language_to str] [--control.policy.num_expert_layers str] [--control.policy.num_vlm_layers str] [--control.policy.self_attn_every_n_layers str] [--control.policy.expert_width_multiplier str] [--control.policy.min_period str] [--control.policy.max_period str] [--control.policy.n_action_repeats str] [--control.policy.horizon str] [--control.policy.image_encoder_hidden_dim str] [--control.policy.state_encoder_hidden_dim str] [--control.policy.latent_dim str] [--control.policy.q_ensemble_size str] [--control.policy.mlp_dim str] [--control.policy.discount str] [--control.policy.use_mpc str] [--control.policy.cem_iterations str] [--control.policy.max_std str] [--control.policy.min_std str] [--control.policy.n_gaussian_samples str] [--control.policy.n_pi_samples str] [--control.policy.uncertainty_regularizer_coeff str] [--control.policy.n_elites str] [--control.policy.elite_weighting_temperature str] [--control.policy.gaussian_mean_momentum str] [--control.policy.max_random_shift_ratio str] [--control.policy.reward_coeff str] [--control.policy.expectile_weight str] [--control.policy.value_coeff str] [--control.policy.consistency_coeff str] [--control.policy.advantage_scaling str] [--control.policy.pi_coeff str] [--control.policy.temporal_decay_coeff str] [--control.policy.target_model_momentum str] [--control.policy.n_action_pred_token str] [--control.policy.action_chunk_size str] [--control.policy.vision_backbone str] [--control.policy.crop_shape str] [--control.policy.crop_is_random str] [--control.policy.pretrained_backbone_weights str] [--control.policy.use_group_norm str] [--control.policy.spatial_softmax_num_keypoints str] [--control.policy.n_vqvae_training_steps str] [--control.policy.vqvae_n_embed str] [--control.policy.vqvae_embedding_dim str] [--control.policy.vqvae_enc_hidden_dim str] [--control.policy.gpt_block_size str] [--control.policy.gpt_input_dim str] [--control.policy.gpt_output_dim str] [--control.policy.gpt_n_layer str] [--control.policy.gpt_n_head str] [--control.policy.gpt_hidden_dim str] [--control.policy.dropout str] [--control.policy.mlp_hidden_dim str] [--control.policy.offset_loss_weight str] [--control.policy.primary_code_loss_weight str] [--control.policy.secondary_code_loss_weight str] [--control.policy.bet_softmax_temperature str] [--control.policy.sequentially_select str] [--control.policy.optimizer_vqvae_lr str] [--control.policy.optimizer_vqvae_weight_decay str] [--control.policy.n_obs_steps str] [--control.policy.normalization_mapping str] [--control.policy.input_features str] [--control.policy.output_features str] [--control.policy.device str] [--control.policy.use_amp str] [--control.policy.chunk_size str] [--control.policy.n_action_steps str] [--control.policy.max_state_dim str] [--control.policy.max_action_dim str] [--control.policy.resize_imgs_with_padding str] [--control.policy.interpolate_like_pi str] [--control.policy.empty_cameras str] [--control.policy.adapt_to_pi_aloha str] [--control.policy.use_delta_joint_actions_aloha str] [--control.policy.tokenizer_max_length str] [--control.policy.proj_width str] [--control.policy.max_decoding_steps str] [--control.policy.fast_skip_tokens str] [--control.policy.max_input_seq_len str] [--control.policy.use_cache str] [--control.policy.freeze_vision_encoder str] [--control.policy.freeze_lm_head str] [--control.policy.optimizer_lr str] [--control.policy.optimizer_betas str] [--control.policy.optimizer_eps str] [--control.policy.optimizer_weight_decay str] [--control.policy.scheduler_warmup_steps str] [--control.policy.scheduler_decay_steps str] [--control.policy.scheduler_decay_lr str] [--control.policy.checkpoint_path str] [--control.policy.padding_side str] [--control.policy.precision str] [--control.policy.grad_clip_norm str] [--control.policy.relaxed_action_decoding str] [--control.warmup_time_s str] [--control.episode_time_s str] [--control.reset_time_s str] [--control.num_episodes str] [--control.video str] [--control.push_to_hub str] [--control.private str] [--control.tags str] [--control.num_image_writer_processes str] [--control.num_image_writer_threads_per_camera str] [--control.resume str] [--control.repo_id str] [--control.episode str] [--control.root str] [--control.fps str] [--control.play_sounds str] [--control.log_interval str] [--control.display_data str] [--control.viewer_ip str] [--control.viewer_port str] control_robot.py: error: unrecognized arguments: --control.local_files_only=true

<think>我们遇到了一个错误:在运行control_robot.py时,传递了一个未被识别的参数`--control.local_files_only=true`。 根据帮助信息(usage)中列出的参数,我们可以看到所有参数都是以`--`开头,并且分为不同的部分,例如`--robot`、`--control`等。 但是,在帮助信息中并没有列出`--control.local_files_only`这个参数,因此脚本无法识别它。 可能的原因: 1. 该参数确实不存在于当前版本的脚本中。 2. 参数名称拼写错误,或者应该属于其他部分(例如,可能是`--policy.local_files_only`,但帮助信息中也没有)。 3. 该参数可能是为某个特定功能预留的,但当前版本尚未实现或文档未更新。 解决方案: 1. 检查参数名称是否正确,特别是注意大小写(例如,是否应该是`--control.local-files-only`?但帮助信息中都是使用下划线)。 2. 查看脚本的最新文档或源代码,确认是否支持该参数。 3. 如果该参数不是必需的,可以尝试移除它。 根据帮助信息,我们注意到有一个参数是`--control`,但它后面需要跟一个字符串(str),而不是子参数。实际上,帮助信息中列出的参数结构是: --control.str ... 这样的形式,但实际上在帮助信息中是以`--control.`开头的多个参数,例如`--control.type`、`--control.arms`等。 但是,我们并没有看到`--control.local_files_only`。因此,我们只能认为这个参数在当前版本中不被支持。 建议: 去掉这个参数,或者如果必须使用,则需要检查脚本的更新版本是否支持。 另外,注意在帮助信息中,所有参数的值都被指定为字符串(str),因此即使布尔值也需要用字符串表示,如`true`或`True`。但是,由于该参数未被识别,所以不是格式问题。 所以,直接移除`--control.local_files_only=true`参数再运行即可。 如果这个参数是用于控制本地文件(比如避免从网络下载),并且脚本中确实需要这个功能,那么可能需要更新脚本到支持该参数的版本。 根据错误信息,我们也可以看到脚本支持很多参数,但唯独不支持这个。因此,移除它是最直接的解决方案。 如果用户坚持要使用这个参数,那么可能需要修改脚本源代码,添加对这个参数的支持(使用argparse或其他解析库)。 但是,在没有明确文档说明的情况下,不建议随意添加,因为可能影响脚本逻辑。 因此,我们建议先移除该参数运行。 如果问题仍然存在,再根据错误信息进一步分析。 现在,我们按照要求,在回答后提出3-5个相关问题。 §§相关问题§§ 1. 在运行Python脚本时,如何正确传递布尔类型的命令行参数? 2. 如果我想在control_robot.py中添加一个名为`--control.local_files_only`的参数,应该如何修改代码? 3. 有哪些方法可以查看一个Python脚本支持的所有命令行参数? 4. 为什么在帮助信息中没有列出`--control.local_files_only`参数? 5. 如果移除`--control.local_files_only=true`参数后脚本运行正常,但我想实现类似的功能(例如强制使用本地文件),应该怎么做?</think>运行 `control_robot.py` 时出现错误 `unrecognized arguments: --control.local_files_only=true`,说明该参数未被脚本识别。根据您提供的帮助信息,分析原因及解决方案如下: ### 错误原因分析 1. **参数未定义** `--control.local_files_only` 未出现在脚本的帮助信息中(usage 部分),证明该参数未被声明。 2. **可能的来源** 此参数可能是 Hugging Face 库(如 `transformers`)的通用参数,用于强制使用本地缓存文件。但 `control_robot.py` 未集成对此参数的支持。 3. **格式问题** - 脚本中所有布尔参数(如 `--control.video`)均以 `str` 类型声明(如 `str` 而非 `bool`),需传递字符串值(如 `"true"` 而非 `true`)。 - 但即使修正格式,未声明的参数仍会报错。 ### 解决方案 #### 1. **移除无效参数(推荐)** 直接删除 `--control.local_files_only=true`: ```bash python control_robot.py [其他有效参数] ``` #### 2. **修改参数格式(若必须保留)** 若脚本实际支持此功能但未声明,尝试: ```bash # 添加 "control." 前缀并修正布尔值格式 python control_robot.py --control.local_files_only="true" [其他参数] ``` #### 3. **扩展脚本参数解析** 若您可修改脚本源码,在参数解析器中添加此参数(使用 `argparse` 示例): ```python import argparse parser = argparse.ArgumentParser() # 添加以下声明 parser.add_argument("--control.local_files_only", type=str, default="false", help="强制使用本地文件") args = parser.parse_args() ``` #### 4. **检查依赖库文档** 若此参数属于第三方库(如 Hugging Face),查看其文档确认是否需通过环境变量启用: ```bash export HF_LOCAL_FILES_ONLY=true # Hugging Face 的环境变量方式 python control_robot.py [其他参数] ``` ### 关键注意事项 - **优先验证有效参数**:通过 `python control_robot.py --help` 确认所有支持参数。 - **参数命名一致性**:帮助信息中所有参数均以 `--[模块].[参数名]` 格式(如 `--control.type`),需严格匹配大小写和命名。
阅读全文

相关推荐

gcc: error: unrecognized argument in option ‘-mabi=aapcs-linux’ gcc: note: valid arguments to ‘-mabi=’ are: ms sysv gcc: error: unrecognized command line option ‘-mlittle-endian’ gcc: error: unrecognized command line option ‘-mno-thumb-interwork’ gcc: error: unrecognized command line option ‘-mfpu=vfp’ scripts/Makefile.build:258: recipe for target 'scripts/mod/empty.o' failed make[2]: *** [scripts/mod/empty.o] Error 1 scripts/Makefile.build:403: recipe for target 'scripts/mod' failed make[1]: *** [scripts/mod] Error 2 make[1]: *** Waiting for unfinished jobs.... HOSTCC scripts/dtc/checks.o HOSTCC scripts/dtc/util.o Generating include/generated/mach-types.h SHIPPED scripts/dtc/dtc-lexer.lex.c SHIPPED scripts/dtc/dtc-parser.tab.h SHIPPED scripts/dtc/dtc-parser.tab.c HOSTCC scripts/dtc/dtc-lexer.lex.o CC kernel/bounds.s gcc: error: unrecognized argument in option ‘-mabi=aapcs-linux’ gcc: note: valid arguments to ‘-mabi=’ are: ms sysv gcc: error: unrecognized command line option ‘-mlittle-endian’ gcc: error: unrecognized command line option ‘-mno-thumb-interwork’ gcc: error: unrecognized command line option ‘-mfpu=vfp’ Kbuild:43: recipe for target 'kernel/bounds.s' failed make[1]: *** [kernel/bounds.s] Error 1 Makefile:990: recipe for target 'prepare0' failed make: *** [prepare0] Error 2 make: *** Waiting for unfinished jobs.... HOSTCC scripts/dtc/dtc-parser.tab.o HOSTLD scripts/dtc/dtc Makefile:555: recipe for target 'scripts' failed make: *** [scripts] Error 2

Building wheel for pycocotools (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for pycocotools (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [520 lines of output] running bdist_wheel running build running build_py creating build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/mask.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/cocoeval.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/__init__.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/coco.py -> build/lib.linux-x86_64-cpython-38/pycocotools running build_ext Error compiling Cython file: ------------------------------------------------------------ ... np.import_array() # import numpy C function # we use PyArray_ENABLEFLAGS to make Numpy ndarray responsible to memoery management cdef extern from "numpy/arrayobject.h": void PyArray_ENABLEFLAGS(np.ndarray arr, int flags) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:27:29: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrString( <RLE*> &Rs._R[i], <char*> c_string, obj['size'][0], obj['size'][1] ) return Rs # encode mask to RLEs objects # list of RLE string can be generated by RLEs member function def encode(np.ndarray[np.uint8_t, ndim=3, mode='fortran'] mask): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:136:11: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... bb = np.array((1,4*n), dtype=np.double) bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) PyArray_ENABLEFLAGS(bb, np.NPY_OWNDATA) return bb def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:254:11: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... # the memory management of _mask has been passed to np.ndarray # it doesn't need to be freed here # called when passing into np.array() and return an np.ndarray in column-major order def __array__(self): cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:93:13: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def area(rleObjs): cdef RLEs Rs = _frString(rleObjs) cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:163:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:197:34: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:197:88: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:15: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:51: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:87: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:141: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... if not type(dt) == type(gt): raise Exception('The dt and gt should have the same data type, either RLEs, list or np.ndarray') # define local variables cdef double* _iou = <double*> 0 cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:226:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def toBbox( rleObjs ): cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:247:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... # it doesn't need to be freed here # called when passing into np.array() and return an np.ndarray in column-major order def __array__(self): cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> self._h*self._w*self._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:94:20: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def area(rleObjs): cdef RLEs Rs = _frString(rleObjs) cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:164:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n a = np.array((Rs._n, ), dtype=np.uint8) a = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT32, _a) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:166:62: Cannot convert 'uint *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... _iouFun = _bbIou else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:236:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n iou = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _iou) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:237:64: Cannot convert 'double *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:198:72: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:15: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:71: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:248:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n bb = np.array((1,4*n), dtype=np.double) bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:250:63: Cannot convert 'BB' to Python object Error compiling Cython file: ------------------------------------------------------------ ... return bb def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): cdef siz n = bb.shape[0] Rs = RLEs(n) rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:257:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef np.ndarray[np.double_t, ndim=1] np_poly n = len(poly) Rs = RLEs(n) for i, p in enumerate(poly): np_poly = np.array(p, dtype=np.double, order='F') rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:267:36: Python objects cannot be cast to pointers of primitive types Compiling pycocotools/_mask.pyx because it changed. [1/1] Cythonizing pycocotools/_mask.pyx Traceback (most recent call last): File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 353, in <module> main() File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 251, in build_wheel return _build_backend().build_wheel(wheel_directory, config_settings, File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 437, in build_wheel return _build(['bdist_wheel', '--dist-info-dir', str(metadata_directory)]) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 425, in _build return self._build_with_temp_dir( File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 406, in _build_with_temp_dir self.run_setup() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 319, in run_setup exec(code, locals()) File "<string>", line 19, in <module> File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 183, in setup return run_commands(dist) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 199, in run_commands dist.run_commands() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 954, in run_commands self.run_command(cmd) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/bdist_wheel.py", line 400, in run self.run_command("build") File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 98, in run _build_ext.run(self) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 359, in run self.build_extensions() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 476, in build_extensions self._build_extensions_serial() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 502, in _build_extensions_serial self.build_extension(ext) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 263, in build_extension _build_ext.build_extension(self, ext) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Distutils/build_ext.py", line 131, in build_extension new_ext = cythonize( File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1154, in cythonize cythonize_one(*args) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1298, in cythonize_one raise CompileError(None, pyx_file) Cython.Compiler.Errors.CompileError: pycocotools/_mask.pyx [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for pycocotools Failed to build pycocotools ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (pycocotools)

else: raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:197:88: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:15: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:51: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:87: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:141: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... if not type(dt) == type(gt): raise Exception('The dt and gt should have the same data type, either RLEs, list or np.ndarray') # define local variables cdef double* _iou = <double*> 0 cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:226:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def toBbox( rleObjs ): cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:247:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... # it doesn't need to be freed here # called when passing into np.array() and return an np.ndarray in column-major order def __array__(self): cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> self._h*self._w*self._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:94:20: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def area(rleObjs): cdef RLEs Rs = _frString(rleObjs) cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:164:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n a = np.array((Rs._n, ), dtype=np.uint8) a = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT32, _a) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:166:62: Cannot convert 'uint *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... _iouFun = _bbIou else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:236:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n iou = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _iou) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:237:64: Cannot convert 'double *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:198:72: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:15: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:71: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:248:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n bb = np.array((1,4*n), dtype=np.double) bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:250:63: Cannot convert 'BB' to Python object Error compiling Cython file: ------------------------------------------------------------ ... return bb def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): cdef siz n = bb.shape[0] Rs = RLEs(n) rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:257:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef np.ndarray[np.double_t, ndim=1] np_poly n = len(poly) Rs = RLEs(n) for i, p in enumerate(poly): np_poly = np.array(p, dtype=np.double, order='F') rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:267:36: Python objects cannot be cast to pointers of primitive types Compiling pycocotools/_mask.pyx because it changed. [1/1] Cythonizing pycocotools/_mask.pyx Traceback (most recent call last): File "/home/dark/anaconda3/envs/horizon_bpu/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 353, in <module> main() File "/home/dark/anaconda3/envs/horizon_bpu/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "/home/dark/anaconda3/envs/horizon_bpu/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 251, in build_wheel return _build_backend().build_wheel(wheel_directory, config_settings, File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 437, in build_wheel return _build(['bdist_wheel', '--dist-info-dir', str(metadata_directory)]) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 425, in _build return self._build_with_temp_dir( File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 406, in _build_with_temp_dir self.run_setup() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 319, in run_setup exec(code, locals()) File "<string>", line 19, in <module> File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 183, in setup return run_commands(dist) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 199, in run_commands dist.run_commands() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 954, in run_commands self.run_command(cmd) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/command/bdist_wheel.py", line 400, in run self.run_command("build") File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 98, in run _build_ext.run(self) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 359, in run self.build_extensions() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 476, in build_extensions self._build_extensions_serial() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 502, in _build_extensions_serial self.build_extension(ext) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 263, in build_extension _build_ext.build_extension(self, ext) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/Cython/Distutils/build_ext.py", line 131, in build_extension new_ext = cythonize( File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1154, in cythonize cythonize_one(*args) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1298, in cythonize_one raise CompileError(None, pyx_file) Cython.Compiler.Errors.CompileError: pycocotools/_mask.pyx [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for pycocotools

processing option: kernel ============Start build kernel============ TARGET_ARCH =arm64 TARGET_KERNEL_CONFIG =rockchip_linux_defconfig TARGET_KERNEL_DTS =itop-3399_linux-lvds ========================================== # # No change to .config # arch/arm64/Makefile:36: Detected assembler with broken .inst; disassembly will be unreliable arch/arm64/Makefile:36: Detected assembler with broken .inst; disassembly will be unreliable GEN arch/arm64/include/generated/asm/cpucaps.h GEN arch/arm64/include/generated/asm/sysreg-defs.h DTC arch/arm64/boot/dts/rockchip/itop-3399_linux-lvds.dtb warning: ld does not support --fix-cortex-a53-843419; kernel may be susceptible to erratum warning: LSE atomics not supported by binutils Error: arch/arm64/boot/dts/rockchip/itop-3399_linux-lvds.dts:206.65-66 syntax error FATAL ERROR: Unable to parse input tree scripts/Makefile.lib:423: recipe for target 'arch/arm64/boot/dts/rockchip/itop-3399_linux-lvds.dtb' failed make[3]: *** [arch/arm64/boot/dts/rockchip/itop-3399_linux-lvds.dtb] Error 1 scripts/Makefile.build:503: recipe for target 'arch/arm64/boot/dts/rockchip' failed make[2]: *** [arch/arm64/boot/dts/rockchip] Error 2 Makefile:1466: recipe for target 'rockchip/itop-3399_linux-lvds.dtb' failed make[1]: *** [rockchip/itop-3399_linux-lvds.dtb] Error 2 make[1]: *** Waiting for unfinished jobs.... CC scripts/mod/empty.o HOSTCC scripts/mod/mk_elfconfig CC scripts/mod/devicetable-offsets.s gcc: error: unrecognized command line option ‘-mlittle-endian’ gcc: error: unrecognized command line option ‘-mgeneral-regs-only’ scripts/Makefile.build:250: recipe for target 'scripts/mod/empty.o' failed make[2]: *** [scripts/mod/empty.o] Error 1 make[2]: *** Waiting for unfinished jobs.... gcc: error: unrecognized command line option ‘-mlittle-endian’ gcc: error: unrecognized command line option ‘-mgeneral-regs-only’ scripts/Makefile.build:118: recipe for target 'scripts/mod/devicetable-offsets.s' failed make[2]: *** [scripts/mod/devicetable-offsets.s] Error 1 Makefile:1283: recipe for target 'prepare0' failed make[1]: *** [prepare0] Error 2 arch/arm64/Makefile:221: recipe for target 'itop-3399_linux-lvds.img' failed make: *** [itop-3399_linux-lvds.img] Error 2 ====Build kernel failed!====

最新推荐

recommend-type

【大学生电子设计】:备战2015全国大学生电子设计竞赛-信号源类赛题分析.pdf

【大学生电子设计】:备战2015全国大学生电子设计竞赛-信号源类赛题分析.pdf
recommend-type

湘潭大学人工智能专业2024级大一C语言期末考试题库项目-包含58个从头歌平台抓取并排版的C语言编程题目及解答-涵盖基础语法-数组操作-条件判断-循环结构-函数调用-指针应用等核心.zip

2025电赛预测湘潭大学人工智能专业2024级大一C语言期末考试题库项目_包含58个从头歌平台抓取并排版的C语言编程题目及解答_涵盖基础语法_数组操作_条件判断_循环结构_函数调用_指针应用等核心.zip
recommend-type

基于STM32的步进电机S型曲线与SpTA算法高效控制及其实现 T梯形算法 经典版

基于STM32平台的步进电机S型曲线和SpTA加减速控制算法。首先阐述了S型曲线控制算法的特点及其在STM32平台上的实现方法,包括设置启动频率、加速时间和最高速度等参数,以减少电机启动和停止时的冲击。接着讨论了T梯形算法与S型曲线的结合,通过精确的时间控制提高运动精度。然后重点讲解了SpTA算法,强调其自适应性强、不依赖PWM定时器个数,能够根据实际运行状态动态调整。文中提到一种高效的非DMA数据传输方式,提升了CPU效率并解决了外部中断时无法获取已输出PWM波形个数的问题。最后介绍了SpTA算法在多路电机控制方面的优势。 适合人群:从事嵌入式系统开发、自动化控制领域的工程师和技术人员,尤其是对步进电机控制有研究兴趣的人群。 使用场景及目标:适用于需要高精度和平滑控制的步进电机应用场合,如工业机器人、数控机床等领域。目标是帮助开发者掌握STM32平台下步进电机的先进控制算法,优化系统的实时性能和多电机协同控制能力。 其他说明:文章提供了详细的理论背景和技术细节,有助于读者深入理解并应用于实际项目中。
recommend-type

一个面向Android开发者的全面知识体系整理项目-包含Android基础-Framework解析-系统启动流程-四大组件原理-Handler-Binder-AMS-WMS等核心机.zip

python一个面向Android开发者的全面知识体系整理项目_包含Android基础_Framework解析_系统启动流程_四大组件原理_Handler_Binder_AMS_WMS等核心机.zip
recommend-type

日前日内两阶段调度综合能源分析:基于Matlab与Yalmip的优化结果对比及应用

日前日内两阶段调度在综合能源管理中的应用,特别是利用Matlab和Yalmip工具箱进行优化建模的方法。文章分析了三种不同调度场景(日前不考虑需求响应调度、日前考虑需求响应调度、日前日内两阶段调度),并比较了各自的优化结果。重点讨论了机组成本和弃风惩罚两个关键指标,展示了两阶段调度在提高电力供应稳定性和降低运营成本方面的优势。 适合人群:从事能源管理和电力系统调度的研究人员和技术人员,尤其是对优化算法和Matlab编程有一定基础的人群。 使用场景及目标:①理解和掌握日前日内两阶段调度的基本概念及其应用场景;②学习如何使用Matlab和Yalmip工具箱进行优化建模;③评估不同调度策略对机组成本和弃风惩罚的影响。 其他说明:本文不仅提供了详细的理论解释,还有具体的编程实例和优化结果对比,有助于读者深入理解调度优化的实际操作和效果。
recommend-type

Pansophica开源项目:智能Web搜索代理的探索

Pansophica开源项目是一个相对较新且具有创新性的智能Web搜索代理,它突破了传统搜索引擎的界限,提供了一种全新的交互方式。首先,我们来探讨“智能Web搜索代理”这一概念。智能Web搜索代理是一个软件程序或服务,它可以根据用户的查询自动执行Web搜索,并尝试根据用户的兴趣、历史搜索记录或其他输入来提供个性化的搜索结果。 Pansophica所代表的不仅仅是搜索结果的展示,它还强调了一个交互式的体验,在动态和交互式虚拟现实中呈现搜索结果。这种呈现方式与现有的搜索体验有着根本的不同。目前的搜索引擎,如Google、Bing和Baidu等,多以静态文本和链接列表的形式展示结果。而Pansophica通过提供一个虚拟现实环境,使得搜索者可以“扭转”视角,进行“飞行”探索,以及“弹网”来浏览不同的内容。这种多维度的交互方式使得信息的浏览变得更加快速和直观,有望改变用户与网络信息互动的方式。 接着,我们关注Pansophica的“开源”属性。所谓开源,指的是软件的源代码可以被公众获取,任何个人或组织都可以自由地使用、学习、修改和分发这些代码。开源软件通常由社区进行开发和维护,这样的模式鼓励了协作创新并减少了重复性劳动,因为全世界的开发者都可以贡献自己的力量。Pansophica项目作为开源软件,意味着其他开发者可以访问和使用其源代码,进一步改进和扩展其功能,甚至可以为Pansophica构建新的应用或服务。 最后,文件名称“Pansophica-src-1.3”表明了我们讨论的特定版本的Pansophica开源代码。数字“1.3”很可能指的是该版本号,表明这是Pansophica项目的第1.3个公开版本。这个版本号对于开发者来说很重要,因为它可以帮助他们追踪更新的进度、比较版本间的差异以及选择最适合其项目的版本。 综合以上信息,Pansophica开源项目不仅在搜索代理领域引入了创新的交互方式,而且通过开源的方式,提供了技术共享和协作的可能性。对于IT行业来说,开源项目是推动技术发展的重要力量,它激发了社区的活力,促进了知识的传播和技术的进步。通过构建一个开源社区,Pansophica可以吸引来自世界各地的开发者和研究人员,共同探索如何将搜索技术与交互式虚拟现实技术结合起来,为用户带来更加丰富和有效的信息检索体验。同时,Pansophica的开源性质也使其更容易适应未来技术的发展,随着社区的不断贡献和反馈,这一平台有望在功能和性能上得到持续的优化和增强。
recommend-type

跨平台内容提取无忧:coze工作流应对社交媒体挑战

# 1. 社交媒体内容提取的必要性与挑战 ## 1.1 内容提取的必要性 在数字时代,社交媒体内容是信息与数据流动的主干道,公司、个人和研究者都在寻求从这些信息中提取价值。无论是为了市场趋势分析、品牌监控、消费者洞察还是公共舆论监测,有效的社交媒体内容提取变得至关重要。这不仅有助于企业做出数据驱动的决策,也能使个人更好地理
recommend-type

vrrp主设备发送的免费arp

<think>好的,我现在需要回答用户关于VRRP主设备发送免费ARP的目的和工作原理的问题。首先,我得回忆一下VRRP的基本概念和工作机制。VRRP,虚拟路由冗余协议,主要用于在局域网中提供默认网关的冗余备份,确保网络的高可用性。主设备(Master)负责转发流量,而备用设备(Backup)则在主设备故障时接管工作。 用户的问题集中在主设备发送免费ARP的目的和机制上。根据引用[2],免费ARP用于通知下游设备虚拟MAC地址的变更。当主设备被选举出来后,它需要让局域网内的其他设备知道虚拟IP对应的MAC地址已经指向自己,这样流量才会被正确路由到主设备。免费ARP的作用应该就是更新这些设备的
recommend-type

为Ghost博客平台打造的Meteor流星包装使用指南

从给定文件信息中,我们可以提炼出以下IT知识点: ### 标题知识点:流星Ghost软件包 1. **流星Ghost软件包的用途**:流星Ghost软件包是专为Ghost博客平台设计的流星(Meteor)应用程序。流星是一个开源的全栈JavaScript平台,用于开发高性能和易于编写的Web应用程序。Ghost是一个开源博客平台,它提供了一个简单且专业的写作环境。 2. **软件包的作用**:流星Ghost软件包允许用户在流星平台上轻松集成Ghost博客。这样做的好处是可以利用流星的实时特性以及易于开发和部署的应用程序框架,同时还能享受到Ghost博客系统的便利和美观。 ### 描述知识点:流星Ghost软件包的使用方法 1. **软件包安装方式**:用户可以通过流星的命令行工具添加名为`mrt:ghost`的软件包。`mrt`是流星的一个命令行工具,用于添加、管理以及配置软件包。 2. **初始化Ghost服务器**:描述中提供了如何在服务器启动时运行Ghost的基本代码示例。这段代码使用了JavaScript的Promise异步操作,`ghost().then(function (ghostServer) {...})`这行代码表示当Ghost服务器初始化完成后,会在Promise的回调函数中提供一个Ghost服务器实例。 3. **配置Ghost博客**:在`then`方法中,首先会获取到Ghost服务器的配置对象`config`,用户可以在此处进行自定义设置,例如修改主题、配置等。 4. **启动Ghost服务器**:在配置完成之后,通过调用`ghostServer.start()`来启动Ghost服务,使其能够处理博客相关的请求。 5. **Web浏览器导航**:一旦流星服务器启动并运行,用户便可以通过Web浏览器访问Ghost博客平台。 ### 标签知识点:JavaScript 1. **JavaScript作为流星Ghost软件包的开发语言**:标签指出流星Ghost软件包是使用JavaScript语言开发的。JavaScript是一种在浏览器端广泛使用的脚本语言,它也是流星平台的基础编程语言。 2. **流星和Ghost共同使用的语言**:JavaScript同样也是Ghost博客平台的开发语言。这表明流星Ghost软件包可以无缝集成,因为底层技术栈相同。 ### 压缩包子文件的文件名称列表知识点:meteor-ghost-master 1. **版本控制和软件包结构**:文件名称`meteor-ghost-master`暗示了该软件包可能托管在像GitHub这样的版本控制系统上。文件名中的`master`通常指的是主分支或主版本。 2. **软件包的目录结构**:通过文件名称可以推断出该软件包可能拥有一个标准的流星软件包结构,包含了初始化、配置、运行等必要的模块和文件。 3. **软件包的维护状态**:由于文件名没有包含特定的版本号,我们无法直接得知软件包的最新更新情况。通常,软件包维护者会将最新的版本代码放在`master`分支上。 ### 总结 流星Ghost软件包提供了一个有效的解决方案,使得流星平台的开发者能够在他们的应用中添加Ghost博客功能。软件包的使用简便,通过流星的命令行工具安装,并通过JavaScript代码配置和启动Ghost服务。通过流星Ghost软件包,开发者能够享受流星的实时特性以及Ghost博客系统的便利性。此外,软件包的命名和结构也暗示了其维护和版本控制的模式,有助于开发者更好地理解如何使用和维护这一软件包。
recommend-type

抖音标题生成自动化:用coze工作流释放创意

# 1. 抖音标题生成自动化的重要性 随着社交媒体平台的崛起,内容的吸引力很大程度上取决于标题的创意与精准性。抖音作为一个日活亿级的短视频平台,高质量的标题能够有效提高视频的点击率,增加内容的传播。但是,人工撰写标题不仅耗时耗力,而且很难做到快速响应热点,自动化标题生成工具应运而生。coze工作流,作为一种实现自动化生成抖音标题的工具,其重要性不言而喻。它能够利用大数据分析和机器学习技术,提高标题的吸引