(rt) root@45qqmqi84adhm-0:/202408540022/rt_copy/RTDETR-main# python train.py WARNING ⚠️ no model scale passed. Assuming scale='l'. from n params module arguments 0 -1 1 2216100 fasternet_t0 [] 1 -1 1 82432 ultralytics.nn.modules.conv.Conv [320, 256, 1, 1, None, 1, 1, False] 2 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8] 3 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1] 4 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 5 3 1 41472 ultralytics.nn.modules.conv.Conv [160, 256, 1, 1, None, 1, 1, False] 6 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1] 7 -1 3 7593984 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1] 8 -1 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1] 9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 10 2 1 20992 ultralytics.nn.modules.conv.Conv [80, 256, 1, 1, None, 1, 1, False] 11 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 3 7593984 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1] 13 -1 1 1180160 ultralytics.nn.modules.conv.Conv [512, 256, 3, 2] 14 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 3 7593984 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1] 16 -1 1 1180160 ultralytics.nn.modules.conv.Conv [512, 256, 3, 2] 17 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 3 7593984 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1] 19 [16, 19, 22] 1 4215984 ultralytics.nn.modules.head.RTDETRDecoder [80, [512, 512, 512], 256, 300, 4, 8, 3] Given groups=1, weight of size [3072, 512, 1, 1], expected input[1, 256, 40, 40] to have 512 channels, but got 256 channels instead rtdetr-fasternet summary: 436 layers, 40300628 parameters, 40300628 gradients New https://pypi.org/project/ultralytics/8.3.190 available 😃 Update with 'pip install -U ultralytics' Ultralytics YOLOv8.0.201 🚀 Python-3.10.18 torch-2.2.2 CUDA:0 (NVIDIA A800 80GB PCIe, 81051MiB) engine/trainer: task=detect, mode=train, model=/202408540022/rt_copy/RTDETR-main/ultralytics/cfg/models/rt-detr/rtdetr-fasternet.yaml, data=/202408540022/rt_copy/RTDETR-main/dataset/tomato/tomato/tomato.yaml, epochs=300, patience=0, batch=8, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=/202408540022/rt_copy/RTDETR-main/runs/train, name=InvertedResidual, exist_ok=False, pretrained=True, optimizer=AdamW, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=False, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_buffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.0001, lrf=1.0, momentum=0.9, weight_decay=0.0001, warmup_epochs=2000, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=0.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=/202408540022/rt_copy/RTDETR-main/runs/train/InvertedResidual Overriding model.yaml nc=80 with nc=6 WARNING ⚠️ no model scale passed. Assuming scale='l'. from n params module arguments 0 -1 1 2216100 fasternet_t0 [] 1 -1 1 82432 ultralytics.nn.modules.conv.Conv [320, 256, 1, 1, None, 1, 1, False] 2 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8] 3 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1] 4 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 5 3 1 41472 ultralytics.nn.modules.conv.Conv [160, 256, 1, 1, None, 1, 1, False] 6 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1] 7 -1 3 7593984 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1] 8 -1 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1] 9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 10 2 1 20992 ultralytics.nn.modules.conv.Conv [80, 256, 1, 1, None, 1, 1, False] 11 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 3 7593984 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1] 13 -1 1 1180160 ultralytics.nn.modules.conv.Conv [512, 256, 3, 2] 14 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 3 7593984 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1] 16 -1 1 1180160 ultralytics.nn.modules.conv.Conv [512, 256, 3, 2] 17 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 3 7593984 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1] 19 [16, 19, 22] 1 4120968 ultralytics.nn.modules.head.RTDETRDecoder [6, [512, 512, 512], 256, 300, 4, 8, 3] Given groups=1, weight of size [3072, 512, 1, 1], expected input[1, 256, 40, 40] to have 512 channels, but got 256 channels instead rtdetr-fasternet summary: 436 layers, 40205612 parameters, 40205612 gradients Traceback (most recent call last): File "/202408540022/rt_copy/RTDETR-main/train.py", line 20, in <module> model.train(data='/202408540022/rt_copy/RTDETR-main/dataset/tomato/tomato/tomato.yaml', File "/202408540022/rt_copy/RTDETR-main/ultralytics/engine/model.py", line 342, in train self.trainer.train() File "/202408540022/rt_copy/RTDETR-main/ultralytics/engine/trainer.py", line 192, in train self._do_train(world_size) File "/202408540022/rt_copy/RTDETR-main/ultralytics/engine/trainer.py", line 289, in _do_train self._setup_train(world_size) File "/202408540022/rt_copy/RTDETR-main/ultralytics/engine/trainer.py", line 212, in _setup_train self.model = self.model.to(self.device) File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1152, in to return self._apply(convert) File "/202408540022/rt_copy/RTDETR-main/ultralytics/nn/tasks.py", line 206, in _apply self = super()._apply(fn) File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 802, in _apply module._apply(fn) File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 802, in _apply module._apply(fn) File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 802, in _apply module._apply(fn) [Previous line repeated 1 more time] File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 825, in _apply param_applied = fn(param) File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1150, in convert return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) RuntimeError: CUDA error: out of memory CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
时间: 2025-09-04 14:12:31 AIGC 浏览: 17
### 解决 'Given groups=1, weight of size [3072, 512, 1, 1], expected input[1, 256, 40, 40] to have 512 channels, but got 256 channels instead' 错误
此错误表明模型期望输入有 512 个通道,但实际输入只有 256 个通道,可能是模型结构与输入数据不匹配导致的。可尝试以下解决办法:
#### 检查模型配置文件
要保证模型配置文件(如 `models/yolov5s.yaml`)里的通道数与输入数据相符。若模型期望输入 512 个通道,需确保数据预处理步骤能生成 512 通道的输入。
#### 检查数据预处理代码
查看数据预处理代码,确认输入数据的通道数是否正确。可在数据加载和预处理阶段添加打印语句来检查通道数:
```python
import torch
# 假设这是数据加载和预处理代码
input_data = torch.randn(1, 256, 40, 40)
print(f"Input data shape: {input_data.shape}") # 检查输入数据的形状
# 如果需要调整通道数,可以使用 torch.cat 等操作
# 例如,将输入数据复制一份以增加通道数
input_data = torch.cat([input_data, input_data], dim=1)
print(f"Adjusted input data shape: {input_data.shape}")
```
#### 检查模型定义代码
查看模型定义代码,确认卷积层的输入通道数是否正确。可在模型定义中添加打印语句来检查卷积层的输入和输出通道数:
```python
import torch
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv = nn.Conv2d(512, 3072, kernel_size=1)
def forward(self, x):
print(f"Input shape: {x.shape}") # 检查输入数据的形状
x = self.conv(x)
print(f"Output shape: {x.shape}") # 检查输出数据的形状
return x
model = MyModel()
input_data = torch.randn(1, 256, 40, 40)
output = model(input_data)
```
### 解决 'RuntimeError: CUDA error: out of memory' 错误
此错误表明 GPU 内存不足,可尝试以下解决办法:
#### 减小批量大小
在训练脚本里减小批量大小(`batch_size`),以减少每次迭代所需的 GPU 内存:
```python
# 在 train.py 中找到设置 batch_size 的地方
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
# 将 batch_size 减小,例如改为 8
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs')
```
#### 释放不必要的 GPU 内存
在训练过程中,及时释放不必要的 GPU 内存。可使用 `torch.cuda.empty_cache()` 来释放缓存的 GPU 内存:
```python
import torch
# 在适当的位置调用 torch.cuda.empty_cache()
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.cuda()
labels = labels.cuda()
# 前向传播和反向传播
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 释放不必要的 GPU 内存
torch.cuda.empty_cache()
```
#### 使用混合精度训练
使用混合精度训练可以减少 GPU 内存的使用。可使用 PyTorch 的 `torch.cuda.amp` 模块来实现混合精度训练:
```python
import torch
from torch.cuda.amp import GradScaler, autocast
scaler = GradScaler()
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.cuda()
labels = labels.cuda()
# 混合精度训练
with autocast():
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
```
阅读全文
相关推荐













