table.exec.state.ttl 什么作用

时间: 2025-06-15 14:05:57 浏览: 30
<think>嗯,用户问的是Flink中的table.exec.state.ttl的作用和功能。我需要先回忆一下Flink的State TTL相关知识。根据提供的引用内容,特别是引用[1]和[2],State TTL是用来管理状态的生命周期的,避免状态无限增长。对于Table API或SQL来说,这个参数应该是控制状态存活时间的。 引用[1]提到state_ttl是管理状态数据生命周期的机制,而引用[2]详细说明了如何配置StateTtlConfig,包括时间语义、更新类型等。可能table.exec.state.ttl是一个配置参数,用于设置SQL或Table作业中状态的TTL。用户可能在使用Flink SQL时遇到状态增长的问题,需要了解如何配置来优化资源使用。 另外,引用[4]提到FlinkSQL中的时间属性,包括事件时间和处理时间,可能与状态管理有关。而table.exec.state.ttl可能影响这些时间相关的状态保留时间。需要解释这个参数的作用,比如自动清理过期状态,避免OOM,以及如何配置时间值。 可能用户在使用Flink SQL进行窗口聚合或Join操作时,状态会保存很长时间,导致资源消耗。启用这个参数可以自动清理过期状态,保证作业稳定性。需要说明参数的使用场景、配置方法和注意事项,比如时间单位、配置方式等。还要结合引用中的信息,比如状态类型(ListState、ReducingState等)可能都会受到TTL的影响。 同时,用户可能需要知道默认值是什么,以及如何根据业务需求调整。比如,如果作业需要处理迟到数据,TTL设置过长或过短的影响。此外,引用[3]提到ReducingState使用ReduceFunction,可能TTL的设置会影响这些状态的聚合结果,需要确保在状态过期前完成必要的计算。 最后,应该给出配置示例,并提醒用户根据实际业务调整参数,参考官方文档。可能还需要区分table.exec.state.ttl和DataStream API中的State TTL配置方式的不同,强调在Table/SQL中通过该参数统一管理。</think>### Flink `table.exec.state.ttl` 的功能及作用 #### 1. **基本功能** `table.exec.state.ttl` 是 Flink SQL/Table API 中用于控制状态数据生存时间(Time-To-Live)的配置参数。其核心作用是通过设定一个时间阈值,自动清理表中状态数据中**过期**的部分,避免状态无限增长导致内存或存储资源耗尽[^1][^2]。 #### 2. **作用场景** - **流式聚合操作**(如 `GROUP BY`、窗口聚合):在无界流处理中,状态会持续累积。例如,按小时窗口统计时,过期的窗口数据可通过 TTL 自动清理。 - **流表 Join**(如双流 Join):Join 操作需缓存两侧流的数据以匹配记录,TTL 可清除长时间未匹配成功的状态[^4]。 - **状态化算子优化**:减少检查点(Checkpoint)和保存点(Savepoint)的大小,提升故障恢复效率。 #### 3. **实现原理** - **时间语义绑定**:TTL 的时间计算通常基于**事件时间**(Event Time)或**处理时间**(Processing Time),需根据业务需求配置[^4]。 - **状态后端支持**:Flink 的状态后端(如 RocksDB、Heap)会自动应用 TTL 策略,按时间戳淘汰过期状态。 - **清理触发机制**:在状态访问或定期检查时触发清理,具体策略由 `UpdateType` 控制(如 OnReadAndWrite 或 OnCreateAndWrite)。 #### 4. **配置方式** 在 Flink SQL 中可通过以下方式配置: ```sql SET table.exec.state.ttl = '3d'; -- 设置状态保留3天 ``` 或提交作业时通过 `flink-conf.yaml` 指定: ```yaml table.exec.state.ttl: 72h ``` 时间单位支持 `ms`、`s`、`m`、`h`、`d`。 #### 5. **注意事项** - **数据完整性**:TTL 设置过短可能导致**状态提前丢失**,影响计算结果(如窗口未关闭时数据被清理)。 - **迟到数据处理**:若业务允许迟到数据,需确保 TTL 大于最大允许迟到时间。 - **默认行为**:未显式配置时,Flink 不会自动清理状态,需根据业务显式设置。 #### 6. **与 DataStream API 的区别** 在 DataStream API 中需通过 `StateTtlConfig` 逐状态描述符配置,而 Table API 通过 `table.exec.state.ttl` **全局生效**,简化了 SQL 作业的管理[^4]。 --- ###
阅读全文

相关推荐

"C:\Program Files (x86)\Java\jdk1.8.0_102\bin\java.exe" -agentlib:jdwp=transport=dt_socket,address=127.0.0.1:21096,suspend=y,server=n -javaagent:C:\Users\Administrator\AppData\Local\JetBrains\IntelliJIdea2021.2\captureAgent\debugger-agent.jar=file:/C:/Users/Administrator/AppData/Local/Temp/capture.props -Dfile.encoding=UTF-8 -classpath C:\Users\Administrator\AppData\Local\Temp\classpath849000959.jar com.tongchuang.realtime.mds.ULEDataanomalyanalysis 已连接到目标 VM, 地址: ''127.0.0.1:21096',传输: '套接字'' SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/F:/flink/flinkmaven/repository/org/apache/logging/log4j/log4j-slf4j-impl/2.10.0/log4j-slf4j-impl-2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/F:/flink/flinkmaven/repository/org/slf4j/slf4j-log4j12/1.7.25/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] 加载配置: 30 个参数 配置加载完成,检查点时间: Wed Aug 06 07:55:06 CST 2025 广播配置更新完成, 配置项: 30 Exception in thread "main" org.apache.flink.runtime.client.JobExecutionException: Job execution failed. at org.apache.flink.runtime.jobmaster.JobResult.toJobExecutionResult(JobResult.java:144) at org.apache.flink.runtime.minicluster.MiniClusterJobClient.lambda$getJobExecutionResult$3(MiniClusterJobClient.java:137) at java.util.concurrent.CompletableFuture.uniApply(CompletableFuture.java:602) at java.util.concurrent.CompletableFuture$UniApply.tryFire(CompletableFuture.java:577) at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:474) at java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1962) at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.lambda$invokeRpc$0(AkkaInvocationHandler.java:237) at java.util.concurrent.CompletableFuture.uniWhenComplete(CompletableFuture.java:760) at java.util.concurrent.CompletableFuture$UniWhenComplete.tryFire(CompletableFuture.java:736) at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:474) at java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1962) at org.apache.flink.runtime.concurrent.FutureUtils$1.onComplete(FutureUtils.java:1081) at akka.dispatch.OnComplete.internal(Future.scala:264) at akka.dispatch.OnComplete.internal(Future.scala:261) at akka.dispatch.japi$CallbackBridge.apply(Future.scala:191) at akka.dispatch.japi$CallbackBridge.apply(Future.scala:188) at scala.concurrent.impl.CallbackRunnable.run$$$capture(Promise.scala:60) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala) at org.apache.flink.runtime.concurrent.Executors$DirectExecutionContext.execute(Executors.java:73) at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:68) at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1(Promise.scala:284) at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1$adapted(Promise.scala:284) at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:284) at akka.pattern.PromiseActorRef.$bang(AskSupport.scala:573) at akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:22) at akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:21) at scala.concurrent.Future.$anonfun$andThen$1(Future.scala:532) at scala.concurrent.impl.Promise.liftedTree1$1(Promise.scala:29) at scala.concurrent.impl.Promise.$anonfun$transform$1(Promise.scala:29) at scala.concurrent.impl.CallbackRunnable.run$$$capture(Promise.scala:60) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala) at akka.dispatch.BatchingExecutor$AbstractBatch.processBatch(BatchingExecutor.scala:55) at akka.dispatch.BatchingExecutor$BlockableBatch.$anonfun$run$1(BatchingExecutor.scala:91) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12) at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:81) at akka.dispatch.BatchingExecutor$BlockableBatch.run(BatchingExecutor.scala:91) at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:40) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(ForkJoinExecutorConfigurator.scala:44) at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at akka.dispatch.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at akka.dispatch.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Caused by: org.apache.flink.runtime.JobException: Recovery is suppressed by NoRestartBackoffTimeStrategy at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.handleFailure(ExecutionFailureHandler.java:138) at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.getFailureHandlingResult(ExecutionFailureHandler.java:82) at org.apache.flink.runtime.scheduler.DefaultScheduler.handleTaskFailure(DefaultScheduler.java:216) at org.apache.flink.runtime.scheduler.DefaultScheduler.maybeHandleTaskFailure(DefaultScheduler.java:206) at org.apache.flink.runtime.scheduler.DefaultScheduler.updateTaskExecutionStateInternal(DefaultScheduler.java:197) at org.apache.flink.runtime.scheduler.SchedulerBase.updateTaskExecutionState(SchedulerBase.java:682) at org.apache.flink.runtime.scheduler.SchedulerNG.updateTaskExecutionState(SchedulerNG.java:79) at org.apache.flink.runtime.jobmaster.JobMaster.updateTaskExecutionState(JobMaster.java:435) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcInvocation(AkkaRpcActor.java:305) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcMessage(AkkaRpcActor.java:212) at org.apache.flink.runtime.rpc.akka.FencedAkkaRpcActor.handleRpcMessage(FencedAkkaRpcActor.java:77) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleMessage(AkkaRpcActor.java:158) at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:26) at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:21) at scala.PartialFunction.applyOrElse(PartialFunction.scala:123) at scala.PartialFunction.applyOrElse$(PartialFunction.scala:122) at akka.japi.pf.UnitCaseStatement.applyOrElse(CaseStatements.scala:21) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172) at akka.actor.Actor.aroundReceive(Actor.scala:517) at akka.actor.Actor.aroundReceive$(Actor.scala:515) at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:225) at akka.actor.ActorCell.receiveMessage$$$capture(ActorCell.scala:592) at akka.actor.ActorCell.receiveMessage(ActorCell.scala) at akka.actor.ActorCell.invoke(ActorCell.scala:561) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) at akka.dispatch.Mailbox.run(Mailbox.scala:225) at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ... 4 more Caused by: java.lang.NullPointerException: No key set. This method should not be called outside of a keyed context. at org.apache.flink.util.Preconditions.checkNotNull(Preconditions.java:76) at org.apache.flink.runtime.state.heap.StateTable.checkKeyNamespacePreconditions(StateTable.java:270) at org.apache.flink.runtime.state.heap.StateTable.get(StateTable.java:260) at org.apache.flink.runtime.state.heap.StateTable.get(StateTable.java:143) at org.apache.flink.runtime.state.heap.HeapMapState.get(HeapMapState.java:86) at org.apache.flink.runtime.state.ttl.TtlMapState.lambda$getWrapped$0(TtlMapState.java:64) at org.apache.flink.runtime.state.ttl.AbstractTtlDecorator.getWrappedWithTtlCheckAndUpdate(AbstractTtlDecorator.java:97) at org.apache.flink.runtime.state.ttl.TtlMapState.getWrapped(TtlMapState.java:63) at org.apache.flink.runtime.state.ttl.TtlMapState.contains(TtlMapState.java:96) at org.apache.flink.runtime.state.UserFacingMapState.contains(UserFacingMapState.java:72) at com.tongchuang.realtime.mds.ULEDataanomalyanalysis$OptimizedAnomalyDetectionFunction.processBroadcastElement(ULEDataanomalyanalysis.java:767) at org.apache.flink.streaming.api.operators.co.CoBroadcastWithKeyedOperator.processElement2(CoBroadcastWithKeyedOperator.java:133) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory.processRecord2(StreamTwoInputProcessorFactory.java:221) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory.lambda$create$1(StreamTwoInputProcessorFactory.java:190) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory$StreamTaskNetworkOutput.emitRecord(StreamTwoInputProcessorFactory.java:291) at org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.processElement(AbstractStreamTaskNetworkInput.java:134) at org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.emitNext(AbstractStreamTaskNetworkInput.java:105) at org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:66) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessor.processInput(StreamTwoInputProcessor.java:98) at org.apache.flink.streaming.runtime.tasks.StreamTask.processInput(StreamTask.java:423) at org.apache.flink.streaming.runtime.tasks.mailbox.MailboxProcessor.runMailboxLoop(MailboxProcessor.java:204) at org.apache.flink.streaming.runtime.tasks.StreamTask.runMailboxLoop(StreamTask.java:684) at org.apache.flink.streaming.runtime.tasks.StreamTask.executeInvoke(StreamTask.java:639) at org.apache.flink.streaming.runtime.tasks.StreamTask.runWithCleanUpOnFail(StreamTask.java:650) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:623) at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:779) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:566) at java.lang.Thread.run(Thread.java:745) 与目标 VM 断开连接, 地址为: ''127.0.0.1:21096',传输: '套接字'' 进程已结束,退出代码为 1

上面提出DA-LT-4BT0007点位离线,但未生成离线异常,请分析原因后生成完整修改后代码。生成package com.tongchuang.realtime.mds; import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONObject; import com.alibaba.fastjson.JSONObject; import com.tongchuang.realtime.bean.ULEParamConfig; import com.tongchuang.realtime.util.KafkaUtils; import org.apache.flink.api.common.eventtime.WatermarkStrategy; import org.apache.flink.api.common.state.*; import org.apache.flink.api.common.time.Time; import org.apache.flink.api.common.typeinfo.BasicTypeInfo; import org.apache.flink.api.common.typeinfo.TypeHint; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.configuration.Configuration; import org.apache.flink.connector.kafka.source.KafkaSource; import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer; import org.apache.flink.streaming.api.datastream.*; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.co.KeyedBroadcastProcessFunction; import org.apache.flink.streaming.api.functions.source.RichSourceFunction; import org.apache.flink.util.Collector; import org.apache.flink.util.OutputTag; import java.io.Serializable; import java.sql.*; import java.text.ParseException; import java.text.SimpleDateFormat; import java.time.Duration; import java.util.*; import java.util.Date; import java.util.concurrent.TimeUnit; public class ULEDataanomalyanalysis { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); env.getConfig().setAutoWatermarkInterval(1000); // Kafka消费者配置 KafkaSource<String> kafkaConsumer = KafkaUtils.getKafkaConsumer( "realdata_minute", "minutedata_uledataanomalyanalysis", OffsetsInitializer.latest() ); // 修改Watermark策略 DataStreamSource<String> kafkaDS = env.fromSource( kafkaConsumer, WatermarkStrategy.<String>forBoundedOutOfOrderness(Duration.ofMinutes(1)) .withTimestampAssigner((event, timestamp) -> { try { JSONObject json = JSON.parseObject(event); return new SimpleDateFormat("yyyy-MM-dd HH:mm").parse(json.getString("times")).getTime(); } catch (ParseException e) { return System.currentTimeMillis(); } }), "realdata_uledataanomalyanalysis" ); kafkaDS.print("分钟数据流"); // 解析JSON并拆分tag SingleOutputStreamOperator<JSONObject> splitStream = kafkaDS .map(JSON::parseObject) .returns(TypeInformation.of(JSONObject.class)) .flatMap((JSONObject value, Collector<JSONObject> out) -> { JSONObject data = value.getJSONObject("datas"); String time = value.getString("times"); for (String tag : data.keySet()) { JSONObject tagData = data.getJSONObject(tag); JSONObject newObj = new JSONObject(); newObj.put("time", time); newObj.put("tag", tag); newObj.put("ontime", tagData.getDouble("ontime")); newObj.put("avg", tagData.getDouble("avg")); out.collect(newObj); } }) .returns(TypeInformation.of(JSONObject.class)) .name("Split-By-Tag"); // 配置数据源 DataStream<ConfigCollection> configDataStream = env .addSource(new MysqlConfigSource()) .setParallelism(1) .filter(Objects::nonNull) .name("Config-Source"); // 标签值数据流 DataStream<Map<String, Object>> tagValueStream = splitStream .map(json -> { Map<String, Object> valueMap = new HashMap<>(); valueMap.put("tag", json.getString("tag")); valueMap.put("value", "436887485805570949".equals(json.getString("datatype")) ? json.getDouble("ontime") : json.getDouble("avg")); return valueMap; }) .returns(new TypeHint<Map<String, Object>>() {}) .name("Tag-Value-Stream"); // 合并配置流和标签值流 DataStream<Object> broadcastStream = configDataStream .map(config -> (Object) config) .returns(TypeInformation.of(Object.class)) .union( tagValueStream.map(tagValue -> (Object) tagValue) .returns(TypeInformation.of(Object.class)) ); // 广播流 BroadcastStream<Object> finalBroadcastStream = broadcastStream .broadcast(Descriptors.configStateDescriptor, Descriptors.tagValuesDescriptor); // 按tag分组 KeyedStream<JSONObject, String> keyedStream = splitStream .keyBy(json -> json.getString("tag")); BroadcastConnectedStream<JSONObject, Object> connectedStream = keyedStream.connect(finalBroadcastStream); // 异常检测处理 SingleOutputStreamOperator<JSONObject> anomalyStream = connectedStream .process(new OptimizedAnomalyDetectionFunction()) .name("Anomaly-Detection"); anomalyStream.print("异常检测结果"); // 离线检测结果侧输出 DataStream<String> offlineCheckStream = anomalyStream.getSideOutput(OptimizedAnomalyDetectionFunction.OFFLINE_CHECK_TAG); offlineCheckStream.print("离线检测结果"); env.execute("uledataanomalyanalysis"); } // 配置集合类 public static class ConfigCollection implements Serializable { private static final long serialVersionUID = 1L; public final Map<String, List> tagToConfigs; public final Map<String, ULEParamConfig> encodeToConfig; public final Set<String> allTags; public final long checkpointTime; public ConfigCollection(Map<String, List> tagToConfigs, Map<String, ULEParamConfig> encodeToConfig) { this.tagToConfigs = new HashMap<>(tagToConfigs); this.encodeToConfig = new HashMap<>(encodeToConfig); this.allTags = new HashSet<>(tagToConfigs.keySet()); this.checkpointTime = System.currentTimeMillis(); } } // MySQL配置源 public static class MysqlConfigSource extends RichSourceFunction<ConfigCollection> { private volatile boolean isRunning = true; private final long interval = TimeUnit.MINUTES.toMillis(5); @Override public void run(SourceContext<ConfigCollection> ctx) throws Exception { while (isRunning) { ConfigCollection newConfig = loadParams(); if (newConfig != null) { ctx.collect(newConfig); System.out.println("配置加载完成,检查点时间: " + new Date(newConfig.checkpointTime)); } else { System.out.println("配置加载失败"); } Thread.sleep(interval); } } private ConfigCollection loadParams() { Map<String, List> tagToConfigs = new HashMap<>(5000); Map<String, ULEParamConfig> encodeToConfig = new HashMap<>(5000); String url = "jdbc:mysql://10.51.37.73:3306/eps?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8"; String user = "root"; String password = "6CKIm5jDVsLrahSw"; String query = "SELECT F_tag AS tag, F_enCode AS encode, F_dataTypes AS datatype, " + "F_isConstantValue AS constantvalue, F_isOnline AS isonline, " + "F_isSync AS issync, F_syncParaEnCode AS syncparaencode, " + "F_isZero AS iszero, F_isHigh AS ishigh, F_highThreshold AS highthreshold, " + "F_isLow AS islow, F_lowThreshold AS lowthreshold, F_duration AS duration " + "FROM t_equipmentparameter " + "WHERE F_enabledmark = '1' AND (F_isConstantValue='1' OR F_isZero='1' " + "OR F_isHigh='1' OR F_isLow='1' OR F_isOnline='1' OR F_isSync='1')"; try (Connection conn = DriverManager.getConnection(url, user, password); Statement stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery(query)) { while (rs.next()) { ULEParamConfig config = new ULEParamConfig(); config.tag = rs.getString("tag"); config.encode = rs.getString("encode"); config.datatype = rs.getString("datatype"); config.constantvalue = rs.getInt("constantvalue"); config.iszero = rs.getInt("iszero"); config.ishigh = rs.getInt("ishigh"); config.highthreshold = rs.getDouble("highthreshold"); config.islow = rs.getInt("islow"); config.lowthreshold = rs.getDouble("lowthreshold"); config.duration = rs.getLong("duration"); config.isonline = rs.getInt("isonline"); config.issync = rs.getInt("issync"); config.syncparaencode = rs.getString("syncparaencode"); if (config.encode == null || config.encode.isEmpty()) { System.err.println("忽略无效配置: 空encode"); continue; } String tag = config.tag; tagToConfigs.computeIfAbsent(tag, k -> new ArrayList<>(10)).add(config); encodeToConfig.put(config.encode, config); } System.out.println("加载配置: " + encodeToConfig.size() + " 个参数"); return new ConfigCollection(tagToConfigs, encodeToConfig); } catch (SQLException e) { System.err.println("加载参数配置错误:"); e.printStackTrace(); return null; } } @Override public void cancel() { isRunning = false; } } // 状态描述符 public static class Descriptors { public static final MapStateDescriptor<Void, ConfigCollection> configStateDescriptor = new MapStateDescriptor<>( "configState", TypeInformation.of(Void.class), TypeInformation.of(ConfigCollection.class) ); public static final MapStateDescriptor<String, Double> tagValuesDescriptor = new MapStateDescriptor<>( "tagValuesBroadcastState", BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.DOUBLE_TYPE_INFO ); } // 优化后的异常检测函数(重点修复离线检测) public static class OptimizedAnomalyDetectionFunction extends KeyedBroadcastProcessFunction<String, JSONObject, Object, JSONObject> { public static final OutputTag<String> OFFLINE_CHECK_TAG = new OutputTag<String>("offline-check"){}; // 状态管理 private transient MapState<String, AnomalyState> stateMap; private transient MapState<String, Double> lastValuesMap; private transient MapState<String, Long> lastDataTimeMap; private transient MapState<String, Long> offlineTimerState; private transient MapState<String, Long> tagInitTimeState; // 新增:标签初始化时间状态 private transient SimpleDateFormat timeFormat; private transient long lastSyncLogTime = 0; @Override public void open(Configuration parameters) { StateTtlConfig ttlConfig = StateTtlConfig.newBuilder(Time.days(30)) .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite) .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired) .cleanupFullSnapshot() .build(); // 异常状态存储 MapStateDescriptor<String, AnomalyState> stateDesc = new MapStateDescriptor<>( "anomalyState", BasicTypeInfo.STRING_TYPE_INFO, TypeInformation.of(AnomalyState.class) ); stateDesc.enableTimeToLive(ttlConfig); stateMap = getRuntimeContext().getMapState(stateDesc); // 最新值存储 MapStateDescriptor<String, Double> valuesDesc = new MapStateDescriptor<>( "lastValuesState", BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.DOUBLE_TYPE_INFO ); valuesDesc.enableTimeToLive(ttlConfig); lastValuesMap = getRuntimeContext().getMapState(valuesDesc); // 最后数据时间存储 MapStateDescriptor<String, Long> timeDesc = new MapStateDescriptor<>( "lastDataTimeState", BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO ); timeDesc.enableTimeToLive(ttlConfig); lastDataTimeMap = getRuntimeContext().getMapState(timeDesc); // 离线检测定时器状态 MapStateDescriptor<String, Long> timerDesc = new MapStateDescriptor<>( "offlineTimerState", BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO ); timerDesc.enableTimeToLive(ttlConfig); offlineTimerState = getRuntimeContext().getMapState(timerDesc); // 新增:标签初始化时间状态 MapStateDescriptor<String, Long> initTimeDesc = new MapStateDescriptor<>( "tagInitTimeState", BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO ); initTimeDesc.enableTimeToLive(ttlConfig); tagInitTimeState = getRuntimeContext().getMapState(initTimeDesc); timeFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm"); } @Override public void processElement(JSONObject data, ReadOnlyContext ctx, Collector<JSONObject> out) throws Exception { String tag = ctx.getCurrentKey(); String timeStr = data.getString("time"); long eventTime = timeFormat.parse(timeStr).getTime(); // 更新最后数据时间 lastDataTimeMap.put(tag, eventTime); // 获取广播配置 ConfigCollection configCollection = getBroadcastConfig(ctx); if (configCollection == null) return; List configs = configCollection.tagToConfigs.get(tag); if (configs == null || configs.isEmpty()) return; // 清理无效状态 List<String> keysToRemove = new ArrayList<>(); for (String encode : stateMap.keys()) { boolean found = false; for (ULEParamConfig cfg : configs) { if (cfg.encode.equals(encode)) { found = true; break; } } if (!found) { System.out.println("清理过期状态: " + encode); keysToRemove.add(encode); } } for (String encode : keysToRemove) { stateMap.remove(encode); } double value = 0; boolean valueSet = false; // 检查是否需要离线检测 boolean hasOnlineConfig = false; long minDuration = Long.MAX_VALUE; for (ULEParamConfig config : configs) { if (config.isonline == 1) { hasOnlineConfig = true; minDuration = Math.min(minDuration, config.duration); // 初始化标签检测时间(如果尚未初始化) if (!tagInitTimeState.contains(tag)) { tagInitTimeState.put(tag, System.currentTimeMillis()); } } } // 管理离线检测定时器 if (hasOnlineConfig) { // 删除现有定时器 Long currentTimer = offlineTimerState.get(tag); if (currentTimer != null) { ctx.timerService().deleteEventTimeTimer(currentTimer); } // 注册新定时器(使用最小duration) long offlineTimeout = eventTime + minDuration * 60 * 1000; ctx.timerService().registerEventTimeTimer(offlineTimeout); offlineTimerState.put(tag, offlineTimeout); // 重置离线状态(数据到达表示恢复) for (ULEParamConfig config : configs) { if (config.isonline == 1) { AnomalyState state = getOrCreateState(config.encode); AnomalyStatus status = state.getStatus(6); if (status.reported) { reportAnomaly(6, 0, 0.0, timeStr, config, out); status.reset(); stateMap.put(config.encode, state); System.out.println("离线恢复: tag=" + tag + ", encode=" + config.encode); } } } } // 遍历配置项进行异常检测 for (ULEParamConfig config : configs) { if (!valueSet) { value = "436887485805570949".equals(config.datatype) ? data.getDouble("ontime") : data.getDouble("avg"); lastValuesMap.put(tag, value); valueSet = true; } AnomalyState state = getOrCreateState(config.encode); // 处理异常类型 checkConstantValueAnomaly(config, value, timeStr, state, out); // 1. 恒值检测 checkZeroValueAnomaly(config, value, timeStr, state, out); // 2. 零值检测 checkThresholdAnomaly(config, value, timeStr, state, out); // 3. 上阈值, 4. 下阈值 checkSyncAnomaly(config, value, timeStr, state, configCollection, ctx, out); // 5. 同步检测 stateMap.put(config.encode, state); } } @Override public void onTimer(long timestamp, OnTimerContext ctx, Collector<JSONObject> out) throws Exception { String tag = ctx.getCurrentKey(); Long lastEventTime = lastDataTimeMap.get(tag); ConfigCollection configCollection = getBroadcastConfig(ctx); if (configCollection == null) return; List configs = configCollection.tagToConfigs.get(tag); if (configs == null) return; // 检查所有需要离线检测的配置项 boolean hasOnlineConfig = false; for (ULEParamConfig config : configs) { if (config.isonline == 1) { hasOnlineConfig = true; AnomalyState state = getOrCreateState(config.encode); AnomalyStatus status = state.getStatus(6); // 核心修复:处理从未收到数据的情况 if (lastEventTime == null) { // 获取标签初始化时间 Long initTime = tagInitTimeState.get(tag); if (initTime == null) { // 如果状态中不存在,使用配置加载时间 initTime = configCollection.checkpointTime; tagInitTimeState.put(tag, initTime); } // 检查是否超过配置的duration long elapsed = System.currentTimeMillis() - initTime; long durationMs = config.duration * 60 * 1000; if (elapsed >= durationMs) { if (!status.reported) { String triggerTime = timeFormat.format(new Date()); reportAnomaly(6, 1, 0.0, triggerTime, config, out); status.reported = true; // 输出到侧输出流 ctx.output(OFFLINE_CHECK_TAG, String.format("离线异常(从未收到数据): tag=%s, encode=%s, 初始化时间=%s, 当前时间=%s, 时间差=%dms (阈值=%dms)", config.tag, config.encode, timeFormat.format(new Date(initTime)), triggerTime, elapsed, durationMs) ); System.out.println("检测到从未接收数据的离线异常: " + config.tag); } } } // 处理已有数据但超时的情况 else if (timestamp - lastEventTime >= config.duration * 60 * 1000) { if (!status.reported) { String triggerTime = timeFormat.format(new Date(timestamp)); reportAnomaly(6, 1, 0.0, triggerTime, config, out); status.reported = true; ctx.output(OFFLINE_CHECK_TAG, String.format("离线异常: tag=%s, encode=%s, 最后数据时间=%s, 超时时间=%s, 时间差=%dms (阈值=%dms)", config.tag, config.encode, timeFormat.format(new Date(lastEventTime)), triggerTime, timestamp - lastEventTime, config.duration * 60 * 1000) ); System.out.println("检测到数据中断的离线异常: " + config.tag); } } else { // 数据已恢复,重置状态 if (status.reported) { reportAnomaly(6, 0, 0.0, timeFormat.format(new Date()), config, out); status.reset(); System.out.println("离线状态恢复: " + config.tag); } } stateMap.put(config.encode, state); } } // 重新注册定时器(每分钟检查一次) if (hasOnlineConfig) { long newTimeout = timestamp + TimeUnit.MINUTES.toMillis(1); ctx.timerService().registerEventTimeTimer(newTimeout); offlineTimerState.put(tag, newTimeout); } else { offlineTimerState.remove(tag); } } // 恒值检测 - 异常类型1 private void checkConstantValueAnomaly(ULEParamConfig config, double currentValue, String timeStr, AnomalyState state, Collector<JSONObject> out) { if (config.constantvalue != 1) return; try { AnomalyStatus status = state.getStatus(1); long durationThreshold = config.duration * 60 * 1000; Date timestamp = timeFormat.parse(timeStr); if (status.lastValue == null) { status.lastValue = currentValue; status.lastChangeTime = timestamp; return; } if (Math.abs(currentValue - status.lastValue) > 0.001) { status.lastValue = currentValue; status.lastChangeTime = timestamp; if (status.reported) { reportAnomaly(1, 0, currentValue, timeStr, config, out); } status.reset(); return; } long elapsed = timestamp.getTime() - status.lastChangeTime.getTime(); if (elapsed > durationThreshold) { if (!status.reported) { reportAnomaly(1, 1, currentValue, timeStr, config, out); status.reported = true; } } } catch (Exception e) { System.err.println("恒值检测错误: " + config.encode + " - " + e.getMessage()); } } // 零值检测 - 异常类型2 private void checkZeroValueAnomaly(ULEParamConfig config, double currentValue, String timeStr, AnomalyState state, Collector<JSONObject> out) { if (config.iszero != 1) return; try { AnomalyStatus status = state.getStatus(2); Date timestamp = timeFormat.parse(timeStr); boolean isZero = Math.abs(currentValue) < 0.001; if (isZero) { if (status.startTime == null) { status.startTime = timestamp; } else if (!status.reported) { long elapsed = timestamp.getTime() - status.startTime.getTime(); if (elapsed >= config.duration * 60 * 1000) { reportAnomaly(2, 1, currentValue, timeStr, config, out); status.reported = true; } } } else { if (status.reported) { reportAnomaly(2, 0, currentValue, timeStr, config, out); status.reset(); } else if (status.startTime != null) { status.startTime = null; } } } catch (Exception e) { System.err.println("零值检测错误: " + config.encode + " - " + e.getMessage()); } } // 阈值检测 - 异常类型3(上阈值)和4(下阈值) private void checkThresholdAnomaly(ULEParamConfig config, double currentValue, String timeStr, AnomalyState state, Collector<JSONObject> out) { try { if (config.ishigh == 1) { AnomalyStatus highStatus = state.getStatus(3); processThresholdAnomaly(highStatus, currentValue, timeStr, currentValue > config.highthreshold, config, 3, out); } if (config.islow == 1) { AnomalyStatus lowStatus = state.getStatus(4); processThresholdAnomaly(lowStatus, currentValue, timeStr, currentValue < config.lowthreshold, config, 4, out); } } catch (Exception e) { System.err.println("阈值检测错误: " + config.encode + " - " + e.getMessage()); } } private void processThresholdAnomaly(AnomalyStatus status, double currentValue, String timeStr, boolean isAnomaly, ULEParamConfig config, int anomalyType, Collector<JSONObject> out) { try { Date timestamp = timeFormat.parse(timeStr); if (isAnomaly) { if (status.startTime == null) { status.startTime = timestamp; } else if (!status.reported) { long elapsed = timestamp.getTime() - status.startTime.getTime(); if (elapsed >= config.duration * 60 * 1000) { reportAnomaly(anomalyType, 1, currentValue, timeStr, config, out); status.reported = true; } } } else { if (status.reported) { reportAnomaly(anomalyType, 0, currentValue, timeStr, config, out); status.reset(); } else if (status.startTime != null) { status.startTime = null; } } } catch (Exception e) { System.err.println("阈值处理错误: " + config.encode + " - " + e.getMessage()); } } // 同步检测 - 异常类型5(优化日志输出) private void checkSyncAnomaly(ULEParamConfig config, double currentValue, String timeStr, AnomalyState state, ConfigCollection configCollection, ReadOnlyContext ctx, Collector<JSONObject> out) { if (config.issync != 1 || config.syncparaencode == null || config.syncparaencode.isEmpty()) { return; } try { // 通过encode获取关联配置 ULEParamConfig relatedConfig = configCollection.encodeToConfig.get(config.syncparaencode); if (relatedConfig == null) { if (System.currentTimeMillis() - lastSyncLogTime > 60000) { System.out.println("同步检测错误: 未找到关联配置, encode=" + config.syncparaencode); lastSyncLogTime = System.currentTimeMillis(); } return; } // 获取关联配置的tag String relatedTag = relatedConfig.tag; if (relatedTag == null || relatedTag.isEmpty()) { if (System.currentTimeMillis() - lastSyncLogTime > 60000) { System.out.println("同步检测错误: 关联配置没有tag, encode=" + config.syncparaencode); lastSyncLogTime = System.currentTimeMillis(); } return; } // 从广播状态获取关联值 ReadOnlyBroadcastState<String, Double> tagValuesState = ctx.getBroadcastState(Descriptors.tagValuesDescriptor); Double relatedValue = tagValuesState.get(relatedTag); if (relatedValue == null) { if (System.currentTimeMillis() - lastSyncLogTime > 60000) { // 优化日志:添加当前标签信息 System.out.printf("同步检测警告: 关联值未初始化 [主标签=%s(%s), 关联标签=%s(%s)]%n", config.tag, config.encode, relatedTag, config.syncparaencode); lastSyncLogTime = System.currentTimeMillis(); } return; } // 同步检测逻辑 AnomalyStatus status = state.getStatus(5); Date timestamp = timeFormat.parse(timeStr); // 业务逻辑:当前值接近1且关联值接近0时异常 boolean isAnomaly = (currentValue >= 0.99) && (Math.abs(relatedValue) < 0.01); // 日志记录 if (System.currentTimeMillis() - lastSyncLogTime > 60000) { System.out.printf("同步检测: %s (%.4f) vs %s (%.4f) -> %b%n", config.tag, currentValue, relatedTag, relatedValue, isAnomaly); lastSyncLogTime = System.currentTimeMillis(); } // 处理异常状态 if (isAnomaly) { if (status.startTime == null) { status.startTime = timestamp; } else if (!status.reported) { long elapsed = timestamp.getTime() - status.startTime.getTime(); if (elapsed >= config.duration * 60 * 1000) { reportAnomaly(5, 1, currentValue, timeStr, config, out); status.reported = true; } } } else { if (status.reported) { reportAnomaly(5, 0, currentValue, timeStr, config, out); status.reset(); } else if (status.startTime != null) { status.startTime = null; } } } catch (ParseException e) { System.err.println("同步检测时间解析错误: " + config.encode + " - " + e.getMessage()); } catch (Exception e) { System.err.println("同步检测错误: " + config.encode + " - " + e.getMessage()); } } // 报告异常(添加详细日志) private void reportAnomaly(int anomalyType, int statusFlag, double value, String time, ULEParamConfig config, Collector<JSONObject> out) { JSONObject event = new JSONObject(); event.put("tag", config.tag); event.put("paracode", config.encode); event.put("abnormaltype", anomalyType); event.put("statusflag", statusFlag); event.put("datavalue", value); event.put("triggertime", time); out.collect(event); // 添加详细日志输出 String statusDesc = statusFlag == 1 ? "异常开始" : "异常结束"; System.out.printf("报告异常: 类型=%d, 状态=%s, 标签=%s, 编码=%s, 时间=%s%n", anomalyType, statusDesc, config.tag, config.encode, time); } @Override public void processBroadcastElement(Object broadcastElement, Context ctx, Collector<JSONObject> out) throws Exception { // 处理配置更新 if (broadcastElement instanceof ConfigCollection) { ConfigCollection newConfig = (ConfigCollection) broadcastElement; BroadcastState<Void, ConfigCollection> configState = ctx.getBroadcastState(Descriptors.configStateDescriptor); // 获取旧配置 ConfigCollection oldConfig = configState.get(null); // 处理配置变更:清理不再启用的报警 if (oldConfig != null) { for (Map.Entry<String, ULEParamConfig> entry : oldConfig.encodeToConfig.entrySet()) { String encode = entry.getKey(); ULEParamConfig oldCfg = entry.getValue(); ULEParamConfig newCfg = newConfig.encodeToConfig.get(encode); if (newCfg == null || !isAlarmEnabled(newCfg, oldCfg)) { // 发送恢复事件 sendRecoveryEvents(encode, oldCfg, ctx, out); } } } // 更新广播状态 configState.put(null, newConfig); System.out.println("广播配置更新完成, 配置项: " + newConfig.encodeToConfig.size()); // 新增:初始化所有需要在线检测的标签 for (String tag : newConfig.allTags) { List configs = newConfig.tagToConfigs.get(tag); if (configs != null) { for (ULEParamConfig config : configs) { if (config.isonline == 1) { // 初始化标签检测时间 if (!tagInitTimeState.contains(tag)) { long initTime = System.currentTimeMillis(); tagInitTimeState.put(tag, initTime); System.out.println("初始化在线检测: tag=" + tag + ", 时间=" + timeFormat.format(new Date(initTime))); } } } } } } // 处理标签值更新 else if (broadcastElement instanceof Map) { @SuppressWarnings("unchecked") Map<String, Object> tagValue = (Map<String, Object>) broadcastElement; String tag = (String) tagValue.get("tag"); Double value = (Double) tagValue.get("value"); if (tag != null && value != null) { BroadcastState<String, Double> tagValuesState = ctx.getBroadcastState(Descriptors.tagValuesDescriptor); tagValuesState.put(tag, value); } } } // 检查报警是否启用 private boolean isAlarmEnabled(ULEParamConfig newCfg, ULEParamConfig oldCfg) { return (oldCfg.constantvalue == 1 && newCfg.constantvalue == 1) || (oldCfg.iszero == 1 && newCfg.iszero == 1) || (oldCfg.ishigh == 1 && newCfg.ishigh == 1) || (oldCfg.islow == 1 && newCfg.islow == 1) || (oldCfg.isonline == 1 && newCfg.isonline == 1) || (oldCfg.issync == 1 && newCfg.issync == 1); } // 发送恢复事件 private void sendRecoveryEvents(String encode, ULEParamConfig config, Context ctx, Collector<JSONObject> out) { try { AnomalyState state = stateMap.get(encode); if (state == null) return; // 遍历所有可能的报警类型 for (int type = 1; type <= 6; type++) { AnomalyStatus status = state.getStatus(type); if (status.reported) { JSONObject recoveryEvent = new JSONObject(); recoveryEvent.put("tag", config.tag); recoveryEvent.put("paracode", config.encode); recoveryEvent.put("abnormaltype", type); recoveryEvent.put("statusflag", 0); // 恢复事件 recoveryEvent.put("datavalue", 0.0); recoveryEvent.put("triggertime", timeFormat.format(new Date())); out.collect(recoveryEvent); System.out.println("发送恢复事件: 类型=" + type + ", 标签=" + config.tag); status.reset(); } } // 更新状态 stateMap.put(encode, state); } catch (Exception e) { System.err.println("发送恢复事件失败: " + e.getMessage()); } } // 辅助方法 private ConfigCollection getBroadcastConfig(ReadOnlyContext ctx) throws Exception { return ctx.getBroadcastState(Descriptors.configStateDescriptor).get(null); } private AnomalyState getOrCreateState(String encode) throws Exception { AnomalyState state = stateMap.get(encode); if (state == null) { state = new AnomalyState(); } return state; } } // 异常状态类 public static class AnomalyState implements Serializable { private static final long serialVersionUID = 1L; private final Map<Integer, AnomalyStatus> statusMap = new HashMap<>(); public AnomalyStatus getStatus(int type) { return statusMap.computeIfAbsent(type, k -> new AnomalyStatus()); } } // 异常状态详情 public static class AnomalyStatus implements Serializable { private static final long serialVersionUID = 1L; public Date startTime; // 异常开始时间 public Double lastValue; // 用于恒值检测 public Date lastChangeTime; // 值最后变化时间 public boolean reported; // 是否已报告 public void reset() { startTime = null; lastValue = null; lastChangeTime = null; reported = false; } } } 运行时日志为:"C:\Program Files (x86)\Java\jdk1.8.0_102\bin\java.exe" -agentlib:jdwp=transport=dt_socket,address=127.0.0.1:21096,suspend=y,server=n -javaagent:C:\Users\Administrator\AppData\Local\JetBrains\IntelliJIdea2021.2\captureAgent\debugger-agent.jar=file:/C:/Users/Administrator/AppData/Local/Temp/capture.props -Dfile.encoding=UTF-8 -classpath C:\Users\Administrator\AppData\Local\Temp\classpath849000959.jar com.tongchuang.realtime.mds.ULEDataanomalyanalysis 已连接到目标 VM, 地址: ''127.0.0.1:21096',传输: '套接字'' SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/F:/flink/flinkmaven/repository/org/apache/logging/log4j/log4j-slf4j-impl/2.10.0/log4j-slf4j-impl-2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/F:/flink/flinkmaven/repository/org/slf4j/slf4j-log4j12/1.7.25/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] 加载配置: 30 个参数 配置加载完成,检查点时间: Wed Aug 06 07:55:06 CST 2025 广播配置更新完成, 配置项: 30 Exception in thread "main" org.apache.flink.runtime.client.JobExecutionException: Job execution failed. at org.apache.flink.runtime.jobmaster.JobResult.toJobExecutionResult(JobResult.java:144) at org.apache.flink.runtime.minicluster.MiniClusterJobClient.lambda$getJobExecutionResult$3(MiniClusterJobClient.java:137) at java.util.concurrent.CompletableFuture.uniApply(CompletableFuture.java:602) at java.util.concurrent.CompletableFuture$UniApply.tryFire(CompletableFuture.java:577) at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:474) at java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1962) at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.lambda$invokeRpc$0(AkkaInvocationHandler.java:237) at java.util.concurrent.CompletableFuture.uniWhenComplete(CompletableFuture.java:760) at java.util.concurrent.CompletableFuture$UniWhenComplete.tryFire(CompletableFuture.java:736) at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:474) at java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1962) at org.apache.flink.runtime.concurrent.FutureUtils$1.onComplete(FutureUtils.java:1081) at akka.dispatch.OnComplete.internal(Future.scala:264) at akka.dispatch.OnComplete.internal(Future.scala:261) at akka.dispatch.japi$CallbackBridge.apply(Future.scala:191) at akka.dispatch.japi$CallbackBridge.apply(Future.scala:188) at scala.concurrent.impl.CallbackRunnable.run$$$capture(Promise.scala:60) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala) at org.apache.flink.runtime.concurrent.Executors$DirectExecutionContext.execute(Executors.java:73) at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:68) at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1(Promise.scala:284) at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1$adapted(Promise.scala:284) at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:284) at akka.pattern.PromiseActorRef.$bang(AskSupport.scala:573) at akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:22) at akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:21) at scala.concurrent.Future.$anonfun$andThen$1(Future.scala:532) at scala.concurrent.impl.Promise.liftedTree1$1(Promise.scala:29) at scala.concurrent.impl.Promise.$anonfun$transform$1(Promise.scala:29) at scala.concurrent.impl.CallbackRunnable.run$$$capture(Promise.scala:60) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala) at akka.dispatch.BatchingExecutor$AbstractBatch.processBatch(BatchingExecutor.scala:55) at akka.dispatch.BatchingExecutor$BlockableBatch.$anonfun$run$1(BatchingExecutor.scala:91) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12) at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:81) at akka.dispatch.BatchingExecutor$BlockableBatch.run(BatchingExecutor.scala:91) at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:40) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(ForkJoinExecutorConfigurator.scala:44) at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at akka.dispatch.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at akka.dispatch.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Caused by: org.apache.flink.runtime.JobException: Recovery is suppressed by NoRestartBackoffTimeStrategy at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.handleFailure(ExecutionFailureHandler.java:138) at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.getFailureHandlingResult(ExecutionFailureHandler.java:82) at org.apache.flink.runtime.scheduler.DefaultScheduler.handleTaskFailure(DefaultScheduler.java:216) at org.apache.flink.runtime.scheduler.DefaultScheduler.maybeHandleTaskFailure(DefaultScheduler.java:206) at org.apache.flink.runtime.scheduler.DefaultScheduler.updateTaskExecutionStateInternal(DefaultScheduler.java:197) at org.apache.flink.runtime.scheduler.SchedulerBase.updateTaskExecutionState(SchedulerBase.java:682) at org.apache.flink.runtime.scheduler.SchedulerNG.updateTaskExecutionState(SchedulerNG.java:79) at org.apache.flink.runtime.jobmaster.JobMaster.updateTaskExecutionState(JobMaster.java:435) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcInvocation(AkkaRpcActor.java:305) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcMessage(AkkaRpcActor.java:212) at org.apache.flink.runtime.rpc.akka.FencedAkkaRpcActor.handleRpcMessage(FencedAkkaRpcActor.java:77) at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleMessage(AkkaRpcActor.java:158) at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:26) at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:21) at scala.PartialFunction.applyOrElse(PartialFunction.scala:123) at scala.PartialFunction.applyOrElse$(PartialFunction.scala:122) at akka.japi.pf.UnitCaseStatement.applyOrElse(CaseStatements.scala:21) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172) at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172) at akka.actor.Actor.aroundReceive(Actor.scala:517) at akka.actor.Actor.aroundReceive$(Actor.scala:515) at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:225) at akka.actor.ActorCell.receiveMessage$$$capture(ActorCell.scala:592) at akka.actor.ActorCell.receiveMessage(ActorCell.scala) at akka.actor.ActorCell.invoke(ActorCell.scala:561) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) at akka.dispatch.Mailbox.run(Mailbox.scala:225) at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ... 4 more Caused by: java.lang.NullPointerException: No key set. This method should not be called outside of a keyed context. at org.apache.flink.util.Preconditions.checkNotNull(Preconditions.java:76) at org.apache.flink.runtime.state.heap.StateTable.checkKeyNamespacePreconditions(StateTable.java:270) at org.apache.flink.runtime.state.heap.StateTable.get(StateTable.java:260) at org.apache.flink.runtime.state.heap.StateTable.get(StateTable.java:143) at org.apache.flink.runtime.state.heap.HeapMapState.get(HeapMapState.java:86) at org.apache.flink.runtime.state.ttl.TtlMapState.lambda$getWrapped$0(TtlMapState.java:64) at org.apache.flink.runtime.state.ttl.AbstractTtlDecorator.getWrappedWithTtlCheckAndUpdate(AbstractTtlDecorator.java:97) at org.apache.flink.runtime.state.ttl.TtlMapState.getWrapped(TtlMapState.java:63) at org.apache.flink.runtime.state.ttl.TtlMapState.contains(TtlMapState.java:96) at org.apache.flink.runtime.state.UserFacingMapState.contains(UserFacingMapState.java:72) at com.tongchuang.realtime.mds.ULEDataanomalyanalysis$OptimizedAnomalyDetectionFunction.processBroadcastElement(ULEDataanomalyanalysis.java:767) at org.apache.flink.streaming.api.operators.co.CoBroadcastWithKeyedOperator.processElement2(CoBroadcastWithKeyedOperator.java:133) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory.processRecord2(StreamTwoInputProcessorFactory.java:221) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory.lambda$create$1(StreamTwoInputProcessorFactory.java:190) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessorFactory$StreamTaskNetworkOutput.emitRecord(StreamTwoInputProcessorFactory.java:291) at org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.processElement(AbstractStreamTaskNetworkInput.java:134) at org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.emitNext(AbstractStreamTaskNetworkInput.java:105) at org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:66) at org.apache.flink.streaming.runtime.io.StreamTwoInputProcessor.processInput(StreamTwoInputProcessor.java:98) at org.apache.flink.streaming.runtime.tasks.StreamTask.processInput(StreamTask.java:423) at org.apache.flink.streaming.runtime.tasks.mailbox.MailboxProcessor.runMailboxLoop(MailboxProcessor.java:204) at org.apache.flink.streaming.runtime.tasks.StreamTask.runMailboxLoop(StreamTask.java:684) at org.apache.flink.streaming.runtime.tasks.StreamTask.executeInvoke(StreamTask.java:639) at org.apache.flink.streaming.runtime.tasks.StreamTask.runWithCleanUpOnFail(StreamTask.java:650) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:623) at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:779) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:566) at java.lang.Thread.run(Thread.java:745) 与目标 VM 断开连接, 地址为: ''127.0.0.1:21096',传输: '套接字'' 进程已结束,退出代码为 1 请生成完整修复后代码。

from pyflink.datastream import StreamExecutionEnvironment from pyflink.table import StreamTableEnvironment, EnvironmentSettings, DataTypes from pyflink.table.udf import udf import os import logging # 配置日志 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # 定义处理CDC操作的UDF @udf(result_type=DataTypes.STRING()) def process_cdc_op(op): return { 'I': 'INSERT', 'U': 'UPDATE', 'D': 'DELETE' }.get(op, 'UNKNOWN') def safe_execute_sql(t_env, sql, object_type="statement"): """安全执行SQL语句,处理对象已存在的情况""" try: t_env.execute_sql(sql) logger.info(f"Successfully executed: {sql[:60]}...") return True except Exception as e: if "already exists" in str(e).lower(): logger.warning(f"Object already exists, skipping creation: {e}") return True else: logger.error(f"Error executing {object_type}: {sql}\n{str(e)}") return False def create_database_if_not_exists(t_env, catalog, db_name): """安全创建数据库""" t_env.execute_sql(f"USE CATALOG {catalog}") dbs = [row[0] for row in t_env.execute_sql("SHOW DATABASES").collect()] if db_name not in dbs: create_db_sql = f"CREATE DATABASE {db_name}" if not safe_execute_sql(t_env, create_db_sql, "database"): return False else: logger.info(f"Database {db_name} already exists in catalog {catalog}") t_env.execute_sql(f"USE {db_name}") return True def table_exists(t_env, table_name): """检查表是否存在""" try: t_env.from_path(table_name) return True except: return False def main(): env = StreamExecutionEnvironment.get_execution_environment() env.set_parallelism(1) env.enable_checkpointing(5000) # 添加必要的连接器JAR包 flink_home = os.getenv('FLINK_HOME', '/opt/flink') required_jars = [ f"file://{flink_home}/lib/flink-connector-kafka-1.17.1.jar", f"file://{flink_home}/lib/flink-connector-jdbc-1.17.1.jar", f"file://{flink_home}/lib/flink-sql-connector-hive-3.1.2_2.12-1.16.3.jar", f"file://{flink_home}/lib/mysql-connector-java-8.0.28.jar", f"file://{flink_home}/lib/hive-exec-3.1.2.jar", ] for jar in required_jars: env.add_jars(jar) logger.info(f"Added JAR: {jar}") settings = EnvironmentSettings.new_instance().in_streaming_mode().build() t_env = StreamTableEnvironment.create(env, environment_settings=settings) # 注册UDF t_env.create_temporary_function("process_cdc_op", process_cdc_op) # 1. 创建Hive Catalog - 使用单行语句避免解析错误 hive_catalog_sql = ( "CREATE CATALOG hive_catalog WITH (" "'type' = 'hive', " "'hive-conf-dir' = '/opt/hive/conf'" ")" ) safe_execute_sql(t_env, hive_catalog_sql, "catalog") # 2. 使用默认catalog(无需创建) t_env.use_catalog("default_catalog") # 3. 创建默认数据库(如果不存在) if not create_database_if_not_exists(t_env, "default_catalog", "default_database"): logger.error("Failed to create default database") return # 4. 创建Kafka源表(安全方式) kafka_table_ddl = ( "CREATE TABLE kafka_user_meal (" "id STRING, " "review STRING, " "rating DOUBLE, " "review_time BIGINT, " "user_id STRING, " "meal_id STRING, " "op STRING, " "ts AS TO_TIMESTAMP(FROM_UNIXTIME(review_time)), " "WATERMARK FOR ts AS ts - INTERVAL '5' SECOND, " "PRIMARY KEY (id) NOT ENFORCED" ") WITH (" "'connector' = 'kafka', " "'topic' = 'cleaned-user-meal-reviews', " "'properties.bootstrap.servers' = 'master:9092,slave01:9092,slave02:9092', " "'properties.group.id' = 'flink-cdc-group', " "'scan.startup.mode' = 'latest-offset', " "'format' = 'json', " "'json.ignore-parse-errors' = 'true'" ")" ) if not safe_execute_sql(t_env, kafka_table_ddl, "table"): logger.error("Failed to create Kafka table") return # 5. 创建Hive数据库和表 t_env.execute_sql("USE CATALOG hive_catalog") if not create_database_if_not_exists(t_env, "hive_catalog", "user_meal"): return hive_table_ddl = ( "CREATE TABLE hive_user_meal_cdc (" "id STRING COMMENT '唯一标识', " "review STRING COMMENT '评价内容', " "rating DOUBLE COMMENT '评分', " "review_time TIMESTAMP COMMENT '评价时间', " "user_id STRING COMMENT '用户ID', " "meal_id STRING COMMENT '餐品ID', " "operation_type STRING COMMENT '操作类型', " "operation_ts TIMESTAMP COMMENT '操作时间', " "op STRING COMMENT '原始操作类型'" ") PARTITIONED BY (op) " "STORED AS ORC " "TBLPROPERTIES (" "'sink.partition-commit.policy.kind' = 'metastore,success-file', " "'auto-compaction' = 'true'" ")" ) if not safe_execute_sql(t_env, hive_table_ddl, "table"): return # 6. 创建MySQL表(在默认catalog中) t_env.execute_sql("USE CATALOG default_catalog") t_env.execute_sql("USE default_database") mysql_table_ddl = ( "CREATE TABLE mysql_user_meal (" "id STRING PRIMARY KEY NOT ENFORCED COMMENT '唯一标识', " "review STRING COMMENT '评价内容', " "rating DOUBLE COMMENT '评分', " "review_time TIMESTAMP(3) COMMENT '评价时间', " "user_id STRING COMMENT '用户ID', " "meal_id STRING COMMENT '餐品ID', " "last_operation STRING COMMENT '最后操作类型', " "update_time TIMESTAMP(3) COMMENT '更新时间'" ") WITH (" "'connector' = 'jdbc', " "'url' = 'jdbc:mysql://mysql-host:3306/user_meal', " "'table-name' = 'user_meal_reviews', " "'username' = 'root', " "'password' = '5266', " "'driver' = 'com.mysql.cj.jdbc.Driver', " "'sink.buffer-flush.max-rows' = '100', " "'sink.buffer-flush.interval' = '5s'" ")" ) if not safe_execute_sql(t_env, mysql_table_ddl, "table"): return # 7. 写入Hive hive_insert_sql = ( "INSERT INTO hive_catalog.user_meal.hive_user_meal_cdc " "SELECT " "id, " "review, " "rating, " "TO_TIMESTAMP(FROM_UNIXTIME(review_time)) AS review_time, " "user_id, " "meal_id, " "process_cdc_op(op) AS operation_type, " "CURRENT_TIMESTAMP AS operation_ts, " "op " "FROM default_catalog.default_database.kafka_user_meal" ) if not safe_execute_sql(t_env, hive_insert_sql, "insert"): return # 8. 写入MySQL mysql_insert_sql = ( "INSERT INTO mysql_user_meal " "SELECT " "id, " "LAST_VALUE(review) AS review, " "LAST_VALUE(rating) AS rating, " "MAX(ts) AS review_time, " "LAST_VALUE(user_id) AS user_id, " "LAST_VALUE(meal_id) AS meal_id, " "LAST_VALUE(process_cdc_op(op)) AS last_operation, " "CURRENT_TIMESTAMP AS update_time " "FROM (" "SELECT *, " "ROW_NUMBER() OVER (PARTITION BY id ORDER BY ts DESC) AS row_num " "FROM default_catalog.default_database.kafka_user_meal " "WHERE op <> 'D'" ") " "WHERE row_num = 1" ) if not safe_execute_sql(t_env, mysql_insert_sql, "insert"): return # 执行任务 logger.info("Starting pipeline execution...") try: env.execute("Flink CDC to Hive and MySQL Pipeline") logger.info("Pipeline execution completed successfully") except Exception as e: logger.error(f"Pipeline execution failed: {str(e)}") if __name__ == '__main__': main() 代码可以跑起来,但是被杀死了

update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '1770016321' where chdrnum = '0354023489'; update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '7996415822' where chdrnum = '2640938885'; update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '5336506493' where chdrnum = '4988562114'; update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '1770016327' where chdrnum = '0354023489'; update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '7996415828' where chdrnum = '2640938885'; update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '5336506499' where chdrnum = '4988562114'; update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '1770016324' where chdrnum = '0354023489'; update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '7996415825' where chdrnum = '2640938885'; update catalog_jp.ods_test.t_lifej_chdrpf_cp1 set jownnum = '5336506496' where chdrnum = '4988562114';Flink SQL> SET 'table.dml-sync' = 'false'; [INFO] Execute statement succeeded. Flink SQL> SET 'sink.upsert-materialize' = 'FORCE'; [INFO] Execute statement succeeded. Flink SQL> select > a.chdrnum > ,data_encrypt(concat('LIFEJ-',cast(a.chdrnum as string)),'cbc','jp_dev') as policy_id > ,cast(a.cownnum as string) as source_main_policy_owner_id > ,concat('LIFEJ-',cast(a.cownnum as string)) as main_policy_owner_id > ,cast(a.jownnum as string) as source_joint_policy_owner_id > from (select * from catalog_jp.ods_test.t_lifej_chdrpf_cp1 where validflag='1') a > left join catalog_jp.ods.t_lifej_clntpf b on cast(a.cownnum as string)=cast(b.clntnum as string) and b.validflag='1' > left join catalog_jp.ods.t_lifej_covrpf c on cast(a.chdrnum as string)=cast(c.chdrnum as string) and c.life='01' and c.coverage='01' and c.rider='00' and c.validflag='1' > left join catalog_jp.ods.t_lifej_ptrnpf d on cast(a.chdrnum as string)=cast(d.chdrnum as string) and cast(a.statcode as string)='LA' and d.batctrcde in ('Bl18') > left join catalog_jp.ods.t_lifej_pcddpf p on cast(a.chdrnum as string)=cast(p.chdrnum as string) and p.validflag = '1' and p.splitc<>100 and p.seqenum ='101' > left join catalog_jp.ods.t_lifej_exrfpf exrfpf on data_decrypt(cast(exrfpf.chdrnum as string),'cbc','jp_dev')=cast(a.chdrnum as string) > where a.chdrnum in ('4988562114', '2640938885', '0354023489'); +----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+ | op | chdrnum | policy_id | source_main_policy_owner_id | main_policy_owner_id | source_joint_policy_owner_id | +----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+ | +I | 4988562114 | PB6CBiWTgRT5ggr+l6s4ayLMMLs... | 5869181297 | LIFEJ-5869181297 | 5336506499 | | +I | 2640938885 | T59eHVSdvKrBzXySfZbHBUUpvMO... | 232847086 | LIFEJ-232847086 | 7996415828 | | +I | 0354023489 | F7eV/U0Z19EikoroD2gqip2TF5r... | 1390542993 | LIFEJ-1390542993 | 1770016327 | | -D | 0354023489 | F7eV/U0Z19EikoroD2gqip2TF5r... | 1390542993 | LIFEJ-1390542993 | 1770016327 | | +I | 0354023489 | F7eV/U0Z19EikoroD2gqip2TF5r... | 1390542993 | LIFEJ-1390542993 | 1770016321 | | -D | 4988562114 | PB6CBiWTgRT5ggr+l6s4ayLMMLs... | 5869181297 | LIFEJ-5869181297 | 5336506499 | | +I | 4988562114 | PB6CBiWTgRT5ggr+l6s4ayLMMLs... | 5869181297 | LIFEJ-5869181297 | 5336506493 | | -D | 2640938885 | T59eHVSdvKrBzXySfZbHBUUpvMO... | 232847086 | LIFEJ-232847086 | 7996415828 | | +I | 2640938885 | T59eHVSdvKrBzXySfZbHBUUpvMO... | 232847086 | LIFEJ-232847086 | 7996415822 | | +I | 0354023489 | F7eV/U0Z19EikoroD2gqip2TF5r... | 1390542993 | LIFEJ-1390542993 | 1770016327 | | -D | 0354023489 | F7eV/U0Z19EikoroD2gqip2TF5r... | 1390542993 | LIFEJ-1390542993 | 1770016321 | | +I | 2640938885 | T59eHVSdvKrBzXySfZbHBUUpvMO... | 232847086 | LIFEJ-232847086 | 7996415828 | | -D | 2640938885 | T59eHVSdvKrBzXySfZbHBUUpvMO... | 232847086 | LIFEJ-232847086 | 7996415822 | | +I | 4988562114 | PB6CBiWTgRT5ggr+l6s4ayLMMLs... | 5869181297 | LIFEJ-5869181297 | 5336506499 | | -D | 4988562114 | PB6CBiWTgRT5ggr+l6s4ayLMMLs... | 5869181297 | LIFEJ-5869181297 | 5336506493 | | +I | 0354023489 | F7eV/U0Z19EikoroD2gqip2TF5r... | 1390542993 | LIFEJ-1390542993 | 1770016324 | | -D | 0354023489 | F7eV/U0Z19EikoroD2gqip2TF5r... | 1390542993 | LIFEJ-1390542993 | 1770016327 | | -D | 4988562114 | PB6CBiWTgRT5ggr+l6s4ayLMMLs... | 5869181297 | LIFEJ-5869181297 | 5336506499 | | +I | 4988562114 | PB6CBiWTgRT5ggr+l6s4ayLMMLs... | 5869181297 | LIFEJ-5869181297 | 5336506496 | | +I | 2640938885 | T59eHVSdvKrBzXySfZbHBUUpvMO... | 232847086 | LIFEJ-232847086 | 7996415825 | | -D | 2640938885 | T59eHVSdvKrBzXySfZbHBUUpvMO... | 232847086 | LIFEJ-232847086 | 7996415828 | 解决一下这个问题

CREATE MATERIALIZED TABLE catalog_jp.dwd.tb_agrt_policy_curr_dim_materialized4 ( policy_id STRING, source_policy_id STRING, main_policy_owner_id STRING, source_main_policy_owner_id STRING, unified_main_policy_owner_id STRING, joint_policy_owner_id STRING, source_joint_policy_owner_id STRING, unified_joint_policy_owner_id STRING, channel_id STRING, source_channel_id STRING, servicing_agent_id STRING, source_servicing_agent_id STRING, agency_code STRING, agency_registration_number STRING, bank_agent_id STRING, source_bank_agent_id STRING, company_code STRING, dispatch_address_country_code STRING, dispatch_address_province_code STRING, dispatch_address_postcode STRING, dispatch_address_line_1 STRING, dispatch_address_line_2 STRING, dispatch_address_line_3 STRING, dispatch_address_line_4 STRING, dispatch_address_line_5 STRING, policy_type_code STRING, policy_status_code STRING, policy_sub_status_code STRING, policy_status_date DATE, submit_date DATE, issue_date DATE, policy_effective_date DATE, policy_end_date DATE, inforce_date DATE, lapse_date DATE, reinstatement_date DATE, surrender_date DATE, termination_date DATE, premium_status STRING, premium_status_date DATE, premium_start_date DATE, premium_end_date DATE, bill_to_date DATE, paid_to_date DATE, sum_assured DECIMAL(24, 4), modal_premium DECIMAL(24, 4), currency_code STRING, billing_method_code STRING, billing_frequency_code STRING, billing_type STRING, last_billing_date DATE, payor_id STRING, source_payor_id STRING, unified_payor_id STRING, standard_indicator STRING, next_premium_amt DECIMAL(24, 4), surrender_value DECIMAL(24, 4), outstanding_balance DECIMAL(24, 4), suspense_amt DECIMAL(24, 4), first_issue_date DATE, pledge_flag STRING, bonus_premium DECIMAL(24, 4), base_assured DECIMAL(24, 4), final_assured DECIMAL(24, 4), special_contract_type_code STRING, special_contract_type_name STRING, spouse_death_flag STRING, living_needs_rider_indicator STRING, specified_agent_claimant_rider_indicator STRING, automated_loan_indicator STRING, liability_start_date_specified_indicator STRING, joint_solicitation_flag STRING, corperate_policy_indicator STRING, ape DECIMAL(24, 4), grace_period_due_date DATE, guarantee_period DECIMAL(5, 0), guarantee_payment_amt DECIMAL(24, 4), reserve_amt DECIMAL(24, 4), saving_reserve_amt DECIMAL(24, 4), general_reserve_amt DECIMAL(24, 4), reserve_interest_rate DECIMAL(24, 4), reserve_amt_calculation_date DATE, death_benefit_amt DECIMAL(24, 4), investment_perf_linked_indicator STRING, fixed_life_transfer_indicator STRING, annuity_payment_start_date DATE, etl_valid_start_time TIMESTAMP(6), etl_valid_end_time TIMESTAMP(6), etl_is_current_flag STRING, etl_create_time TIMESTAMP(6), etl_create_by STRING, etl_update_time TIMESTAMP(6), etl_update_by STRING, etl_source_system_record_time TIMESTAMP(6), etl_source_bu STRING, etl_source_system STRING, etl_source_table STRING, data_arrival_time TIMESTAMP(6), dwd_data_arrival_time TIMESTAMP(6), PRIMARY KEY (policy_id) NOT ENFORCED )一样的报错

zip

大家在看

recommend-type

金蝶EAS通过套打模板实现后台生成PDF文件.docx

在EAS开发中,如果需要合同调用套打模板自动生成PDF进行档案归档备份,可通过后台服务器代码进行开发实现;
recommend-type

复盛压缩机选型软件.rar )

此款为官方专用,简单的压缩机可以选择。SRL型的没有,暂时不能使用请谨慎选择
recommend-type

基于边折叠的网格快速简化

Fast mesh simplification via edge collapsing This project contains an implementation of a "multiple choice" mesh simplfication algorithm. Over a number of iterations a random fraction of the total edges in the supplied mesh are processed with a subset of these processed edges collapsed (the lowest scoring collapses win when a collision occurs). The only non-standard dependency is the qef_simd.h single file header which you can find in my "qef" project, a version is also included here.
recommend-type

20201107-为rvv-llvm添加一个intrinsic-廖春玉1

3. multiclass signed_binary_v_vv_vx { 4. multiclass Binary<string name,/ string
recommend-type

一种低噪声便携式的心电监测仪设计

便携式监护仪小型方便,结构简单,性能稳定,可以随身携带,可由电池供电,一般用于非监护室及外出抢救病人的监护。心血管疾病是人类生命的最主要威胁之一,而心电(Electrocardiogram,ECG信号是诊断心血管疾病的主要依据,因此实时监测病人心电活动,设计自动采集病人心电信号的便携式系统具有重要意义。本文为人体日常生活方便,设计了导联电极脱落检测电路,防止运动输入电极脱落。

最新推荐

recommend-type

有限公司成立合作协议书.doc

有限公司成立合作协议书.doc
recommend-type

Python程序TXLWizard生成TXL文件及转换工具介绍

### 知识点详细说明: #### 1. 图形旋转与TXL向导 图形旋转是图形学领域的一个基本操作,用于改变图形的方向。在本上下文中,TXL向导(TXLWizard)是由Esteban Marin编写的Python程序,它实现了特定的图形旋转功能,主要用于电子束光刻掩模的生成。光刻掩模是半导体制造过程中非常关键的一个环节,它确定了在硅片上沉积材料的精确位置。TXL向导通过生成特定格式的TXL文件来辅助这一过程。 #### 2. TXL文件格式与用途 TXL文件格式是一种基于文本的文件格式,它设计得易于使用,并且可以通过各种脚本语言如Python和Matlab生成。这种格式通常用于电子束光刻中,因为它的文本形式使得它可以通过编程快速创建复杂的掩模设计。TXL文件格式支持引用对象和复制对象数组(如SREF和AREF),这些特性可以用于优化电子束光刻设备的性能。 #### 3. TXLWizard的特性与优势 - **结构化的Python脚本:** TXLWizard 使用结构良好的脚本来创建遮罩,这有助于开发者创建清晰、易于维护的代码。 - **灵活的Python脚本:** 作为Python程序,TXLWizard 可以利用Python语言的灵活性和强大的库集合来编写复杂的掩模生成逻辑。 - **可读性和可重用性:** 生成的掩码代码易于阅读,开发者可以轻松地重用和修改以适应不同的需求。 - **自动标签生成:** TXLWizard 还包括自动为图形对象生成标签的功能,这在管理复杂图形时非常有用。 #### 4. TXL转换器的功能 - **查看.TXL文件:** TXL转换器(TXLConverter)允许用户将TXL文件转换成HTML或SVG格式,这样用户就可以使用任何现代浏览器或矢量图形应用程序来查看文件。 - **缩放和平移:** 转换后的文件支持缩放和平移功能,这使得用户在图形界面中更容易查看细节和整体结构。 - **快速转换:** TXL转换器还提供快速的文件转换功能,以实现有效的蒙版开发工作流程。 #### 5. 应用场景与技术参考 TXLWizard的应用场景主要集中在电子束光刻技术中,特别是用于设计和制作半导体器件时所需的掩模。TXLWizard作为一个向导,不仅提供了生成TXL文件的基础框架,还提供了一种方式来优化掩模设计,提高光刻过程的效率和精度。对于需要进行光刻掩模设计的工程师和研究人员来说,TXLWizard提供了一种有效的方法来实现他们的设计目标。 #### 6. 系统开源特性 标签“系统开源”表明TXLWizard遵循开放源代码的原则,这意味着源代码对所有人开放,允许用户自由地查看、修改和分发软件。开源项目通常拥有活跃的社区,社区成员可以合作改进软件,添加新功能,或帮助解决遇到的问题。这种开放性促进了技术创新,并允许用户根据自己的需求定制软件。 #### 7. 压缩包子文件的文件名称列表 文件名称列表中的“txlwizard-master”可能指的是TXLWizard项目的主版本库或主分支。这个名称表明了这是项目源代码的中心点,其他开发者会从这个主分支拉取代码进行合作开发或部署。以“-master”结尾通常是版本控制系统中表示主要开发线路的常见约定,例如Git中的master(现在更常被称为main)分支。 通过这些知识点的详细解释,我们可以看到TXLWizard不仅是一个用于生成TXL文件的工具,它还整合了一系列的功能,使得电子束光刻掩模的设计工作更为高效和直观。同时,作为一个开源项目,它能够借助社区的力量不断进步,为用户带来更多的便利和创新。
recommend-type

【创新图生成:扣子平台的技术前沿与创新思维】:引领图像生成技术的新潮流

# 1. 扣子平台的图像生成技术概述 在当今数字化时代,图像生成技术正成为推动技术创新和社会变革的关键力量。扣子平台正是这一技术革新的代表。本章将对扣子平台的图像生成技术进行一个全面概述,探究它如何将理论技术转化为实际应用,并带来显著的社会影响。 扣子平台运用了先进的图像生成技术,将现实世界和数字空间无缝融合,打造了沉浸式的视觉体验。其技术的核心是通过高度复杂的算法模型,快速生成高质
recommend-type

海康威视机器视觉工程师考核

<think>好的,我现在需要帮助用户了解海康威视机器视觉工程师的考核内容和要求。根据用户提供的引用资料,特别是引用[1]和[2],里面提到了考核素材包分为初级和中级,涵盖理论、算法、应用案例等。首先,我要整理这些信息,确保结构清晰,符合用户要求的格式。 接下来,我需要确认素材包的具体内容,比如初级和中级的不同点。引用[2]提到初级包含基础理论、算法实现和实际案例,中级则增加复杂算法和项目分析。这部分需要分点说明,方便用户理解层次。 另外,用户可能想知道如何准备考核,比如下载素材、学习顺序、模拟考核等,引用[2]中有使用说明和注意事项,这部分也要涵盖进去。同时要注意提醒用户考核窗口已关闭,
recommend-type

Linux环境下Docker Hub公共容器映像检测工具集

在给出的知识点中,我们需要详细解释有关Docker Hub、公共容器映像、容器编排器以及如何与这些工具交互的详细信息。同时,我们会涵盖Linux系统下的相关操作和工具使用,以及如何在ECS和Kubernetes等容器编排工具中运用这些检测工具。 ### Docker Hub 和公共容器映像 Docker Hub是Docker公司提供的一项服务,它允许用户存储、管理以及分享Docker镜像。Docker镜像可以视为应用程序或服务的“快照”,包含了运行特定软件所需的所有必要文件和配置。公共容器映像指的是那些被标记为公开可见的Docker镜像,任何用户都可以拉取并使用这些镜像。 ### 静态和动态标识工具 静态和动态标识工具在Docker Hub上用于识别和分析公共容器映像。静态标识通常指的是在不运行镜像的情况下分析镜像的元数据和内容,例如检查Dockerfile中的指令、环境变量、端口映射等。动态标识则需要在容器运行时对容器的行为和性能进行监控和分析,如资源使用率、网络通信等。 ### 容器编排器与Docker映像 容器编排器是用于自动化容器部署、管理和扩展的工具。在Docker环境中,容器编排器能够自动化地启动、停止以及管理容器的生命周期。常见的容器编排器包括ECS和Kubernetes。 - **ECS (Elastic Container Service)**:是由亚马逊提供的容器编排服务,支持Docker容器,并提供了一种简单的方式来运行、停止以及管理容器化应用程序。 - **Kubernetes**:是一个开源平台,用于自动化容器化应用程序的部署、扩展和操作。它已经成为容器编排领域的事实标准。 ### 如何使用静态和动态标识工具 要使用这些静态和动态标识工具,首先需要获取并安装它们。从给定信息中了解到,可以通过克隆仓库或下载压缩包并解压到本地系统中。之后,根据需要针对不同的容器编排环境(如Dockerfile、ECS、Kubernetes)编写配置,以集成和使用这些检测工具。 ### Dockerfile中的工具使用 在Dockerfile中使用工具意味着将检测工具的指令嵌入到构建过程中。这可能包括安装检测工具的命令、运行容器扫描的步骤,以及将扫描结果集成到镜像构建流程中,确保只有通过安全和合规检查的容器镜像才能被构建和部署。 ### ECS与Kubernetes中的工具集成 在ECS或Kubernetes环境中,工具的集成可能涉及到创建特定的配置文件、定义服务和部署策略,以及编写脚本或控制器来自动执行检测任务。这样可以在容器编排的过程中实现实时监控,确保容器编排器只使用符合预期的、安全的容器镜像。 ### Linux系统下的操作 在Linux系统下操作这些工具,用户可能需要具备一定的系统管理和配置能力。这包括使用Linux命令行工具、管理文件系统权限、配置网络以及安装和配置软件包等。 ### 总结 综上所述,Docker Hub上的静态和动态标识工具提供了一种方法来检测和分析公共容器映像,确保这些镜像的安全性和可靠性。这些工具在Linux开发环境中尤为重要,因为它们帮助开发人员和运维人员确保他们的容器映像满足安全要求。通过在Dockerfile、ECS和Kubernetes中正确使用这些工具,可以提高应用程序的安全性,减少由于使用不安全的容器镜像带来的风险。此外,掌握Linux系统下的操作技能,可以更好地管理和维护这些工具,确保它们能够有效地发挥作用。
recommend-type

【扣子平台图像艺术探究:理论与实践的完美结合】:深入学习图像生成的艺术

# 1. 图像艺术的理论基础 艺术领域的每一个流派和技巧都有其理论基础。在图像艺术中,理论基础不仅是对艺术表现形式的认知,也是掌握艺术创作内在逻辑的关键。深入理解图像艺术的理论基础,能够帮助艺术家们在创作过程中更加明确地表达自己的艺术意图,以及更好地与观众沟通。 图像艺术的理论
recommend-type

增广路定理的证明

<think>嗯,用户想查找增广路定理的证明,关于图论和网络流算法的。我得先理解增广路定理是什么,然后找到相关的证明方法。根据之前的引用,尤其是引用5提到最大流最小割定理,里面有三个等价条件,其中第二个是残余网络中没有增广路径时,流就是最大流。这可能和增广路定理相关,也就是当残余网络中没有增广路时,当前流就是最大流,这可能就是增广路定理的内容。 首先,我需要明确增广路定理的陈述。根据引用5,增广路定理可能指的是:一个流是最大流当且仅当残余网络中不存在增广路径。这个定理的证明需要用到最大流最小割定理,也就是第三个条件,即最大流的流量等于最小割的容量。 证明的步骤可能需要分为两个方向:必要性(
recommend-type

Pulse:基于SwiftUI的Apple平台高效日志记录与网络监控

从给定文件信息中,我们可以提取出以下IT知识点进行详细阐述: **Pulse概览:** Pulse是一个专门针对Apple平台(如iOS、iPadOS、macOS等)的功能强大的日志记录系统。其设计目的是为了简化开发者在这些平台上调试网络请求和应用日志的过程。Pulse的核心特色是它使用SwiftUI来构建,这有助于开发者利用现代Swift语言的声明式UI优势来快速开发和维护。 **SwiftUI框架:** SwiftUI是一种声明式框架,由苹果公司推出,用于构建用户界面。与传统的UIKit相比,SwiftUI使用更加简洁的代码来描述界面和界面元素,它允许开发者以声明的方式定义视图和界面布局。SwiftUI支持跨平台,这意味着同一套代码可以在不同的Apple设备上运行,大大提高了开发效率和复用性。Pulse选择使用SwiftUI构建,显示了其对现代化、高效率开发的支持。 **Network Inspector功能:** Pulse具备Network Inspector功能,这个功能使得开发者能够在开发iOS应用时,直接从应用内记录和检查网络请求和日志。这种内嵌式的网络诊断能力非常有助于快速定位网络请求中的问题,如不正确的URL、不返回预期响应等。与传统的需要外部工具来抓包和分析的方式相比,这样的内嵌式工具大大减少了调试的复杂性。 **日志记录和隐私保护:** Pulse强调日志是本地记录的,并保证不会离开设备。这种做法对隐私保护至关重要,尤其是考虑到当前数据保护法规如GDPR等的严格要求。因此,Pulse的设计在帮助开发者进行问题诊断的同时,也确保了用户数据的安全性。 **集成和框架支持:** Pulse不仅仅是一个工具,它更是一个框架。它能够记录来自URLSession的事件,这意味着它可以与任何使用URLSession进行网络通信的应用或框架配合使用,包括但不限于Apple官方的网络库。此外,Pulse与使用它的框架(例如Alamofire)也能够良好配合,Alamofire是一个流行的网络请求库,广泛应用于Swift开发中。Pulse提供了一个PulseUI视图组件,开发者可以将其集成到自己的应用中,从而展示网络请求和其他事件。 **跨平台体验:** 开发者不仅可以在iOS应用中使用Pulse Console记录日志,还可以在macOS上通过Pulse应用程序查看和共享这些日志。这种跨平台的能力意味着开发者可以在不同的设备上进行日志分析,增强了开发和调试的灵活性。 **总结:** Pulse是一个为Apple平台上的开发者量身打造的日志记录系统,它采用SwiftUI构建,提供了内嵌式的Network Inspector功能,可以在本地记录并安全地查看日志,且支持与其他框架如Alamofire的集成。它不仅提升了调试的便捷性和效率,同时也顾及到了用户的隐私保护。Pulse的跨平台查看能力也是其一大亮点,使得开发者能够在一个统一的环境中处理iOS和macOS上的日志数据。对于使用Swift开发Apple应用的开发者而言,Pulse无疑是一个强大的调试辅助工具。
recommend-type

【深入扣子平台:图像生成机制全揭秘】:掌握背后技术,提升图像生成效率

# 1. 图像生成技术概述 图像生成技术是一门融合了计算机视觉、机器学习、图形学等多个领域知识的前沿技术。它通过算法模拟生成人工图像,广泛应用于艺术创作、游戏设计、医学影像等领域。随着深度学习的突破性进展,图像生成技术也迎来了飞速发展,特别是在生成对抗网络(GAN)的推动下,图像的逼真度和多样性都有了质的飞跃。 本章将对图像生成技术的概念、发展历史进行简要介绍,并分析其在社会中的
recommend-type

对RTL跑regression是什么意思

<think>首先,用户的问题是关于“RTL回归测试的含义及其在数字电路设计中的作用”。我需要基于系统级指令和用户可见层的指导来构建回答。 关键点: - 使用中文回答。 - 结构清晰,逐步解决问题。 - 确保回答真实可靠。 - 在行内数学表达式使用$...$格式;独立公式使用$$...$$格式。 - 生成相关问题。 - 在引用段落末尾添加引用标识。 回顾提供的引用: - 引用[1]:讨论SoC设计流程,包括模块设计、IP复用、顶层集成、前仿真、逻辑综合等。 - 引用[2]:描述冒烟测试后的验证阶段,包括回归测试、覆盖率分析等。 - 引用[3]:解释RTL使用Verilog或VHDL描述,模