The easiest method is to set these DeepSpeed config values to 'auto'. [rank1]: Traceback (most recent call last): [rank1]: File "/data1/users/heyu/find_size_and_weight/train711.py", line 625, in <module> [rank1]: train() [rank1]: File "/data1/users/heyu/find_size_and_weight/train711.py", line 617, in train [rank1]: train_result = trainer.train() [rank1]: File "/data1/users/heyu/uv_env/pyhy/lib/python3.10/site-packages/transformers/trainer.py", line 2240, in train [rank1]: return inner_training_loop( [rank1]: File "/data1/users/heyu/uv_env/pyhy/lib/python3.10/site-packages/transformers/trainer.py", line 2322, in _inner_training_loop [rank1]: self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps) [rank1]: File "/data1/users/heyu/uv_env/pyhy/lib/python3.10/site-packages/transformers/integrations/deepspeed.py", line 444, in deepspeed_init [rank1]: hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps) [rank1]: File "/data1/users/heyu/uv_env/pyhy/lib/python3.10/site-packages/transformers/integrations/deepspeed.py", line 268, in trainer_config_finalize [rank1]: raise ValueError( [rank1]: ValueError: Please correct the following DeepSpeed config values that mismatch TrainingArguments values: [rank1]: - ds scheduler.params.warmup_max_lr=0.0001 vs hf learning_rate=1e-05 [rank1]: The easiest method is to set these DeepSpeed config values to 'auto'. 2025-07-11 16:02:32,818 - ERROR - Training failed: Please correct the following DeepSpeed config values that mismatch TrainingArguments values: - ds scheduler.params.warmup_max_lr=0.0001 vs hf learning_rate=1e-05 The easiest method is to set these DeepSpeed config values to 'auto'.上述代码报错,修改

时间: 2025-07-22 19:40:25 浏览: 20
<think>我们遇到了DeepSpeed配置错误,具体是DeepSpeed的scheduler配置中的warmup_max_lr与TrainingArguments中的learning_rate不匹配。 根据错误信息,DeepSpeed配置中scheduler.params.warmup_max_lr被设置为0.0001(即1e-4),而TrainingArguments中的learning_rate为1e-5。 错误提示建议将这些值设置为'auto',这样DeepSpeed会自动使用TrainingArguments中的值。 修改方法:将DeepSpeed配置中scheduler.params.warmup_max_lr设置为'auto',同时检查其他相关参数是否也需要设置为'auto'。 在代码中,我们找到DeepSpeed配置部分,将scheduler.params.warmup_max_lr改为'auto',同时将warmup_min_lr也改为'auto'(因为错误提示中只提到了warmup_max_lr,但为了安全,将整个scheduler部分设置为自动)。 另外,注意错误信息还提到了其他可能不匹配的值,但当前只报告了warmup_max_lr。因此,我们按照错误提示,将scheduler部分的相关参数都设置为'auto'。 修改后的DeepSpeed配置部分如下: 原始配置: "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 1e-4, "warmup_num_steps": "auto", "total_num_steps": "auto", } }, 修改为: "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto", } }, 这样,DeepSpeed就会自动从TrainingArguments中获取学习率相关的设置。 同时,我们注意到在TrainingArguments中已经设置了learning_rate=1e-5,所以DeepSpeed会使用这个值。 修改代码中的CONFIG字典的deepspeed_config部分。 注意:由于我们使用的是DeepSpeed的配置文件(这里是以字典形式给出),需要确保所有参数设置正确。 另外,错误信息中还提到“The easiest method is to set these DeepSpeed config values to 'auto'.”,所以我们按照这个建议修改。 修改后重新运行。</think>错误原因是 DeepSpeed 配置中的学习率参数与 TrainingArguments 中的学习率设置不一致。让我们修复这个问题: ```python def train(): TRAIN_FILES = ["./data/train_26.4k_20250703.jsonl"] VAL_FILES = ['./data/test_1.0k_20250703.jsonl'] CONFIG = { # ... 其他配置保持不变 ... "deepspeed_config": { "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "optimizer": { "type": "AdamW", "params": { "lr": "auto", # 确保这里设置为 auto "weight_decay": "auto", "betas": "auto", } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", # 修改为 auto "warmup_max_lr": "auto", # 修改为 auto "warmup_num_steps": "auto", "total_num_steps": "auto", } }, "fp16": { "enabled": "auto", }, "bf16": { "enabled": "auto", }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "none", "pin_memory": True }, "allgather_partitions": True, "allgather_bucket_size": 2e8, "overlap_comm": True, "reduce_scatter": True, "reduce_bucket_size": 2e8, "contiguous_gradients": True }, "gradient_clipping": 1.0, "steps_per_print": 5, "wall_clock_breakdown": False } } # ... 后续代码保持不变 ... ``` ### 关键修改点: 1. **DeepSpeed 调度器配置**: ```python "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", # 修改为 auto "warmup_max_lr": "auto", # 修改为 auto "warmup_num_steps": "auto", "total_num_steps": "auto", } } ``` 2. **优化器配置**: ```python "optimizer": { "type": "AdamW", "params": { "lr": "auto", # 确保这里设置为 auto # ... } } ``` ### 完整修复后的代码: ```python def train(): TRAIN_FILES = ["./data/train_26.4k_20250703.jsonl"] VAL_FILES = ['./data/test_1.0k_20250703.jsonl'] CONFIG = { "model_path": '/nas_data/xiao/models/Qwen2.5-VL-7B-Instruct', "processor_path": '/nas_data/xiao/models/Qwen2.5-VL-7B-Instruct', "train_files": TRAIN_FILES, "val_files": VAL_FILES, "max_pixels": 301056, "max_length": 4096, "output_dir": "./output", "learning_rate": 1e-5, "batch_size": 4, "grad_accum_steps": 2, "num_epochs": 1, "warmup_ratio": 0.05, "weight_decay": 0.1, "logging_steps": 5, "eval_steps": 500, "save_steps": 500, "save_total_limit": 5, "fp16": False, "bf16": True, "gradient_checkpointing": True, "deepspeed_config": { "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "optimizer": { "type": "AdamW", "params": { "lr": "auto", "weight_decay": "auto", "betas": "auto", } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto", } }, "fp16": { "enabled": "auto", }, "bf16": { "enabled": "auto", }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "none", "pin_memory": True }, "allgather_partitions": True, "allgather_bucket_size": 2e8, "overlap_comm": True, "reduce_scatter": True, "reduce_bucket_size": 2e8, "contiguous_gradients": True }, "gradient_clipping": 1.0, "steps_per_print": 5, "wall_clock_breakdown": False } } # ... 后续代码保持不变 ... ``` ### 为什么这样修改? 1. **DeepSpeed 的 'auto' 模式**: - 当设置为 'auto' 时,DeepSpeed 会自动从 TrainingArguments 中获取相应的值 - 这确保了 DeepSpeed 配置与 Hugging Face Trainer 配置的一致性 2. **错误原因分析**: ```bash - ds scheduler.params.warmup_max_lr=0.0001 vs hf learning_rate=1e-05 ``` - 原始代码中固定设置了 `warmup_max_lr=1e-4`,但 TrainingArguments 使用的是 `1e-5` - 使用 'auto' 让 DeepSpeed 自动匹配 TrainingArguments 中的学习率设置 3. **最佳实践**: - 在 DeepSpeed 配置中,所有与 Trainer 相关的参数都应设置为 'auto' - 这样可以避免手动同步配置,减少配置错误 这个修改将解决 DeepSpeed 配置与 TrainingArguments 之间的不一致问题,确保训练能够正常启动。
阅读全文

相关推荐

D:\PycharmProjects\nerf1\venv\Scripts\python.exe D:\PycharmProjects\nerf1\run_nerf.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\PycharmProjects\nerf1\run_nerf.py", line 7, in <module> import torch File "D:\PycharmProjects\nerf1\venv\lib\site-packages\torch\__init__.py", line 870, in <module> from . import _masked File "D:\PycharmProjects\nerf1\venv\lib\site-packages\torch\_masked\__init__.py", line 420, in <module> def sum(input: Tensor, File "D:\PycharmProjects\nerf1\venv\lib\site-packages\torch\_masked\__init__.py", line 223, in _apply_docstring_templates example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]]) D:\PycharmProjects\nerf1\venv\lib\site-packages\torch\_masked\__init__.py:223: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\torch\csrc\utils\tensor_numpy.cpp:68.) example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]]) Traceback (most recent call last): File "D:\PycharmProjects\nerf1\run_nerf.py", line 876, in <module> torch.set_default_tensor_type('torch.cuda.FloatTensor') File "D:\PycharmProjects\nerf1\venv\lib\site-packages\torch\__init__.py", line 323, in set_default_tensor_type _C._set_default_tensor_type(t) TypeError: type torch.cuda.FloatTensor not available. Torch not compiled with CUDA enabled. 进程已结束,退出代码为 1

报错代码分析 A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "F:\PythonProject1\1.py", line 3, in <module> from radiomics import featureextractor, setVerbosity File "C:\Users\lenovo\anaconda3\envs\Radiomics\lib\site-packages\radiomics\__init__.py", line 286, in <module> from radiomics import _cmatrices as cMatrices # noqa: F401 AttributeError: _ARRAY_API not found Error loading C extensions Traceback (most recent call last): File "C:\Users\lenovo\anaconda3\envs\Radiomics\lib\site-packages\radiomics\__init__.py", line 286, in <module> from radiomics import _cmatrices as cMatrices # noqa: F401 ImportError: numpy.core.multiarray failed to import Traceback (most recent call last): File "F:\PythonProject1\1.py", line 3, in <module> from radiomics import featureextractor, setVerbosity File "C:\Users\lenovo\anaconda3\envs\Radiomics\lib\site-packages\radiomics\__init__.py", line 297, in <module> raise e File "C:\Users\lenovo\anaconda3\envs\Radiomics\lib\site-packages\radiomics\__init__.py", line 286, in <module> from radiomics import _cmatrices as cMatrices # noqa: F401 ImportError: numpy.core.multiarray failed to import

纠错5: python Python 3.10.9 (tags/v3.10.9:1dd9be6, Dec 6 2022, 20:01:21) [MSC v.1934 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import whisper >>> from transformers import MarianMTModel, MarianTokenizer >>> whisper.load_model("small") A module that was compiled using NumPy 1.x cannot be run in NumPy 2.1.3 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\bili_translator\venv\lib\site-packages\whisper\__init__.py", line 150, in load_model checkpoint = torch.load(fp, map_location=device) File "D:\bili_translator\venv\lib\site-packages\torch\serialization.py", line 809, in load return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args) File "D:\bili_translator\venv\lib\site-packages\torch\serialization.py", line 1172, in _load result = unpickler.load() File "D:\bili_translator\venv\lib\site-packages\torch\_utils.py", line 169, in _rebuild_tensor_v2 tensor = _rebuild_tensor(storage, storage_offset, size, stride) File "D:\bili_translator\venv\lib\site-packages\torch\_utils.py", line 147, in _rebuild_tensor t = torch.tensor([], dtype=storage.dtype, device=storage._untyped_storage.device) D:\bili_translator\venv\lib\site-packages\torch\_utils.py:147: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ..\torch\csrc\utils\tensor_numpy.cpp:84.) t = torch.tensor([], dtype=storage.dtype, device=storage._untyped_storage.device) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\bili_translator\venv\lib\site-packages\whisper\__init__.py", line 158, in load_model model.set_alignment_heads(alignment_heads) File "D:\bili_translator\venv\lib\site-packages\whisper\model.py", line 282, in set_alignment_heads mask = torch.from_numpy(array).reshape( RuntimeError: Numpy is not available

D:\Anaconda3\envs\tf_gpu\python.exe D:\python代码\test\main.py 2025-03-09 20:26:10.397711: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found 2025-03-09 20:26:10.397830: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\python代码\test\main.py", line 1, in <module> import tensorflow as tf File "D:\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\__init__.py", line 37, in <module> from tensorflow.python.tools import module_util as _module_util File "D:\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\__init__.py", line 37, in <module> from tensorflow.python.eager import context File "D:\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\eager\context.py", line 35, in <module> from tensorflow.python.client import pywrap_tf_session File "D:\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\pywrap_tf_session.py", line 19, in <module> from tensorflow.python.client._pywrap_tf_session import * AttributeError: _ARRAY_API not found A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try

D:\anaconda3\envs\GPU_pytorch\python.exe D:\python.learn\datasetload\main.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\python.learn\datasetload\main.py", line 2, in <module> import torchvision File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\__init__.py", line 5, in <module> from torchvision import datasets, io, models, ops, transforms, utils File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\__init__.py", line 17, in <module> from . import detection, optical_flow, quantization, segmentation, video File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\__init__.py", line 1, in <module> from .faster_rcnn import * File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\faster_rcnn.py", line 16, in <module> from .anchor_utils import AnchorGenerator File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 10, in <module> class AnchorGenerator(nn.Module): File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 63, in AnchorGenerator device: torch.device = torch.device("cpu"), D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py:63: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\cb\pytorch_1000000000000\work\torch\csrc\utils\tensor_numpy.cpp:77.) device: torch.device = torch.device("cpu"), Files already downloaded and verified

D:\Anaconda3\envs\torch_gpu\python.exe D:\desktop\zhongcaoyao\PyTorch-Classification-Trainer\train.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.4 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\desktop\zhongcaoyao\PyTorch-Classification-Trainer\train.py", line 13, in <module> from basetrainer.engine import trainer File "D:\Anaconda3\envs\torch_gpu\lib\site-packages\basetrainer\engine\trainer.py", line 7, in <module> import torch File "D:\Anaconda3\envs\torch_gpu\lib\site-packages\torch\__init__.py", line 870, in <module> from . import _masked File "D:\Anaconda3\envs\torch_gpu\lib\site-packages\torch\_masked\__init__.py", line 420, in <module> def sum(input: Tensor, File "D:\Anaconda3\envs\torch_gpu\lib\site-packages\torch\_masked\__init__.py", line 223, in _apply_docstring_templates example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]]) D:\Anaconda3\envs\torch_gpu\lib\site-packages\torch\_masked\__init__.py:223: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ..\torch\csrc\utils\tensor_numpy.cpp:68.) example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]]) torch version:1.11.0+cpu 0.9.5 ============================================================ config_file: configs/config.yaml distributed: False train_data: ['D:/PycharmProjects/PyTorch-Classification-Trainer/data/dataset/train'] test_data: D:/PycharmProjects/PyTorch-Classification-Trainer/data/dataset/test class_name: D:/PycharmProjects/PyTorch-Classification-Trainer/data/dataset/class_name.txt train_transform: train test_transform: test work_dir: work_space/ n

/home/cw/anaconda3/bin/conda run -n GPU_pytorch --no-capture-output python /tmp/fEokboZTuK/main.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "/tmp/fEokboZTuK/main.py", line 1, in <module> import torch File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/__init__.py", line 1477, in <module> from .functional import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /tmp/fEokboZTuK/main.py:89: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requi

D:\python\anaconda3\envs\SynTumors\Lib\site-packages\timm\models\layers\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\python\SyntheticTumors-main\main.py", line 36, in <module> from TumorGenerated import TumorGenerated File "D:\python\SyntheticTumors-main\TumorGenerated\__init__.py", line 3, in <module> from .TumorGenerated import TumorGenerated File "D:\python\SyntheticTumors-main\TumorGenerated\TumorGenerated.py", line 8, in <module> from .utils import SynthesisTumor, get_predefined_texture File "D:\python\SyntheticTumors-main\TumorGenerated\utils.py", line 4, in <module> import elasticdeform File "D:\python\anaconda3\envs\SynTumors\Lib\site-packages\elasticdeform\__init__.py", line 1, in <module> from .deform_grid import deform_grid, deform_grid_gradient, deform_random_grid File "D:\python\anaconda3\envs\SynTumors\Lib\site-packages\elasticdeform\deform_grid.py", line 4, in <module> from . import _deform_grid Traceback (most recent call last): File "D:\python\anaconda3\envs\SynTumors\Lib\site-packages\numpy\core\_multiarray_umath.py", line 44, in __getattr__ raise ImportError(msg) ImportError: A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\python\SyntheticTumors-main\main.py", line 36, in <module> from TumorGenerated import TumorGenerated File "D:\python\SyntheticTumors-main\TumorGenerated\__init__.py", line 3, in <module> from .TumorGenerated import TumorGenerated File "D:\python\SyntheticTumors-main\TumorGenerated\TumorGenerated.py", line 8, in <module> from .utils import SynthesisTumor, get_predefined_texture File "D:\python\SyntheticTumors-main\TumorGenerated\utils.py", line 4, in <module> import elasticdeform File "D:\python\anaconda3\envs\SynTumors\Lib\site-packages\elasticdeform\__init__.py", line 1, in <module> from .deform_grid import deform_grid, deform_grid_gradient, deform_random_grid File "D:\python\anaconda3\envs\SynTumors\Lib\site-packages\elasticdeform\deform_grid.py", line 4, in <module> from . import _deform_grid ImportError: numpy.core.multiarray failed to import 进程已结束,退出代码为 1

import torch A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.1 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch\__init__.py", line 1382, in <module> from .functional import * # noqa: F403 File "D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch\functional.py", line 7, in <module> import torch.nn.functional as F File "D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch\nn\__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch\nn\modules\__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch\nn\modules\transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), D:\All-App\Anaconda3\envs\UBGOLD\lib\site-packages\torch\nn\modules\transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\cb\pytorch_1000000000000\work\torch\csrc\utils\tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), >>> import torch >>> import torch_geometric

大家在看

recommend-type

芯片制作工艺流程.rar-综合文档

芯片制作工艺流程.rar
recommend-type

无外部基准电压时STM32L151精确采集ADC电压

当使用电池直接供电 或 外部供电低于LDO的输入电压时,会造成STM32 VDD电压不稳定,忽高忽低。 此时通过使用STM32的内部参考电压功能(Embedded internal reference voltage),可以准确的测量ADC管脚对应的电压值,精度 0.01v左右,可以满足大部分应用场景。 详情参考Blog: https://blog.csdn.net/ioterr/article/details/109170847
recommend-type

GKImagePicker:iOS中UIImagePicker的增强功能,可以以任何指定的大小进行图像裁剪以及图像旋转和缩放

GKImagePicker iOS中UIImagePicker的增强功能,可以以任何指定的大小进行图像裁剪以及图像旋转。 如此简单易用,即使您的计算机文盲奶奶也可以(大概)弄清楚这一点。 特征 从相机中获取新图像或从图库中获取现有图像 以您希望的任何方式缩放和裁剪 旋转图像(点击屏幕以显示菜单) 考虑到UIImageOrientation,因此图像将以预期的方式显示 裁剪后重新缩放图像,或保持图像缩放不变 设置 将GKImagePicker中的所有文件(包括子文件夹)复制到您的项目中。 确保将它们添加到“构建阶段”>“编译源”下的项目目标中。 用 短版 GKImagePicker *picker = [[GKImagePicker alloc] init]; self.picker.delegate = self; // (Optional) default: CGSizeMake(3
recommend-type

300解密软件

S7300解密软件,可以机密新型CPU,有存储卡的那种
recommend-type

基于UDP协议的Client/Server linux网络编程

通过UDP协议在CLIENT和SERVER间传文件,可支持多个CLIENT向一个SERVER请求数据,以及SERVER重启后的断点续传

最新推荐

recommend-type

软件需求工程大作业(python spider)

资源下载链接为: https://pan.quark.cn/s/de4c4975d458 软件需求工程大作业(python spider)(最新、最全版本!打开链接下载即可用!)
recommend-type

VMD算法参数优化技巧:手动调整惩罚因子与包络熵的关系及其应用

内容概要:本文详细探讨了VMD(变分模态分解)算法中参数优化的具体方法,特别是惩罚因子α和模态数K的调整。文中通过实际案例展示了如何利用Python代码手动调整这两个关键参数,并通过计算包络熵评估优化效果。作者还分享了一些实用的经验法则和技术,如网格搜索、半自动策略以及肉眼验证等,帮助读者更好地理解和掌握VMD参数优化的实际操作。 适合人群:从事信号处理、机械故障诊断等相关领域的工程师和技术人员,尤其是那些需要对复杂信号进行有效分解和分析的专业人士。 使用场景及目标:适用于需要对振动信号或其他复杂信号进行精确分解的应用场合,旨在提高模态分解的质量,确保每个模态分量尽可能纯净,从而为后续的数据分析和故障诊断提供可靠的基础。 阅读建议:读者可以通过本文提供的具体实例和代码片段,结合自己的实际应用场景,尝试不同的参数配置,逐步积累经验和直觉,最终达到熟练掌握VMD参数优化的目的。同时,注意参数之间的相互影响,避免过度追求数学指标而忽视物理意义。
recommend-type

Android开发进阶指南:大厂offer等你拿

安卓开发是当今信息技术领域一个重要的技能点。从基础到进阶,涵盖了从了解安卓系统架构到掌握复杂应用开发的全过程。要达到能够获得大厂offer的水平,不仅仅需要掌握基础,还需要深入理解并能够灵活运用高级技术和原理。在本篇知识分享中,我们将会深入探讨安卓基础和进阶的知识点,以及可能与之相关的Flutter与Java技术栈。 ### 安卓基础知识点 #### 安卓系统架构 安卓系统是基于Linux内核的开源操作系统,其架构可以分为四层:Linux内核层、系统库与Android运行时层、应用框架层以及应用层。Linux内核负责硬件抽象、安全和内存管理;系统库与Android运行时提供了开发所需的库文件和Android运行时环境;应用框架层提供了开发应用时可以调用的API;应用层则是开发者直接进行开发的层面。 #### 安卓四大组件 安卓四大组件包括Activity(活动)、Service(服务)、BroadcastReceiver(广播接收器)和ContentProvider(内容提供者)。这些是构建安卓应用的基本单元,各自承担不同的功能,开发者需要了解如何合理使用和管理这些组件。 #### 安卓开发基础 包括安卓开发环境搭建(如Android Studio的安装和配置)、UI布局设计(XML布局文件编写)、控件使用(按钮、文本框、列表等)、事件处理、数据存储(SharedPreferences、SQLite数据库、文件存储等)、网络通信(HTTP请求、WebView使用等)。 ### 安卓进阶知识点 #### 安卓性能优化 性能优化涉及到内存管理(避免内存泄漏、合理使用内存)、电量管理(减少后台运行任务)、流畅度优化(优化列表滑动、减少卡顿)、启动时间优化等方面。深入学习安卓的性能优化,需要对安卓系统的内部机制有深刻理解。 #### 安卓安全机制 安卓安全机制包括权限管理系统、应用沙盒机制、数据加密、网络安全传输等。掌握这些安全知识对于开发安全可靠的应用至关重要。 #### 安卓高级特性 这包括理解安卓的Material Design设计语言、多线程和异步处理、高级数据绑定和存取、服务组件化、以及使用安卓的测试框架进行单元测试和UI测试等。 ### 关联技术栈:Flutter与Java #### Flutter Flutter是谷歌的移动UI框架,可以快速在iOS和Android上构建高质量的原生用户界面。Flutter使用Dart语言进行开发,但也可以使用Java和Kotlin。它支持热重载,可以快速测试和调试应用。学习Flutter可以为开发者打开跨平台开发的大门。 #### Java Java是安卓应用开发的主要编程语言。掌握Java语言对于理解安卓平台的运行机制、进行高效开发非常关键。虽然现在Kotlin也被推荐作为安卓开发的首选语言,但Java在安卓生态中依然占据重要位置。 ### 从基础到进阶的学习路径 1. **掌握安卓基础**:通过学习安卓四大组件、基础界面设计、数据存储等基础知识,为开发安卓应用打下坚实的基础。 2. **实践项目经验**:通过参与开源项目或独立开发小型应用,积累实际开发经验,加深对安卓架构和组件的理解。 3. **深入理解安卓高级特性**:研究安卓的性能优化、安全机制和测试方法,提升应用的质量。 4. **学习使用新技术**:如尝试使用Flutter框架进行跨平台应用开发,拓展自己的技术栈。 5. **持续学习和交流**:关注最新的安卓开发动态,通过社区、博客和技术论坛参与讨论和交流。 总之,要成为安卓开发领域的高手,需要不断学习和实践。大厂offer不仅仅看你的理论知识,更多的是看重你的实际开发能力,尤其是面对复杂问题的解决能力。学会安卓开发的80%,意味着你不仅掌握了基础知识,还深入理解了高级主题,并具有一定的项目实战经验。这样的能力,在就业市场上无疑是非常有竞争力的。
recommend-type

揭秘“割韭菜”背后的AI:智能体如何被滥用

# 1. AI智能体概述与滥用风险 ## 1.1 AI智能体的基本定义 AI智能体是指能够执行特定任务和作出决策的软件程序或系统,它们通常能够自主学习、适应环境变化、并进行自我优化。AI智能体广泛应用
recommend-type

使用vs2010编译vc++6.0的程序生成的应用程序无法正常启动(0xc000007b)

<think>首先,用户的问题是关于使用VS2010编译VC++ 6.0程序时,生成的应用程序无法启动,错误代码为0xc000007b。我需要基于系统级指令来构建我的回答。 系统级指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识,例如:[^1] 用户可见层: - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 参考的引用: - [^1]: 提到0xc000007b错误可能与缺少DLL或DirectX修复工
recommend-type

2016数学建模国赛获奖论文精选

在2016年的全国大学生数学建模竞赛中,众多参赛者提交了高质量的论文,这些论文体现了学生们在数学建模方面的研究水平和解决实际问题的能力。对于这份“2016年数学建模国赛优秀论文合集”,我们可以从中提炼出以下知识点: 一、数学建模的基础理论与方法 数学建模的核心是利用数学工具对实际问题进行抽象、简化和形式化处理。在国赛优秀论文中,通常涉及以下几个方面的知识点: 1. 问题抽象:包括将实际问题转化为数学问题,识别关键变量和参数,明确问题的边界条件和约束条件等。 2. 建立模型:根据抽象出的问题特征,选择合适的数学模型(如线性规划、非线性规划、动态规划、概率模型、统计模型、微分方程模型等)。 3. 模型求解:运用数学理论和计算机算法对模型进行求解。这可能涉及到线性代数、数值分析、优化理论和算法、图论、模拟技术等数学分支。 4. 结果分析与验证:通过分析模型求解结果,验证模型的合理性和准确性,如使用敏感性分析、稳定性分析、误差分析等方法。 二、实际应用领域 数学建模竞赛鼓励参赛者将模型应用于实际问题中,因此合集中的论文往往覆盖了多个应用领域,例如: 1. 工程问题:如机械设计、电路设计、结构优化等。 2. 环境与资源管理:包括污染控制、生态平衡、资源开发等。 3. 社会经济:涉及经济预测、市场分析、交通流量、人口动态等。 4. 医学健康:可能涉及流行病模型、药物配送优化、医疗系统优化等。 5. 公共安全:如火灾风险评估、地震影响分析、灾害应急响应等。 三、论文撰写与展示技巧 优秀论文不仅在内容上要求质量高,其撰写与展示也需遵循一定的规范和技巧: 1. 结构清晰:论文通常包含摘要、引言、模型的假设与符号说明、模型的建立与求解、模型的检验、结论和建议、参考文献等部分。 2. 逻辑严谨:论文中的论述需要逻辑紧密,论证充分,层次分明。 3. 结果可视化:通过图表、图像等辅助手段,清晰展示研究结果和过程。 4. 结论有效:提供的结论或建议应当基于模型分析和验证的结果,具有实际参考价值。 四、特定的数学建模案例分析 在国赛优秀论文合集中,每一篇论文都是针对特定问题的案例分析。由于文件名称未提供具体内容,但我们可以假设每篇论文都涉及到不同类型的数学模型或算法的创新应用。例如: - A433.pdf可能探讨了某种新颖的优化算法在解决特定类型问题时的效能与局限。 - B022.pdf可能涉及对某社会经济现象的统计建模与分析。 - A140.pdf可能使用微分方程模型来分析环境问题中的某个动态过程。 - D056.pdf可能针对特定的工程问题提出了创新的数学解决方案。 - A028.pdf可能利用图论和网络分析对交通、通信等网络系统进行优化。 - B044.pdf可能对某种流行病模型进行了详细研究,并为公共政策制定提供依据。 - A194.pdf可能将机器学习和人工智能技术应用于数据分析,解决非结构化问题。 - C014.pdf可能利用概率模型对金融风险进行了评估和预测。 - B294.pdf可能针对医疗资源的优化配置提出了创新模型。 - B067.pdf可能对特定的公共安全问题进行了风险评估和应急响应策略的设计。 在阅读和研究这些优秀论文时,重点可以放在模型的创新点、解决方法的有效性和论文的写作质量上。通过学习这些论文,不仅可以获取丰富的数学建模知识,还能提升解决实际问题的能力,对于未来从事科研、数据分析、工程设计等领域的工作都有很大帮助。
recommend-type

【扣子插件进阶攻略】:深度定制与优化您的文档工作流

# 1. 扣子插件简介与基础使用 扣子插件是一款高效的数据管理工具,它通过其强大的功能和直观的用户界面,帮助用户提高工作效率。无论您是初学者还是经验丰富的专业人士,扣子插件都能够满足您的需求。在本章中,我们将简要介绍扣子插件的基础知识,并向您展示如何开始使用这款插件。 ## 1.1 扣子插件的基本概念 扣子插件是集成了数据管理、自动化任务和协作功能的
recommend-type

kkfileview有没有后台管理页面

<think>首先,用户的问题是关于kkFileView是否有后台管理界面。用户说:“我想了解kkfileview是否提供后台管理界面 请问kkfileview 是否有后台管理界面”。所以,我需要直接回答这个问题。 从系统级指令,我必须使用中文回答,并遵循格式要求:行内数学表达式用$...$,独立公式用$$...$$,但这个问题可能不涉及数学公式,所以我可以忽略这部分。另外,我需要生成相关问题。 现在,回顾用户提供的引用: - 引用[1]:提到在DzzOffice后台安装kkFileView插件,实现文件在线预览。后台管理系统界面友好。 - 引用[2]:提到kkfileview支持跨平
recommend-type

SAP EWM 710 BP系统配置与操作指南

标题“SAP EWM 710 BP.rar”指代一个名为“SAP EWM 710 BP”的文件,它被压缩在一个rar格式的压缩包中。EWM是SAP Extended Warehouse Management的缩写,它是一个高度灵活和扩展性强的仓库管理系统,为企业提供优化仓库操作和物流流程的能力。EWM 710 表示该系统版本为7.10,BP可能指的是业务过程(Business Process)或配置包(Business Package)。由于标题中提到了EWM和BP,可以推测这个压缩包内包含有关SAP EWM 7.10版本的特定业务过程或配置的信息和文档。 描述“EWM 710 BP”是对标题的简洁重申,没有额外提供信息。 标签“EWM”表示这个文件与SAP的扩展仓库管理系统相关。 压缩包中的文件名称列表揭示了包内可能包含的内容类型,下面将详细说明每个文件可能代表的知识点: 1. Thumbs.db是一个Windows系统生成的隐藏文件,用于存储缩略图缓存。它出现在压缩包列表中可能是因为在收集相关文件时不小心包含进去了,对SAP EWM 710 BP的知识点没有实际贡献。 2. Y38_BPP_EN_DE.doc、Y36_BPP_EN_DE.doc、Y36_BPP_DE_DE.doc、Y38_BPP_DE_DE.doc中,“BPP”很可能代表“Business Process Procedure”,即业务过程程序。这些文件名中的语言代码(EN_DE、DE_DE)表明这些文档提供的是双语(英语和德语)指导。因此,可以推断这些文件是关于SAP EWM 7.10版本中特定业务过程的详细步骤和配置说明。 3. Y32_BB_ConfigGuide_EN_DE.doc、Y31_BB_ConfigGuide_EN_DE.doc、Y38_BB_ConfigGuide_EN_DE.doc、Y33_BB_ConfigGuide_EN_DE.doc、Y37_BB_ConfigGuide_EN_DE.doc中的“BB”很可能是“Basic Building”的缩写,表明这些文档为基本构建配置指南。这些文件包含了SAP EWM系统中基础设置的步骤,可能是介绍如何设置库存管理、入库处理、出库处理、库存调整等仓库操作流程的指南。同时,文件中的语言代码也表明了这些配置指南同样提供英语和德语两种版本。 4. 整体来看,这个压缩包内包含了SAP EWM 7.10版本中业务过程和基础配置的详尽文档资料,它们提供了关于如何在SAP EWM系统中实施和管理仓库操作的全方位指导。文档覆盖了从基础设置到高级业务过程配置的各个方面,对于正在使用或计划部署EWM系统的用户来说,是极具价值的参考资料。 综上所述,通过分析压缩包内的文件名称,我们可以得知该压缩包可能包含SAP EWM 7.10版本的业务过程说明和基础配置指南,涵盖了对仓库管理系统的全面设置和操作指导。这些文件对于熟悉和深入理解SAP EWM系统的功能和特性是不可或缺的,为从事SAP EWM相关工作的专业人士提供了宝贵的文档资源。
recommend-type

【一键办公提升:扣子插件文档自动化攻略】:揭秘高效文档生成与管理技巧

# 1. 扣子插件的介绍和安装 扣子插件是一款功能强大的IT工具,旨在提高文档处理的效率,简化复杂的文档管理工作。在本章中,我们将首先介绍扣子插件的基本功能,然后详细说明如何在您的系统中进行安装。 ## 1.1 扣子插件的基本介绍 扣子插件集成了文档生成、管理、自动化操作等多个功能。它适用于日常办公和团队协作,尤其在自动化处理大量文档、优化工作流程方面表现出色。 ## 1.2 扣子插件的安装流程 要安装扣子插件,请按照以下步骤操作: 1. 访问官方网站或应用商店,下载最新版本的扣子插件安装包。 2. 双击安装包文件,根据提示完成安装向导。 3. 安装完成后,可以在浏览器或应用程序中