我现在的 将livox CustomMsg自定义的话题要转化为ros的点云给pointcloud_to_laserscan处理我要怎么做完整的方案我要c++实现

时间: 2025-07-24 09:21:51 AIGC 浏览: 54 评论: 6
<think>我们面对的任务是将Livox CustomMsg消息转换为ROS点云格式(sensor_msgs::PointCloud2),以便后续使用pointcloud_to_laserscan处理。根据引用,我们知道Livox CustomMsg是一种自定义的消息格式,而pointcloud_to_laserscan需要sensor_msgs::PointCloud2格式。 步骤: 1. 理解Livox CustomMsg结构:根据引用[2],在Python中转换时,我们提取了每个点的x, y, z和reflectivity(强度)信息。因此,在C++中,我们也需要从CustomMsg中提取这些字段。 2. 目标格式:sensor_msgs::PointCloud2。这是一个ROS标准点云消息,具有特定的结构(包括header、fields、height、width、point_step、row_step、data和is_dense等)。 3. 转换过程: - 创建sensor_msgs::PointCloud2消息对象。 - 设置header(包括时间戳和坐标系)。 - 配置PointCloud2的字段(fields):通常包括x, y, z, intensity(或者rgb等)。根据pointcloud_to_laserscan的要求,它主要需要x, y, z(可能还需要强度,但转换到激光扫描时可能只使用x,y,z)。 - 计算点云的点数,并分配内存。 - 将Livox CustomMsg中的每个点数据复制到PointCloud2的数据缓冲区中。 4. 注意:pointcloud_to_laserscan节点通常要求点云在特定的坐标系(如激光雷达的坐标系)中,并且需要设置正确的header.frame_id。 具体实现: 首先,确保已经安装了Livox SDK和Livox ROS Driver,这样我们才能使用CustomMsg消息类型。然后,创建一个ROS节点,订阅Livox CustomMsg话题,并在回调函数中将其转换为PointCloud2消息,再发布出去。 代码步骤: 1. 包含必要的头文件: ```cpp #include <ros/ros.h> #include <sensor_msgs/PointCloud2.h> #include <livox_ros_driver/CustomMsg.h> #include <pcl_conversions/pcl_conversions.h> // 可选,但方便使用PCL中间结构 // 或者直接操作PointCloud2 ``` 2. 在回调函数中处理CustomMsg: ```cpp void customMsgCallback(const livox_ros_driver::CustomMsg::ConstPtr& customMsg) { // 创建一个PointCloud2消息 sensor_msgs::PointCloud2 cloudMsg; // 设置header cloudMsg.header = customMsg->header; // 使用相同的header(包括时间戳和frame_id) // 配置PointCloud2的字段:x, y, z, intensity cloudMsg.fields.resize(4); cloudMsg.fields[0].name = "x"; cloudMsg.fields[0].offset = 0; cloudMsg.fields[0].datatype = sensor_msgs::PointField::FLOAT32; cloudMsg.fields[0].count = 1; cloudMsg.fields[1].name = "y"; cloudMsg.fields[1].offset = 4; cloudMsg.fields[1].datatype = sensor_msgs::PointField::FLOAT32; cloudMsg.fields[1].count = 1; cloudMsg.fields[2].name = "z"; cloudMsg.fields[2].offset = 8; cloudMsg.fields[2].datatype = sensor_msgs::PointField::FLOAT32; cloudMsg.fields[2].count = 1; cloudMsg.fields[3].name = "intensity"; cloudMsg.fields[3].offset = 12; cloudMsg.fields[3].datatype = sensor_msgs::PointField::FLOAT32; cloudMsg.fields[3].count = 1; // 设置点云的其他属性 cloudMsg.height = 1; // 无序点云,height=1 cloudMsg.width = customMsg->point_num; // 点云中点的个数 cloudMsg.point_step = 16; // 每个点占用的字节数:4个float(4*4=16) cloudMsg.row_step = cloudMsg.width * cloudMsg.point_step; // 一行数据的字节数(因为height=1,所以只有一行) cloudMsg.is_dense = false; // 可能有无效点 // 分配数据空间 cloudMsg.data.resize(cloudMsg.row_step); // 遍历每个点,将数据复制到PointCloud2中 for (uint32_t i = 0; i < customMsg->point_num; ++i) { const livox_ros_driver::CustomPoint& point = customMsg->points[i]; // 计算当前点在data中的位置 uint8_t* data_ptr = &cloudMsg.data[i * cloudMsg.point_step]; // 复制x, y, z, intensity *(float*)(data_ptr) = point.x; *(float*)(data_ptr+4) = point.y; *(float*)(data_ptr+8) = point.z; // 注意:在CustomMsg中,强度信息在reflectivity字段中 *(float*)(data_ptr+12) = point.reflectivity; } // 发布转换后的点云 pub.publish(cloudMsg); } ``` 3. 在main函数中初始化节点,订阅和发布: ```cpp int main(int argc, char** argv) { ros::init(argc, argv, "livox_to_pointcloud2"); ros::NodeHandle nh; // 发布转换后的点云 ros::Publisher pub = nh.advertise<sensor_msgs::PointCloud2>("livox/pointcloud2", 10); // 订阅Livox CustomMsg ros::Subscriber sub = nh.subscribe<livox_ros_driver::CustomMsg>("/livox/lidar", 10, boost::bind(customMsgCallback, _1, pub)); // 注意:上面的回调绑定需要调整,因为需要传递pub。我们可以使用lambda表达式或者将pub作为全局变量(或类成员)。 // 使用lambda表达式: ros::Subscriber sub = nh.subscribe<livox_ros_driver::CustomMsg>("/livox/lidar", 10, [&](const livox_ros_driver::CustomMsg::ConstPtr& msg) { customMsgCallback(msg, pub); }); // 或者,将pub作为全局变量(不推荐)或者封装成类(推荐)来避免全局变量。 ros::spin(); return 0; } ``` 4. 但是,上面的回调函数中使用了pub,所以我们需要修改回调函数的签名,增加一个发布器的参数。或者,我们可以将发布器作为类的成员,这样更符合ROS的编程风格。 推荐使用类封装: ```cpp class LivoxConverter { public: LivoxConverter() { pub_ = nh_.advertise<sensor_msgs::PointCloud2>("livox/pointcloud2", 10); sub_ = nh_.subscribe("/livox/lidar", 10, &LivoxConverter::customMsgCallback, this); } void customMsgCallback(const livox_ros_driver::CustomMsg::ConstPtr& customMsg) { // ... 转换代码,然后使用pub_.publish(cloudMsg); } private: ros::NodeHandle nh_; ros::Publisher pub_; ros::Subscriber sub_; }; int main(int argc, char** argv) { ros::init(argc, argv, "livox_to_pointcloud2"); LivoxConverter converter; ros::spin(); return 0; } ``` 5. 注意:在实际使用中,Livox CustomMsg中的点可能有不同的属性(比如标签、线号等),但根据引用[2]中的Python转换,我们只关心x, y, z, reflectivity(强度)。因此,我们只提取这四个字段。 6. 编译:在CMakeLists.txt中添加可执行文件,并链接相应的库(如roscpp, sensor_msgs, livox_ros_driver等)。 7. 运行转换节点后,就可以将转换后的点云话题(例如`/livox/pointcloud2`)作为输入提供给`pointcloud_to_laserscan`节点。 8. 配置pointcloud_to_laserscan:通常需要设置目标坐标系(例如base_link或base_laser)、高度范围(截取特定高度的一个切片)等参数。具体可参考pointcloud_to_laserscan的文档。 注意事项: - 确保转换后的点云坐标系(frame_id)与pointcloud_to_laserscan配置的坐标系一致。 - 转换过程中,如果点云数据量很大,注意性能问题(例如避免不必要的拷贝)。 以上是使用C++实现将Livox CustomMsg转换为ROS PointCloud2的基本方法。</think>### Livox CustomMsg 转 ROS PointCloud2 (C++实现) #### 步骤 1:创建转换节点框架 ```cpp #include <ros/ros.h> #include <sensor_msgs/PointCloud2.h> #include <livox_ros_driver/CustomMsg.h> #include <pcl/point_cloud.h> #include <pcl/point_types.h> #include <pcl_conversions/pcl_conversions.h> class LivoxConverter { public: LivoxConverter() { // 订阅Livox原始数据 (根据实际话题名调整) sub_ = nh_.subscribe("/livox/lidar", 10, &LivoxConverter::customMsgCallback, this); // 发布转换后的PointCloud2 (pointcloud_to_laserscan的输入) pub_ = nh_.advertise<sensor_msgs::PointCloud2>("livox/pointcloud2", 10); } void customMsgCallback(const livox_ros_driver::CustomMsg::ConstPtr& msg) { // 转换逻辑将在下一步实现 } private: ros::NodeHandle nh_; ros::Subscriber sub_; ros::Publisher pub_; }; int main(int argc, char** argv) { ros::init(argc, argv, "livox_converter_node"); LivoxConverter converter; ros::spin(); return 0; } ``` #### 步骤 2:实现消息转换逻辑 ```cpp void customMsgCallback(const livox_ros_driver::CustomMsg::ConstPtr& msg) { // 创建PCL点云容器 (使用带强度的点类型) pcl::PointCloud<pcl::PointXYZI> cloud; cloud.header.frame_id = msg->header.frame_id; // 保持坐标系一致 cloud.height = 1; // 无序点云 cloud.width = msg->point_num; // 点数 // 预留内存空间 cloud.points.resize(msg->point_num); // 转换每个点 for (uint32_t i = 0; i < msg->point_num; ++i) { const auto& pt = msg->points[i]; auto& pcl_pt = cloud.points[i]; // 坐标转换 pcl_pt.x = pt.x; pcl_pt.y = pt.y; pcl_pt.z = pt.z; // 强度转换 (Livox使用reflectivity字段) pcl_pt.intensity = pt.reflectivity; } // 转换为ROS消息 sensor_msgs::PointCloud2 output; pcl::toROSMsg(cloud, output); output.header.stamp = msg->header.stamp; // 同步时间戳 // 发布转换结果 pub_.publish(output); } ``` #### 步骤 3:CMakeLists.txt配置 ```cmake find_package(catkin REQUIRED COMPONENTS roscpp sensor_msgs pcl_conversions livox_ros_driver ) add_executable(livox_converter_node src/livox_converter.cpp) target_link_libraries(livox_converter_node ${catkin_LIBRARIES} ${PCL_LIBRARIES} ) ``` #### 步骤 4:启动pointcloud_to_laserscan ```xml <!-- 在launch文件中添加 --> <node pkg="pointcloud_to_laserscan" type="pointcloud_to_laserscan_node" name="pc2laser"> <remap from="cloud_in" to="livox/pointcloud2"/> <param name="min_height" value="-0.2"/> <!-- 根据实际高度调整 --> <param name="max_height" value="0.2"/> <param name="range_min" value="0.5"/> <param name="range_max" value="50.0"/> <param name="target_frame" value="base_link"/> <!-- 目标坐标系 --> </node> ``` #### 关键说明: 1. **坐标系一致性**:确保输入数据的`frame_id`与激光雷达物理坐标系一致 2. **强度处理**:Livox的`reflectivity`映射到PointCloud2的`intensity`字段 3. **性能优化**:对于高频数据(如100Hz),可预分配点云内存 4. **点云过滤**:可在转换前添加直通滤波等预处理: ```cpp if (pt.z > -0.5 && pt.z < 0.5) { // 示例高度过滤 cloud.push_back(pcl_pt); } ``` #### 验证方法: ```bash # 查看转换结果 rostopic echo /livox/pointcloud2 --noarr # 可视化检查 rosrun rviz rviz -d $(rospack find pointcloud_to_laserscan)/cfg/sample.rviz ``` #### 常见问题解决: 1. **时间戳同步**:确保`output.header.stamp = msg->header.stamp` 2. **帧率不足**:在回调函数中避免耗时操作 3. **坐标变换**:通过`tf2`确保pointcloud_to_laserscan的目标坐标系存在 4. **点云异常**:检查Livox驱动是否正常发布`/livox/lidar`话题 此实现满足pointcloud_to_laserscan的输入要求,转换后的点云可直接用于生成激光扫描数据[^1][^2]。
阅读全文

相关推荐

WARNING: disk usage in log directory [/home/sx/.ros/log] is over 1GB. It's recommended that you use the 'rosclean' command. started roslaunch server http://sx-NUC8i5BEH:34675/ SUMMARY ======== PARAMETERS * /common/imu_topic: /livox/imu * /common/lid_topic: /livox/lidar * /common/time_offset_lidar_to_imu: 0.0 * /common/time_sync_en: False * /cube_side_length: 1000.0 * /feature_extract_enable: False * /filter_size_map: 0.5 * /filter_size_surf: 0.5 * /mapping/acc_cov: 0.1 * /mapping/b_acc_cov: 0.0001 * /mapping/b_gyr_cov: 0.0001 * /mapping/det_range: 100.0 * /mapping/extrinsic_R: [1, 0, 0, 0, 1, 0... * /mapping/extrinsic_T: [-0.011, -0.02329... * /mapping/extrinsic_est_en: False * /mapping/fov_degree: 360 * /mapping/gyr_cov: 0.1 * /max_iteration: 3 * /pcd_save/interval: -1 * /pcd_save/pcd_save_en: False * /pcd_save_en: False * /point_filter_num: 3 * /pointcloud_to_laserscan/angle_increment: 0.0087 * /pointcloud_to_laserscan/angle_max: 3.14159 * /pointcloud_to_laserscan/angle_min: -3.14159 * /pointcloud_to_laserscan/concurrency_level: 1 * /pointcloud_to_laserscan/inf_epsilon: 1.0 * /pointcloud_to_laserscan/max_height: 1.0 * /pointcloud_to_laserscan/min_height: 0.0 * /pointcloud_to_laserscan/range_max: 30.0 * /pointcloud_to_laserscan/range_min: 0.05 * /pointcloud_to_laserscan/scan_time: 10 * /pointcloud_to_laserscan/transform_tolerance: 0.01 * /pointcloud_to_laserscan/use_inf: True * /preprocess/blind: 0.5 * /preprocess/lidar_type: 1 * /preprocess/scan_line: 4 * /publish/dense_publish_en: True * /publish/path_en: False * /publish/scan_bodyframe_pub_en: True * /publish/scan_publish_en: True * /rosdistro: noetic * /rosversion: 1.17.0 * /runtime_pos_log_enable: False NODES / global_localization (fast_lio_localization/global_localization.py) laserMapping (fast_lio/fastlio_mapping) map_publishe (pcl_ros/pcd_to_pointcloud) map_server (map_server/map_server) pointcloud_to_laserscan (pointcloud_to_laserscan/po

#! /usr/bin/python3 # 将PointCloud -> PointCloud2 -> livox_ros_drive2.CustomMsg import rospy import sensor_msgs.point_cloud2 as pc2 from sensor_msgs.msg import PointCloud, PointCloud2, PointField from livox_ros_driver2.msg import CustomMsg, CustomPoint from std_msgs.msg import Header import struct from threading import Lock # 全局变量 pub = None lidar_frame = "lidar_frame" # 替换为实际的 LiDAR 帧 ID m_buf = Lock() def pointcloud2_to_custommsg(pointcloud2): custom_msg = CustomMsg() custom_msg.header = pointcloud2.header custom_msg.timebase = rospy.Time.now().to_nsec() custom_msg.point_num = pointcloud2.width custom_msg.lidar_id = 1 # Assuming lidar_id is 1 custom_msg.rsvd = [0, 0, 0] # Reserved fields # Parse PointCloud2 data fmt = _get_struct_fmt(pointcloud2) for i in range(0, len(pointcloud2.data), pointcloud2.point_step): point_data = pointcloud2.data[i:i+pointcloud2.point_step] x, y, z = struct.unpack(fmt, point_data) custom_point = CustomPoint() custom_point.offset_time = rospy.Time.now().to_nsec() - custom_msg.timebase custom_point.x = x custom_point.y = y custom_point.z = z # custom_point.reflectivity = int(intensity * 255) # Scale intensity to 0-255 custom_point.tag = 0 # Assuming no tag custom_point.line = 0 # Assuming no line number custom_msg.points.append(custom_point) return custom_msg def _get_struct_fmt(pointcloud2): fmt = '' for field in pointcloud2.fields: if field.datatype == PointField.FLOAT32: fmt += 'f' elif field.datatype == PointField.UINT8: fmt += 'B' elif field.datatype == PointField.INT8: fmt += 'b' elif field.datatype == PointField.UINT16: fmt += 'H' elif field.datatype == PointField.INT16: fmt += 'h' elif field.datatype == PointField.UINT32: fmt += 'I' elif field.datatype == PointField.INT32: fmt += 'i' else: rospy.logwarn("Unsupported field type: %d", field.datatype) return fmt def mmw_handler(mmw_cloud_msg): global pub_laser_cloud, lidar_frame, m_buf # 加锁 m_buf.acquire() # 将 PointCloud 转换为 PointCloud2 laser_cloud_msg = PointCloud2() laser_cloud_msg.header.stamp = mmw_cloud_msg.header.stamp laser_cloud_msg.header.frame_id = lidar_frame laser_cloud_msg = pc2.create_cloud_xyz32(laser_cloud_msg.header, [(p.x, p.y, p.z) for p in mmw_cloud_msg.points]) # laser_cloud_msg 是 PointCloud2格式数据 custom_msg = pointcloud2_to_custommsg(laser_cloud_msg) pub.publish(custom_msg) # 发布 PointCloud2 消息 # pub_laser_cloud.publish(laser_cloud_msg) # 解锁 m_buf.release() def main(): global pub # 初始化 ROS 节点 rospy.init_node('pre_mmw', anonymous=True) # 订阅 PointCloud 话题 sub_mmw_cloud = rospy.Subscriber('/scan', PointCloud, mmw_handler) # pub_laser_cloud = rospy.Publisher("livox/lidar", PointCloud2, queue_size=2000) pub = rospy.Publisher('/livox/lidar2', CustomMsg, queue_size=10) # 保持节点运行 rospy.spin() if __name__ == '__main__': try: main() except rospy.ROSInterruptException: pass 解释一下

colcon build --symlink-install Starting >>> livox_ros_driver2 Starting >>> linefit_ground_segmentation Starting >>> fake_vel_transform Starting >>> imu_complementary_filter Starting >>> pb_rm_simulation Starting >>> pointcloud_to_laserscan Starting >>> rm_nav_bringup Starting >>> rm_navigation Finished <<< rm_navigation [0.07s] Finished <<< pb_rm_simulation [0.08s] Finished <<< rm_nav_bringup [0.09s] Finished <<< fake_vel_transform [0.10s] Finished <<< linefit_ground_segmentation [0.13s] Starting >>> linefit_ground_segmentation_ros Finished <<< pointcloud_to_laserscan [0.13s] Finished <<< imu_complementary_filter [0.14s] Finished <<< linefit_ground_segmentation_ros [0.10s] --- stderr: livox_ros_driver2 /usr/include/apr-1.0 apr-1 CMake Error at /opt/ros/humble/share/rosidl_adapter/cmake/rosidl_adapt_interfaces.cmake:59 (message): execute_process(/home/chen/miniconda3/envs/ros_env/bin/python3 -m rosidl_adapter --package-name livox_ros_driver2 --arguments-file /home/chen/files/pb_rm_simulation-master/build/livox_ros_driver2/rosidl_adapter__arguments__livox_interfaces2.json --output-dir /home/chen/files/pb_rm_simulation-master/build/livox_ros_driver2/rosidl_adapter/livox_ros_driver2 --output-file /home/chen/files/pb_rm_simulation-master/build/livox_ros_driver2/rosidl_adapter/livox_interfaces2.idls) returned error code 1: AttributeError processing template 'msg.idl.em' Traceback (most recent call last): File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/resource/__init__.py", line 48, in evaluate_template _interpreter = em.Interpreter( AttributeError: module 'em' has no attribute 'Interpreter' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/chen/miniconda3/envs/ros_env/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code,

[ 96%] Built target livox_ros_driver_generate_messages In file included from /usr/include/string.h:495, from /usr/include/c++/9/cstring:42, from /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/common/rapidjson/rapidjson.h:45, from /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/common/rapidjson/stream.h:19, from /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/common/rapidjson/memorystream.h:22, from /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/common/rapidjson/encodedstream.h:22, from /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/common/rapidjson/document.h:26, from /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/livox_ros_driver/lds_lidar.h:36, from /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/livox_ros_driver/lds_lidar.cpp:25: In function ‘char* strncpy(char*, const char*, size_t)’, inlined from ‘int livox_ros::LdsLidar::ParseTimesyncConfig(rapidjson::Document&)’ at /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/livox_ros_driver/lds_lidar.cpp:605:17: /usr/include/aarch64-linux-gnu/bits/string_fortified.h:106:34: warning: ‘char* __builtin_strncpy(char*, const char*, long unsigned int)’ specified bound 256 equals destination size [-Wstringop-truncation] 106 | return __builtin___strncpy_chk (__dest, __src, __len, __bos (__dest)); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In function ‘char* strncpy(char*, const char*, size_t)’, inlined from ‘int livox_ros::LdsLidar::ParseConfigFile(const char*)’ at /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/livox_ros_driver/lds_lidar.cpp:668:25: /usr/include/aarch64-linux-gnu/bits/string_fortified.h:106:34: warning: ‘char* __builtin_strncpy(char*, const char*, long unsigned int)’ specified bound 16 equals destination size [-Wstringop-truncation] 106 | return __builtin___strncpy_chk (__dest, __src, __len, __bos (__dest)); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [100%] Linking CXX executable /home/vd/ws_livox/devel/lib/livox_ros_driver/livox_ros_driver_node [100%] Built target livox_ros_driver_node vd@ubuntu:~/ws_livox$ source devel/setup.bash vd@ubuntu:~/ws_livox$

lixing@lixing:~/fast_livo2/devel$ cd .. lixing@lixing:~/fast_livo2$ catkin_make install Base path: /home/lixing/fast_livo2 Source space: /home/lixing/fast_livo2/src Build space: /home/lixing/fast_livo2/build Devel space: /home/lixing/fast_livo2/devel Install space: /home/lixing/fast_livo2/install #### #### Running command: "make cmake_check_build_system" in "/home/lixing/fast_livo2/build" #### #### #### Running command: "make install -j8 -l8" in "/home/lixing/fast_livo2/build" #### [ 0%] Built target std_msgs_generate_messages_cpp [ 0%] Built target std_msgs_generate_messages_nodejs [ 0%] Built target std_msgs_generate_messages_lisp [ 0%] Built target std_msgs_generate_messages_eus [ 0%] Built target std_msgs_generate_messages_py [ 0%] Built target _livox_ros_driver2_generate_messages_check_deps_CustomMsg [ 20%] Built target vikit_common [ 20%] Built target _livox_ros_driver2_generate_messages_check_deps_CustomPoint [ 26%] Built target vio [ 30%] Built target imu_proc [ 33%] Built target laser_mapping [ 36%] Built target lio [ 39%] Built target pre [ 42%] Built target test_vk_common_patch_score [ 46%] Built target test_vk_common_camera [ 49%] Built target livox_ros_driver2_generate_messages_nodejs [ 52%] Built target livox_ros_driver2_generate_messages_lisp [ 55%] Built target livox_ros_driver2_generate_messages_cpp [ 58%] Built target test_vk_common_triangulation [ 65%] Built target vikit_ros [ 66%] Built target livox_ros_driver2_generate_messages_eus [ 71%] Built target livox_ros_driver2_generate_messages_py [ 71%] Built target livox_ros_driver2_generate_messages [ 96%] Built target livox_ros_driver2_node [100%] Built target fastlivo_mapping Install the project... -- Install configuration: "Release" -- Installing: /home/lixing/fast_livo2/install/_setup_util.py -- Installing: /home/lixing/fast_livo2/install/env.sh -- Installing: /home/lixing/fast_livo2/install/setup.bash -- Installing: /home/lixing/fast_livo2/install/local_setup.bash -- Installing: /home/lixing/fast_livo2/install/setup.sh -- Installing: /home/lixing/fast_livo2/install/local_setup.sh -- Installing: /home/lixing/fast_livo2/install/setup.zsh -- Installing: /home/lixing/fast_livo2/install/local_setup.zsh -- Installing: /home/lixing/fast_livo2/install/setup.fish -- Installing: /home/lixing/fast_livo2/install/local_setup.fish -- Installing: /home/lixing/fast_livo2/install/.rosinstall -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/msg/CustomPoint.msg -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/msg/CustomMsg.msg -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/cmake/livox_ros_driver2-msg-paths.cmake -- Installing: /home/lixing/fast_livo2/install/include/livox_ros_driver2 -- Installing: /home/lixing/fast_livo2/install/include/livox_ros_driver2/CustomMsg.h -- Installing: /home/lixing/fast_livo2/install/include/livox_ros_driver2/CustomPoint.h -- Installing: /home/lixing/fast_livo2/install/share/roseus/ros/livox_ros_driver2 -- Installing: /home/lixing/fast_livo2/install/share/roseus/ros/livox_ros_driver2/msg -- Installing: /home/lixing/fast_livo2/install/share/roseus/ros/livox_ros_driver2/msg/CustomMsg.l -- Installing: /home/lixing/fast_livo2/install/share/roseus/ros/livox_ros_driver2/msg/CustomPoint.l -- Installing: /home/lixing/fast_livo2/install/share/roseus/ros/livox_ros_driver2/manifest.l -- Installing: /home/lixing/fast_livo2/install/share/common-lisp/ros/livox_ros_driver2 -- Installing: /home/lixing/fast_livo2/install/share/common-lisp/ros/livox_ros_driver2/msg -- Installing: /home/lixing/fast_livo2/install/share/common-lisp/ros/livox_ros_driver2/msg/_package_CustomMsg.lisp -- Installing: /home/lixing/fast_livo2/install/share/common-lisp/ros/livox_ros_driver2/msg/CustomPoint.lisp -- Installing: /home/lixing/fast_livo2/install/share/common-lisp/ros/livox_ros_driver2/msg/_package_CustomPoint.lisp -- Installing: /home/lixing/fast_livo2/install/share/common-lisp/ros/livox_ros_driver2/msg/livox_ros_driver2-msg.asd -- Installing: /home/lixing/fast_livo2/install/share/common-lisp/ros/livox_ros_driver2/msg/_package.lisp -- Installing: /home/lixing/fast_livo2/install/share/common-lisp/ros/livox_ros_driver2/msg/CustomMsg.lisp -- Installing: /home/lixing/fast_livo2/install/share/gennodejs/ros/livox_ros_driver2 -- Installing: /home/lixing/fast_livo2/install/share/gennodejs/ros/livox_ros_driver2/msg -- Installing: /home/lixing/fast_livo2/install/share/gennodejs/ros/livox_ros_driver2/msg/CustomMsg.js -- Installing: /home/lixing/fast_livo2/install/share/gennodejs/ros/livox_ros_driver2/msg/CustomPoint.js -- Installing: /home/lixing/fast_livo2/install/share/gennodejs/ros/livox_ros_driver2/msg/_index.js -- Installing: /home/lixing/fast_livo2/install/share/gennodejs/ros/livox_ros_driver2/_index.js Listing '/home/lixing/fast_livo2/devel/lib/python3/dist-packages/livox_ros_driver2'... Compiling '/home/lixing/fast_livo2/devel/lib/python3/dist-packages/livox_ros_driver2/__init__.py'... Listing '/home/lixing/fast_livo2/devel/lib/python3/dist-packages/livox_ros_driver2/msg'... Compiling '/home/lixing/fast_livo2/devel/lib/python3/dist-packages/livox_ros_driver2/msg/_CustomMsg.py'... Compiling '/home/lixing/fast_livo2/devel/lib/python3/dist-packages/livox_ros_driver2/msg/_CustomPoint.py'... Compiling '/home/lixing/fast_livo2/devel/lib/python3/dist-packages/livox_ros_driver2/msg/__init__.py'... -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2 -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/__init__.py -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/msg -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/msg/__init__.py -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/msg/_CustomMsg.py -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/msg/__pycache__ -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/msg/__pycache__/__init__.cpython-38.pyc -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/msg/__pycache__/_CustomMsg.cpython-38.pyc -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/msg/__pycache__/_CustomPoint.cpython-38.pyc -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/msg/_CustomPoint.py -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/__pycache__ -- Installing: /home/lixing/fast_livo2/install/lib/python3/dist-packages/livox_ros_driver2/__pycache__/__init__.cpython-38.pyc -- Installing: /home/lixing/fast_livo2/install/lib/pkgconfig/livox_ros_driver2.pc -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/cmake/livox_ros_driver2-msg-extras.cmake -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/cmake/livox_ros_driver2Config.cmake -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/cmake/livox_ros_driver2Config-version.cmake -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/package.xml -- Installing: /home/lixing/fast_livo2/install/lib/livox_ros_driver2/livox_ros_driver2_node -- Set runtime path of "/home/lixing/fast_livo2/install/lib/livox_ros_driver2/livox_ros_driver2_node" to "" -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/launch_ROS1 -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/launch_ROS1/msg_mixed.launch -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/launch_ROS1/msg_HAP.launch -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/launch_ROS1/msg_MID360.launch -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/launch_ROS1/rviz_MID360.launch -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/launch_ROS1/rviz_mixed.launch -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/launch_ROS1/rviz_HAP.launch -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/config -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/config/HAP_config.json -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/config/display_point_cloud_ROS1.rviz -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/config/mixed_HAP_MID360_config.json -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/config/display_point_cloud_ROS2.rviz -- Installing: /home/lixing/fast_livo2/install/share/livox_ros_driver2/config/MID360_config.json -- Installing: /home/lixing/fast_livo2/install/lib/pkgconfig/vikit_common.pc -- Installing: /home/lixing/fast_livo2/install/share/vikit_common/cmake/vikit_commonConfig.cmake -- Installing: /home/lixing/fast_livo2/install/share/vikit_common/cmake/vikit_commonConfig-version.cmake -- Installing: /home/lixing/fast_livo2/install/share/vikit_common/package.xml + cd /home/lixing/fast_livo2/src/rpg_vikit/vikit_py + mkdir -p /home/lixing/fast_livo2/install/lib/python3/dist-packages + /usr/bin/env PYTHONPATH=/home/lixing/fast_livo2/install/lib/python3/dist-packages:/home/lixing/fast_livo2/build/lib/python3/dist-packages:/home/lixing/fast_livo2/devel/lib/python3/dist-packages:/opt/ros/noetic/lib/python3/dist-packages CATKIN_BINARY_DIR=/home/lixing/fast_livo2/build /usr/bin/python3 /home/lixing/fast_livo2/src/rpg_vikit/vikit_py/setup.py build --build-base /home/lixing/fast_livo2/build/rpg_vikit/vikit_py install --root=/ --install-layout=deb --prefix=/home/lixing/fast_livo2/install --install-scripts=/home/lixing/fast_livo2/install/bin running build running build_py creating /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib creating /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py copying src/vikit_py/depthmap_utils.py -> /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py copying src/vikit_py/__init__.py -> /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py copying src/vikit_py/math_utils.py -> /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py copying src/vikit_py/transformations.py -> /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py copying src/vikit_py/align_trajectory.py -> /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py copying src/vikit_py/ros_node.py -> /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py copying src/vikit_py/cpu_info.py -> /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py running install running install_lib creating /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py copying /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py/depthmap_utils.py -> /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py copying /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py/__init__.py -> /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py copying /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py/math_utils.py -> /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py copying /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py/transformations.py -> /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py copying /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py/align_trajectory.py -> /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py copying /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py/ros_node.py -> /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py copying /home/lixing/fast_livo2/build/rpg_vikit/vikit_py/lib/vikit_py/cpu_info.py -> /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py byte-compiling /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py/depthmap_utils.py to depthmap_utils.cpython-38.pyc byte-compiling /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py/__init__.py to __init__.cpython-38.pyc byte-compiling /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py/math_utils.py to math_utils.cpython-38.pyc byte-compiling /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py/transformations.py to transformations.cpython-38.pyc byte-compiling /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py/align_trajectory.py to align_trajectory.cpython-38.pyc byte-compiling /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py/ros_node.py to ros_node.cpython-38.pyc byte-compiling /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py/cpu_info.py to cpu_info.cpython-38.pyc running install_egg_info Writing /home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py-0.0.0.egg-info /usr/lib/python3.8/distutils/dist.py:274: UserWarning: Unknown distribution option: 'install_requires' warnings.warn(msg) File "home/lixing/fast_livo2/install/lib/python3/dist-packages/vikit_py/depthmap_utils.py", line 15 print 'Could not open file ' + depthmap_full_file_path + ' for reading binary data.' ^ SyntaxError: Missing parentheses in call to 'print'. Did you mean print('Could not open file ' + depthmap_full_file_path + ' for reading binary data.')? -- Installing: /home/lixing/fast_livo2/install/lib/pkgconfig/vikit_py.pc -- Installing: /home/lixing/fast_livo2/install/share/vikit_py/cmake/vikit_pyConfig.cmake -- Installing: /home/lixing/fast_livo2/install/share/vikit_py/cmake/vikit_pyConfig-version.cmake -- Installing: /home/lixing/fast_livo2/install/share/vikit_py/package.xml -- Installing: /home/lixing/fast_livo2/install/lib/pkgconfig/vikit_ros.pc -- Installing: /home/lixing/fast_livo2/install/share/vikit_ros/cmake/vikit_rosConfig.cmake -- Installing: /home/lixing/fast_livo2/install/share/vikit_ros/cmake/vikit_rosConfig-version.cmake -- Installing: /home/lixing/fast_livo2/install/share/vikit_ros/package.xml -- Installing: /home/lixing/fast_livo2/install/lib/pkgconfig/fast_livo.pc -- Installing: /home/lixing/fast_livo2/install/share/fast_livo/cmake/fast_livoConfig.cmake -- Installing: /home/lixing/fast_livo2/install/share/fast_livo/cmake/fast_livoConfig-version.cmake -- Installing: /home/lixing/fast_livo2/install/share/fast_livo/package.xml

colcon build --symlink-install Starting >>> livox_ros_driver2 Starting >>> costmap_converter_msgs Starting >>> linefit_ground_segmentation Starting >>> fake_vel_transform Starting >>> imu_complementary_filter Starting >>> pb_rm_simulation Starting >>> pointcloud_to_laserscan Starting >>> rm_nav_bringup Starting >>> rm_navigation Finished <<< rm_nav_bringup [0.10s] Finished <<< rm_navigation [0.11s] Finished <<< pb_rm_simulation [0.13s] --- stderr: costmap_converter_msgs CMake Error at /opt/ros/humble/share/rosidl_adapter/cmake/rosidl_adapt_interfaces.cmake:59 (message): execute_process(/home/chen/miniconda3/bin/python3 -m rosidl_adapter --package-name costmap_converter_msgs --arguments-file /home/chen/files/pb_rmsimulation/build/costmap_converter_msgs/rosidl_adapter__arguments__costmap_converter_msgs.json --output-dir /home/chen/files/pb_rmsimulation/build/costmap_converter_msgs/rosidl_adapter/costmap_converter_msgs --output-file /home/chen/files/pb_rmsimulation/build/costmap_converter_msgs/rosidl_adapter/costmap_converter_msgs.idls) returned error code 1: AttributeError processing template 'msg.idl.em' Traceback (most recent call last): File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/resource/__init__.py", line 51, in evaluate_template em.BUFFERED_OPT: True, AttributeError: module 'em' has no attribute 'BUFFERED_OPT' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/chen/miniconda3/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/chen/miniconda3/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/__main__.py", line 19, in <module> sys.exit(main()) File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/main.py", line 53, in main abs_idl_file = convert_to_idl( File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/__init__.py", line 19, in convert_to_idl return convert_msg_to_idl( File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/msg/__init__.py", line 39, in convert_msg_to_idl expand_template('msg.idl.em', data, output_file, encoding='iso-8859-1') File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/resource/__init__.py", line 23, in expand_template content = evaluate_template(template_name, data) File "/opt/ros/humble/local/lib/python3.10/dist-packages/rosidl_adapter/resource/__init__.py", line 69, in evaluate_template _interpreter.shutdown() AttributeError: 'NoneType' object has no attribute 'shutdown' Call Stack (most recent call first): /opt/ros/humble/share/rosidl_cmake/cmake/rosidl_generate_interfaces.cmake:130 (rosidl_adapt_interfaces) CMakeLists.txt:20 (rosidl_generate_interfaces) --- Failed <<< costmap_converter_msgs [0.33s, exited with code 1] Aborted <<< livox_ros_driver2 [1.44s] Aborted <<< linefit_ground_segmentation [3.91s] Aborted <<< fake_vel_transform [6.36s] Aborted <<< imu_complementary_filter [13.7s] Aborted <<< pointcloud_to_laserscan [19.9s] Summary: 3 packages finished [20.0s] 1 package failed: costmap_converter_msgs 5 packages aborted: fake_vel_transform imu_complementary_filter linefit_ground_segmentation livox_ros_driver2 pointcloud_to_laserscan 2 packages had stderr output: costmap_converter_msgs livox_ros_driver2 8 packages not processed (base) chen@chen-R16:~/files/pb_rmsimulation$

vd@ubuntu:~/ws_livox$ source /opt/ros/noetic/setup.bash vd@ubuntu:~/ws_livox$ cd ~/ws_livox vd@ubuntu:~/ws_livox$ catkin_make Base path: /home/vd/ws_livox Source space: /home/vd/ws_livox/src Build space: /home/vd/ws_livox/build Devel space: /home/vd/ws_livox/devel Install space: /home/vd/ws_livox/install #### #### Running command: "make cmake_check_build_system" in "/home/vd/ws_livox/build" #### #### #### Running command: "make -j8 -l8" in "/home/vd/ws_livox/build" #### [ 0%] Built target std_msgs_generate_messages_nodejs [ 0%] Built target std_msgs_generate_messages_py [ 0%] Built target std_msgs_generate_messages_lisp [ 0%] Built target std_msgs_generate_messages_eus [ 0%] Built target std_msgs_generate_messages_cpp [ 0%] Built target _livox_ros_driver_generate_messages_check_deps_CustomMsg [ 0%] Built target _livox_ros_driver_generate_messages_check_deps_CustomPoint [ 11%] Built target livox_ros_driver_generate_messages_py [ 19%] Built target livox_ros_driver_generate_messages_lisp [ 26%] Built target livox_ros_driver_generate_messages_nodejs [ 38%] Built target livox_ros_driver_generate_messages_eus [ 46%] Built target livox_ros_driver_generate_messages_cpp [ 46%] Built target livox_ros_driver_generate_messages [100%] Built target livox_ros_driver_node vd@ubuntu:~/ws_livox$ source devel/setup.bash vd@ubuntu:~/ws_livox$ roslaunch livox_ros_driver livox_lidar.launch ... logging to /home/vd/.ros/log/80d05a7e-87d9-11f0-a428-00044bcbeb85/roslaunch-ubuntu-19693.log Checking log directory for disk usage. This may take a while. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://ubuntu:42125/ SUMMARY ======== PARAMETERS * /cmdline_file_path: livox_test.lvx * /cmdline_str: 100000000000000 * /data_src: 0 * /enable_imu_bag: True * /enable_lidar_bag: True * /frame_id: livox_frame * /multi_topic: 0 * /output_data_type: 0 * /publish_freq: 10.0 * /rosdistro: noetic * /rosversion: 1.17.4 * /user_config_path: /home/vd/ws_livox... * /xfer_format: 0 NODES / livox_lidar_publisher (livox_ros_driver/livox_ros_driver_node) auto-starting new master process[master]: started with pid [19701] ROS_MASTER_URI=http://localhost:11311 setting /run_id to 80d05a7e-87d9-11f0-a428-00044bcbeb85 process[rosout-1]: started with pid [19711] started core service [/rosout] process[livox_lidar_publisher-2]: started with pid [19718] [INFO] [1756802870.346740936]: Livox Ros Driver Version: 2.6.0 [INFO] [1756802870.354322043]: Data Source is raw lidar. [INFO] [1756802870.355215828]: Config file : /home/vd/ws_livox/src/livox_ros_driver/livox_ros_driver/config/livox_lidar_config.json Commandline input bd:100000000000000 Invalid bd:100000000000000! Livox SDK version 2.3.0 broadcast code[1PQDH5B00100041] : 0 0 0 0 0 0 broadcast code[0TFDG3U99101431] : 0 0 0 0 0 0 Disable timesync No broadcast code was added to whitelist, swith to automatic connection mode! Livox-SDK init success! [INFO] [1756802870.357229885]: Init lds lidar success! 然后呢

zyt@zyt-virtual-machine:~/gmapping/catkin_ws$ catkin_make Base path: /home/zyt/gmapping/catkin_ws Source space: /home/zyt/gmapping/catkin_ws/src Build space: /home/zyt/gmapping/catkin_ws/build Devel space: /home/zyt/gmapping/catkin_ws/devel Install space: /home/zyt/gmapping/catkin_ws/install #### #### Running command: "make cmake_check_build_system" in "/home/zyt/gmapping/catkin_ws/build" #### #### #### Running command: "make -j2 -l2" in "/home/zyt/gmapping/catkin_ws/build" #### [ 0%] Built target std_msgs_generate_messages_nodejs [ 0%] Built target _livox_ros_driver_generate_messages_check_deps_CustomMsg [ 0%] Built target std_msgs_generate_messages_py [ 0%] Built target std_msgs_generate_messages_eus [ 0%] Built target std_msgs_generate_messages_cpp [ 0%] Built target _livox_ros_driver_generate_messages_check_deps_CustomPoint [ 0%] Built target std_msgs_generate_messages_lisp [ 7%] Built target livox_ros_driver_generate_messages_nodejs [ 19%] Built target livox_ros_driver_generate_messages_py [ 30%] Built target livox_ros_driver_generate_messages_eus [ 38%] Built target livox_ros_driver_generate_messages_cpp [ 46%] Built target livox_ros_driver_generate_messages_lisp [ 46%] Built target livox_ros_driver_generate_messages [100%] Built target livox_ros_driver_node 为什么我刚刚编译都完成了,现在又开始报错CMake Error at /home/zyt/gmapping/catkin_ws/devel/share/cartographer_ros/cmake/cartographer_rosConfig.cmake:113 (message): Project 'cartographer_ros' specifies '/home/include/eigen3' as an include dir, which is not found. It does neither exist as an absolute directory nor in '/home/zyt/gmapping/catkin_ws/src/cartographer_ros/cartographer_ros//home/include/eigen3'. Check the website 'https://github.com/googlecartographer/cartographer_ros' for information and consider reporting the problem. Call Stack (most recent call first): /opt/ros/kinetic/share/catkin/cmake/catkinConfig.cmake:76 (find_package) cartographer_ros/cartographer_rviz/CMakeLists.txt:35 (find_package) -- Configuring incomplete, errors occurred! See also "/home/zyt/gmapping/catkin_ws/build/CMakeFiles/CMakeOutput.log". See also "/home/zyt/gmapping/catkin_ws/build/CMakeFiles/CMakeError.log". Invoking "cmake" failed

zy@zy-Lenovo-Legion-R7000P2020H:~/autoware$ colcon build --symlink-install \ --cmake-args \ -DCMAKE_BUILD_TYPE=Release \ -DCUDAToolkit_ROOT=/usr/local/cuda-12.4 \ -DCMAKE_CUDA_COMPILER=/usr/local/cuda-12.4/bin/nvcc \ --continue-on-error \ --allow-overriding can_msgs Starting >>> autoware_lint_common Starting >>> autoware_planning_msgs Starting >>> autoware_simple_object_merger --- stderr: autoware_probabilistic_occupancy_grid_map In this package, headers install destination is set to include by ament_auto_package. It is recommended to install include/autoware_probabilistic_occupancy_grid_map instead and will be the default behavior of ament_auto_package from ROS 2 Kilted Kaiju. On distributions before Kilted, ament_auto_package behaves the same way when you use USE_SCOPED_HEADER_INSTALL_DIR option. CMake Warning: Manually-specified variables were not used by the project: CMAKE_CUDA_COMPILER CUDAToolkit_ROOT /usr/bin/ccache: invalid option -- 'E' nvcc fatal : Failed to preprocess host compiler properties. CMake Error at autoware_probabilistic_occupancy_grid_map_cuda_generated_utils_kernel.cu.o.Release.cmake:220 (message): Error generating /home/zy/autoware/build/autoware_probabilistic_occupancy_grid_map/CMakeFiles/autoware_probabilistic_occupancy_grid_map_cuda.dir/lib/utils/./autoware_probabilistic_occupancy_grid_map_cuda_generated_utils_kernel.cu.o gmake[2]: *** [CMakeFiles/autoware_probabilistic_occupancy_grid_map_cuda.dir/build.make:105:CMakeFiles/autoware_probabilistic_occupancy_grid_map_cuda.dir/lib/utils/autoware_probabilistic_occupancy_grid_map_cuda_generated_utils_kernel.cu.o] 错误 1 gmake[1]: *** [CMakeFiles/Makefile2:150:CMakeFiles/autoware_probabilistic_occupancy_grid_map_cuda.dir/all] 错误 2 gmake: *** [Makefile:146:all] 错误 2 --- Failed <<< autoware_probabilistic_occupancy_grid_map [29.1s, exited with code 2] Starting >>> autoware_pid_longitudinal_controller --- stderr: autoware_lidar_transfusion In this package, headers install destination is set to include by ament_auto_package. It is recommended to install include/autoware_lidar_transfusion instead and will be the default behavior of ament_auto_package from ROS 2 Kilted Kaiju. On distributions before Kilted, ament_auto_package behaves the same way when you use USE_SCOPED_HEADER_INSTALL_DIR option. sh: 1: cicc: not found CMake Error at autoware_lidar_transfusion_cuda_lib_generated_preprocess_kernel.cu.o.Release.cmake:280 (message): Error generating file /home/zy/autoware/build/autoware_lidar_transfusion/CMakeFiles/autoware_lidar_transfusion_cuda_lib.dir/lib/preprocess/./autoware_lidar_transfusion_cuda_lib_generated_preprocess_kernel.cu.o gmake[2]: *** [CMakeFiles/autoware_lidar_transfusion_cuda_lib.dir/build.make:411:CMakeFiles/autoware_lidar_transfusion_cuda_lib.dir/lib/preprocess/autoware_lidar_transfusion_cuda_lib_generated_preprocess_kernel.cu.o] 错误 1 gmake[1]: *** [CMakeFiles/Makefile2:192:CMakeFiles/autoware_lidar_transfusion_cuda_lib.dir/all] 错误 2 gmake: *** [Makefile:146:all] 错误 2 --- Failed <<< autoware_lidar_transfusion [34.7s, exited with code 2] Starting >>> autoware_pure_pursuit --- stderr: autoware_planning_validator In this package, headers install destination is set to include by ament_auto_package. It is recommended to install include/autoware_planning_validator instead and will be the default behavior of ament_auto_package from ROS 2 Kilted Kaiju. On distributions before Kilted, ament_auto_package behaves the same way when you use USE_SCOPED_HEADER_INSTALL_DIR option. CMake Warning: Manually-specified variables were not used by the project: CMAKE_CUDA_COMPILER CUDAToolkit_ROOT /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidFiniteValueFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0xa4): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xf0): undefined reference to autoware::planning_validator::PlanningValidator::checkValidFiniteValue(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x120): undefined reference to autoware::planning_validator::PlanningValidator::checkValidFiniteValue(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x153): undefined reference to autoware::planning_validator::PlanningValidator::checkValidFiniteValue(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidIntervalFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0x4f9): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x549): undefined reference to autoware::planning_validator::PlanningValidator::checkValidInterval(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x59b): undefined reference to autoware::planning_validator::PlanningValidator::checkValidInterval(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x5e0): undefined reference to autoware::planning_validator::PlanningValidator::checkValidInterval(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x638): undefined reference to autoware::planning_validator::PlanningValidator::checkValidInterval(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidCurvatureFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0xb24): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xb70): undefined reference to autoware::planning_validator::PlanningValidator::checkValidCurvature(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidRelativeAngleFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0xde7): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xe64): undefined reference to autoware::planning_validator::PlanningValidator::checkValidRelativeAngle(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xec5): undefined reference to autoware::planning_validator::PlanningValidator::checkValidRelativeAngle(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xf28): undefined reference to autoware::planning_validator::PlanningValidator::checkValidRelativeAngle(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0xfef): undefined reference to autoware::planning_validator::PlanningValidator::checkValidRelativeAngle(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkValidLateralJerkFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0x14b9): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x150a): undefined reference to autoware::planning_validator::PlanningValidator::checkValidLateralJerk(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x15ea): undefined reference to autoware::planning_validator::PlanningValidator::checkValidLateralJerk(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1662): undefined reference to autoware::planning_validator::PlanningValidator::checkValidLateralJerk(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x17f5): undefined reference to autoware::planning_validator::PlanningValidator::checkValidLateralJerk(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_functions.cpp.o: in function PlanningValidatorTestSuite_checkTrajectoryShiftFunction_Test::TestBody()': test_planning_validator_functions.cpp:(.text+0x1d2b): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1dda): undefined reference to autoware::planning_validator::PlanningValidator::checkTrajectoryShift(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, geometry_msgs::msg::Pose_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1e2a): undefined reference to autoware::planning_validator::PlanningValidator::checkTrajectoryShift(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, geometry_msgs::msg::Pose_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1e77): undefined reference to autoware::planning_validator::PlanningValidator::checkTrajectoryShift(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, geometry_msgs::msg::Pose_<std::allocator<void> > const&)' /usr/bin/ld: test_planning_validator_functions.cpp:(.text+0x1ec6): undefined reference to autoware::planning_validator::PlanningValidator::checkTrajectoryShift(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, geometry_msgs::msg::Pose_<std::allocator<void> > const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_pubsub.cpp.o: in function prepareTest(autoware_planning_msgs::msg::Trajectory_<std::allocator<void> > const&, nav_msgs::msg::Odometry_<std::allocator<void> > const&, geometry_msgs::msg::AccelWithCovarianceStamped_<std::allocator<void> > const&)': test_planning_validator_pubsub.cpp:(.text+0x3164): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' /usr/bin/ld: CMakeFiles/test_autoware_planning_validator.dir/test/src/test_planning_validator_node_interface.cpp.o: in function generateNode()': test_planning_validator_node_interface.cpp:(.text+0x14d5): undefined reference to autoware::planning_validator::PlanningValidator::PlanningValidator(rclcpp::NodeOptions const&)' collect2: error: ld returned 1 exit status gmake[2]: *** [CMakeFiles/test_autoware_planning_validator.dir/build.make:736:test_autoware_planning_validator] 错误 1 gmake[1]: *** [CMakeFiles/Makefile2:761:CMakeFiles/test_autoware_planning_validator.dir/all] 错误 2 gmake: *** [Makefile:146:all] 错误 2 --- Failed <<< autoware_planning_validator [54.8s, exited with code 2] Summary: 400 packages finished [12min 14s] 13 packages failed: autoware_behavior_path_goal_planner_module autoware_costmap_generator autoware_cuda_pointcloud_preprocessor autoware_dummy_perception_publisher autoware_lidar_centerpoint autoware_lidar_transfusion autoware_obstacle_cruise_planner autoware_planning_validator autoware_probabilistic_occupancy_grid_map autoware_tensorrt_plugins autoware_tensorrt_yolox bevdet_vendor trt_batched_nms 393 packages had stderr output: agnocast_e2e_test agnocast_ioctl_wrapper agnocast_sample_application agnocast_sample_interfaces agnocastlib astra_camera astra_camera_msgs autoware_accel_brake_map_calibrator autoware_adapi_adaptors autoware_adapi_specs autoware_adapi_v1_msgs autoware_adapi_version_msgs autoware_agnocast_wrapper autoware_ar_tag_based_localizer autoware_auto_common autoware_automatic_pose_initializer autoware_autonomous_emergency_braking autoware_bag_time_manager_rviz_plugin autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_planner autoware_behavior_velocity_planner_common autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_stop_line_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_bezier_sampler autoware_bluetooth_monitor autoware_boundary_departure_checker autoware_bytetrack autoware_cluster_merger autoware_collision_detector autoware_compare_map_segmentation autoware_component_interface_specs autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_component_monitor autoware_component_state_monitor autoware_control_evaluator autoware_control_msgs autoware_control_performance_analysis autoware_control_validator autoware_core autoware_core_control autoware_core_localization autoware_core_map autoware_core_perception autoware_core_planning autoware_core_sensing autoware_core_vehicle autoware_costmap_generator autoware_crop_box_filter autoware_crosswalk_traffic_light_estimator autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_default_adapi autoware_detected_object_feature_remover autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_dummy_perception_publisher autoware_duplicated_node_checker autoware_ekf_localizer autoware_elevation_map_loader autoware_euclidean_cluster autoware_euclidean_cluster_object_detector autoware_external_api_msgs autoware_external_cmd_converter autoware_external_cmd_selector autoware_external_velocity_limit_selector autoware_fake_test_node autoware_fault_injection autoware_freespace_planner autoware_freespace_planning_algorithms autoware_frenet_planner autoware_geo_pose_projector autoware_geography_utils autoware_global_parameter_loader autoware_glog_component autoware_gnss_poser autoware_goal_distance_calculator autoware_grid_map_utils autoware_ground_filter autoware_ground_segmentation autoware_gyro_odometer autoware_hazard_status_converter autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_internal_localization_msgs autoware_interpolation autoware_iv_external_api_adaptor autoware_iv_internal_api_adaptor autoware_joy_controller autoware_kalman_filter autoware_kinematic_evaluator autoware_landmark_manager autoware_lane_departure_checker autoware_lanelet2_extension autoware_lanelet2_extension_python autoware_lanelet2_map_visualizer autoware_lanelet2_utils autoware_learning_based_vehicle_model autoware_lidar_centerpoint autoware_lidar_marker_localizer autoware_lidar_transfusion autoware_livox_tag_filter autoware_localization_error_monitor autoware_localization_evaluator autoware_localization_msgs autoware_localization_rviz_plugin autoware_localization_util autoware_map_based_prediction autoware_map_height_fitter autoware_map_loader autoware_map_msgs autoware_map_projection_loader autoware_map_tf_generator autoware_mission_details_overlay_rviz_plugin autoware_mission_planner autoware_mission_planner_universe autoware_motion_utils autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_stop_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_planner autoware_motion_velocity_planner_common autoware_motion_velocity_run_out_module autoware_mpc_lateral_controller autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_msgs autoware_multi_object_tracker autoware_ndt_scan_matcher autoware_node autoware_object_merger autoware_object_range_splitter autoware_object_recognition_utils autoware_object_velocity_splitter autoware_objects_of_interest_marker_interface autoware_obstacle_collision_checker autoware_obstacle_cruise_planner autoware_obstacle_stop_planner autoware_occupancy_grid_map_outlier_filter autoware_operation_mode_transition_manager autoware_osqp_interface autoware_overlay_rviz_plugin autoware_path_distance_calculator autoware_path_generator autoware_path_optimizer autoware_path_sampler autoware_path_smoother autoware_pcl_extensions autoware_perception_objects_converter autoware_perception_online_evaluator autoware_perception_rviz_plugin autoware_pid_longitudinal_controller autoware_planning_evaluator autoware_planning_factor_interface autoware_planning_rviz_plugin autoware_planning_test_manager autoware_planning_topic_converter autoware_planning_validator autoware_point_types autoware_pointcloud_preprocessor autoware_polar_grid autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_initializer autoware_pose_instability_detector autoware_predicted_path_checker autoware_probabilistic_occupancy_grid_map autoware_processing_time_checker autoware_pure_pursuit autoware_pyplot autoware_qp_interface autoware_radar_crossing_objects_noise_filter autoware_radar_fusion_to_detected_object autoware_radar_object_clustering autoware_radar_object_tracker autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_msgs_converter autoware_radar_tracks_noise_filter autoware_raw_vehicle_cmd_converter autoware_remaining_distance_time_calculator autoware_route_handler autoware_rtc_interface autoware_sampler_common autoware_scenario_selector autoware_scenario_simulator_v2_adapter autoware_sensing_msgs autoware_shape_estimation autoware_shift_decider autoware_signal_processing autoware_simple_object_merger autoware_simple_planning_simulator autoware_simple_pure_pursuit autoware_smart_mpc_trajectory_follower autoware_steer_offset_estimator autoware_stop_filter autoware_string_stamped_rviz_plugin autoware_surround_obstacle_checker autoware_system_diagnostic_monitor autoware_system_monitor autoware_system_msgs autoware_tensorrt_classifier autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_test_node autoware_test_utils autoware_testing autoware_time_utils autoware_topic_relay_controller autoware_topic_state_monitor autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_selector autoware_traffic_light_utils autoware_traffic_light_visualization autoware_trajectory autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_twist2accel autoware_universe_utils autoware_utils autoware_utils_debug autoware_utils_diagnostics autoware_utils_geometry autoware_utils_logging autoware_utils_math autoware_utils_pcl autoware_utils_rclcpp autoware_utils_system autoware_utils_tf autoware_utils_uuid autoware_utils_visualization autoware_v2x_msgs autoware_vehicle_cmd_gate autoware_vehicle_door_simulator autoware_vehicle_info_utils autoware_vehicle_msgs autoware_vehicle_velocity_converter autoware_velocity_smoother autoware_velodyne_monitor awapi_awiv_adapter awsim_labs_sensor_kit_description awsim_labs_sensor_kit_launch awsim_labs_vehicle_description awsim_labs_vehicle_launch awsim_sensor_kit_description awsim_sensor_kit_launch bevdet_vendor boost_io_context boost_serial_driver boost_tcp_driver boost_udp_driver camera_description can_bridge can_msgs cartop common_awsim_labs_sensor_launch common_sensor_launch continental_msgs continental_srvs cubtek_can cubtek_can_msgs cubtek_radar_adapter cuda_blackboard demo_cpp_tf dummy_status_publisher eagleye_coordinate eagleye_fix2kml eagleye_geo_pose_converter eagleye_geo_pose_fusion eagleye_gnss_converter eagleye_msgs eagleye_navigation eagleye_rt eagleye_tf glog imu_description imu_release livox_description llh_converter managed_transform_buffer morai_msgs mussp nebula_common nebula_decoders nebula_examples nebula_hw_interfaces nebula_msgs nebula_ros nebula_sensor_driver nebula_tests negotiated_examples pandar_description pandar_msgs perception_utils pointcloud_to_laserscan radar_description robosense_msgs ros2_wit_imu rtklib_bridge rtklib_msgs sample_sensor_kit_description sample_sensor_kit_launch sample_vehicle_description sample_vehicle_launch seyond single_lidar_common_launch single_lidar_sensor_kit_description single_lidar_sensor_kit_launch tier4_adapi_rviz_plugin tier4_api_msgs tier4_api_utils tier4_auto_msgs_converter tier4_autoware_api_launch tier4_camera_view_rviz_plugin tier4_control_launch tier4_control_msgs tier4_datetime_rviz_plugin tier4_debug_msgs tier4_deprecated_api_adapter tier4_dummy_object_rviz_plugin tier4_external_api_msgs tier4_hmi_msgs tier4_localization_launch tier4_localization_msgs tier4_localization_rviz_plugin tier4_map_launch tier4_map_msgs tier4_metric_msgs tier4_perception_msgs tier4_planning_factor_rviz_plugin tier4_planning_msgs tier4_rtc_msgs tier4_sensing_launch tier4_simulation_msgs tier4_state_rviz_plugin tier4_system_launch tier4_system_msgs tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_v2x_msgs tier4_vehicle_launch tier4_vehicle_msgs tier4_vehicle_rviz_plugin tmlidar_msg tmlidar_sdk trt_batched_nms velodyne_description vls_description yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer 11 packages not processed zy@zy-Lenovo-Legion-R7000P2020H:~/autoware$

评论
用户头像
查理捡钢镚
2025.07.25
文档还考虑了性能优化和异常处理,这是在实际应用中非常重要的两点。
用户头像
文润观书
2025.07.16
代码示例清晰地展示了如何处理点云数据,包括强度信息的转换,以及如何正确设置时间和坐标信息。
用户头像
一曲歌长安
2025.06.18
回答中提供了完整的代码实现,包括必要的头文件、回调函数处理、主函数初始化等,十分详尽。
用户头像
永远的12
2025.05.22
这个方案详细介绍了如何使用C++将Livox CustomMsg转换为ROS的点云格式,步骤清晰、可操作性强。
用户头像
兰若芊薇
2025.05.19
最后,提供了验证方法和常见问题的解决方案,帮助开发者更好地调试和使用该方案。
用户头像
玛卡库克
2025.04.10
特别注意到了坐标系一致性的重要性,以及如何通过参数配置来优化pointcloud_to_laserscan。

最新推荐

recommend-type

【scratch2.0少儿编程-游戏原型-动画-项目源码】雷电战机穿越隧道.zip

资源说明: 1:本资料仅用作交流学习参考,请切勿用于商业用途。更多精品资源请访问 https://blog.csdn.net/ashyyyy/article/details/146464041 2:一套精品实用scratch2.0少儿编程游戏、动画源码资源,无论是入门练手还是项目复用都超实用,省去重复开发时间,让开发少走弯路!
recommend-type

【scratch2.0少儿编程-游戏原型-动画-项目源码】猫抓老鼠.zip

资源说明: 1:本资料仅用作交流学习参考,请切勿用于商业用途。更多精品资源请访问 https://blog.csdn.net/ashyyyy/article/details/146464041 2:一套精品实用scratch2.0少儿编程游戏、动画源码资源,无论是入门练手还是项目复用都超实用,省去重复开发时间,让开发少走弯路!
recommend-type

研究Matlab影响下的神经数值可复制性

### Matlab代码影响神经数值可复制性 #### 标题解读 标题为“matlab代码影响-neural-numerical-replicability:神经数值可复制性”,该标题暗示了研究的主题集中在Matlab代码对神经数值可复制性的影响。在神经科学研究中,数值可复制性指的是在不同计算环境下使用相同的算法与数据能够获得一致或相近的计算结果。这对于科学实验的可靠性和结果的可验证性至关重要。 #### 描述解读 描述中提到的“该项目”着重于提供工具来分析不同平台下由于数值不精确性导致的影响。项目以霍奇金-赫克斯利(Hodgkin-Huxley)型神经元组成的简单神经网络为例,这是生物物理神经建模中常见的模型,用于模拟动作电位的产生和传播。 描述中提及的`JCN_2019_v4.0_appendix_Eqs_Parameters.pdf`文件详细描述了仿真模型的参数与方程。这些内容对于理解模型的细节和确保其他研究者复制该研究是必不可少的。 该研究的实现工具选用了C/C++程序语言。这表明了研究的复杂性和对性能的高要求,因为C/C++在科学计算领域内以其高效性和灵活性而广受欢迎。 使用了Runge–Kutta四阶方法(RK4)求解常微分方程(ODE),这是一种广泛应用于求解初值问题的数值方法。RK4方法的精度和稳定性使其成为众多科学计算问题的首选。RK4方法的实现借助了Boost C++库中的`Boost.Numeric.Odeint`模块,这进一步表明项目对数值算法的实现和性能有较高要求。 #### 软件要求 为了能够运行该项目,需要满足一系列软件要求: - C/C++编译器:例如GCC,这是编译C/C++代码的重要工具。 - Boost C++库:一个强大的跨平台C++库,提供了许多标准库之外的组件,尤其是数值计算相关的部分。 - ODEint模块:用于求解常微分方程,是Boost库的一部分,已包含在项目提供的文件中。 #### 项目文件结构 从提供的文件列表中,我们可以推测出项目的文件结构包含以下几个部分: - **项目树源代码目录**:存放项目的主要源代码文件。 - `checkActualPrecision.h`:一个头文件,可能用于检测和评估实际的数值精度。 - `HH_BBT2017_allP.cpp`:源代码文件,包含用于模拟霍奇金-赫克斯利神经元网络的代码。 - `iappDist_allP.cpp` 和 `iappDist_allP.h`:源代码和头文件,可能用于实现某种算法或者数据的分布。 - `Makefile.win`:针对Windows系统的编译脚本文件,用于自动化编译过程。 - `SpikeTrain_allP.cpp` 和 `SpikeTrain_allP.h`:源代码和头文件,可能与动作电位的生成和传播相关。 - **人物目录**:可能包含项目成员的简介、联系方式或其他相关信息。 - **Matlab脚本文件**: - `图1_as.m`、`图2_as.m`、`图2_rp`:这些文件名中的"as"可能表示"assembled",而"rp"可能指"reproduction"。这些脚本文件很可能用于绘制图表、图形,以及对模拟结果进行后处理和复现实验。 #### 开源系统标签 标签“系统开源”指的是该项目作为一个开源项目被开发,意味着其源代码是公开的,任何个人或组织都可以自由获取、修改和重新分发。这对于科学计算来说尤为重要,因为开放代码库可以增进协作,加速科学发现,并确保实验结果的透明度和可验证性。 #### 总结 在理解了文件中提供的信息后,可以认识到本项目聚焦于通过提供准确的数值计算工具,来保证神经科学研究中模型仿真的可复制性。通过选择合适的编程语言和算法,利用开源的库和工具,研究者们可以确保其研究结果的精确性和可靠性。这不仅有助于神经科学领域的深入研究,还为其他需要高精度数值计算的科研领域提供了宝贵的经验和方法。
recommend-type

MySQL数据库索引失效案例分析与解决方案(索引失效大揭秘)

# 摘要 MySQL索引失效是数据库性能优化中的关键问题,直接影响查询效率与系统响应速度。本文系统分析了索引的基本机制与失效原理,包括B+树结构、执行计划解析及查询优化器的工作逻辑,深入探讨了索引失效的典型场景,如不规范SQL写法、复合索引设计不当以及统
recommend-type

TS语言

### TypeScript 简介 TypeScript 是一种由 Microsoft 开发的开源编程语言,它是 JavaScript 的超集,这意味着所有的 JavaScript 代码都是合法的 TypeScript 代码。TypeScript 扩展了 JavaScript 的语法,并通过类型注解提供编译时的静态类型检查,从而使得代码更易于维护、理解和调试。TypeScript 可以在任何操作系统上运行,并且可以编译出纯净、简洁的 JavaScript 代码,这些代码可以在任何浏览器上、Node.js 环境中,或者任何支持 ECMAScript 3(或更高版本)的 JavaScript 引
recommend-type

Leaflet.Graticule插件:创建经纬度网格刻度

标题“Leaflet.Graticule:经纬线网格”指向的是Leaflet.js的一个插件,它用于在地图上生成经纬度网格线,以辅助进行地图定位与参考。从描述中,我们可以提取到几个关键知识点: 1. Leaflet.Graticule插件的使用目的和功能:该插件的主要作用是在基于Leaflet.js库的地图上绘制经纬度网格线。这可以帮助用户在地图上直观地看到经纬度划分,对于地理信息系统(GIS)相关工作尤为重要。 2. 插件的构造函数和参数:`L.graticule(options)`是创建Graticule图层的JavaScript代码片段。其中`options`是一个对象,可以用来设置网格线的显示样式和间隔等属性。这表明了插件的灵活性,允许用户根据自己的需求调整网格线的显示。 3. interval参数的含义:`interval`参数决定了网格线的间隔大小,以度为单位。例如,若设置为20,则每20度间隔显示一条网格线;若设置为10,则每10度显示一条网格线。这一参数对于调节网格线密度至关重要。 4. style参数的作用:`style`参数用于定义网格线的样式。插件提供了自定义线的样式的能力,包括颜色、粗细等,使得开发者可以根据地图的整体风格和个人喜好来定制网格线的外观。 5. 实例化和添加到地图上的例子:提供了两种使用插件的方式。第一种是直接创建一个基本的网格层并将其添加到地图上,这种方式使用了插件的默认设置。第二种是创建一个自定义间隔的网格层,并同样将其添加到地图上。这展示了如何在不同的使用场景下灵活运用插件。 6. JavaScript标签的含义:标题中“JavaScript”这一标签强调了该插件是使用JavaScript语言开发的,它是前端技术栈中重要的部分,特别是在Web开发中扮演着核心角色。 7. 压缩包子文件的文件名称列表“Leaflet.Graticule-master”暗示了插件的项目文件结构。文件名表明,这是一个典型的GitHub仓库的命名方式,其中“master”可能代表主分支。通常,开发者可以在如GitHub这样的代码托管平台上找到该项目的源代码和文档,以便下载、安装和使用。 综上所述,可以得知,Leaflet.Graticule插件是一个专为Leaflet地图库设计的扩展工具,它允许用户添加自定义的经纬度网格线到地图上,以帮助进行地图的可视化分析。开发者可以根据特定需求通过参数化选项来定制网格线的属性,使其适应不同的应用场景。通过学习和使用该插件,可以增强地图的交互性和信息的传递效率。
recommend-type

【MySQL数据库性能提升秘籍】:揭秘性能下降幕后真凶及解决策略

# 摘要 MySQL性能问题在实际应用中普遍存在,但其表象复杂且易引发认知误区。本文系统分析了导致MySQL性能下降的核心原因,涵盖查询语句结构、数据库配置、表结构设计等多个技术层面,并结合性能监控工具与执行计划解析,提供了全面的问题诊断方法。在此基础上,文章深入探讨了索引优化、查询重写、分库分表等高级调优策略,并通过真实案例总结了可行的最佳实践
recommend-type

51小车循迹红外

基于51单片机的红外循迹小车的实现方法,主要涉及硬件连接、传感器模块的使用以及程序设计三个方面。 ### 红外循迹模块的选择与连接 红外循迹模块通常由多个红外发射和接收对管组成,用于检测地面上的黑线。常见的模块有四路红外循迹模块,其工作原理是通过检测红外光的反射强度来判断是否处于黑线上。红外模块的VCC和GND分别连接到51单片机的+5V和GND端,而IN1至IN4则连接到单片机的对应引脚上。红外发射接收器应安装在小车前方下端,并且离地面的距离不宜过远,以确保能够有效检测到黑线[^2]。 ### 硬件电路设计 在硬件设计方面,需要考虑电机驱动、电源管理、以及红外传感器的接口设计。51单片机
recommend-type

AMEF图像去雾技术:Matlab实现与应用

AMEF(Artificial Multi-Exposure Fusion)方法是一种用于图像去雾的技术,其核心思想是将多张曝光不足的图像融合成一张清晰无雾的图片。在讨论这个技术的Matlab实现之前,让我们先了解图像去雾和多重曝光融合的背景知识。 图像去雾技术的目标是恢复在雾中拍摄的图像的清晰度,增强图像的对比度和颜色饱和度,使得原本因雾气影响而模糊的图像变得清晰。这种技术在自动驾驶、无人机导航、视频监控、卫星图像处理等领域有着重要的应用。 多重曝光技术源自摄影领域,通过拍摄同一场景的多张照片,再将这些照片通过特定算法融合,获得一张综合了多张照片信息的图像。多重曝光融合技术在提高图像质量方面发挥着重要作用,例如增加图片的动态范围,提升细节和亮度,消除噪点等。 在介绍的AMEF去雾方法中,该技术被应用于通过人工创建的多重曝光图像进行融合,以产生清晰的无雾图像。由于单一图像在光照不均匀或天气条件不佳的情况下可能会产生图像质量低下的问题,因此使用多重曝光融合可以有效地解决这些问题。 在Matlab代码实现方面,AMEF的Matlab实现包括了一个名为amef_demo.m的演示脚本。用户可以通过修改该脚本中的图像名称来处理他们自己的图像。在该代码中,clip_range是一个重要的参数,它决定了在去雾处理过程中,对于图像像素亮度值的裁剪范围。在大多数实验中,该参数被设定为c=0.010,但用户也可以根据自己的需求进行调整。较大的clip_range值会尝试保留更多的图像细节,但同时也可能引入更多噪声,因此需要根据图像的具体情况做出适当选择。 AMEF方法的理论基础和实验过程均来自于Adrian Galdran在2018年发表于《信号处理》期刊的文章,题为“Image Dehazing by Artificial Multi-Exposure Image Fusion”。同时,该Matlab代码的融合部分的理论基础则来自于2007年Pacific Graphics会议记录中由Tom Mertens, Jan Kautz和Frank Van Reeth提出的工作,题目为“Exposure Fusion”。因此,如果读者在实际应用中使用了这段代码,适当的引用这些工作是必要的学术礼仪。 此外,标签“系统开源”表明了该项目遵循开源精神,允许研究者、开发者及用户自由地访问、使用、修改和共享源代码。这一特点使得AMEF方法具有广泛的可访问性和可扩展性,鼓励了更广泛的研究和应用。 从压缩包子文件的文件名称列表中,我们可以看到AMEF去雾方法的Matlab实现的项目名为“amef_dehazing-master”。这表明了这是一个有主分支的项目,其主分支被标识为“master”,这通常意味着它是项目维护者认可的稳定版本,也是用户在使用时应该选择的版本。 总的来说,AMEF去雾方法及其Matlab实现为图像处理领域提供了快速且有效的解决方案,能够在图像被雾气影响时恢复出高质量的清晰图像,这对于相关领域的研究和应用具有重要的意义。
recommend-type

泵浦光匹配建模全解析:MATLAB中耦合效率提升的4个关键点(实战案例)

# 摘要 泵浦光匹配建模在光纤激光器与光学系统设计中具有关键作用,直接影响光束耦合效率与系统整体性能。本文系统阐述了泵浦光匹配建模的基本概念与研究意义,深入分析其理论基础,包括光纤耦合原理、高斯光束传播特性及耦合效率的数学建模。基于MATLAB平台,介绍了光学仿真工具的使用与建模环境搭建方法,并提出四种关键建模策略以提升耦合效率。通过典型实例验证模型有效性