查资料分析 二分K-means算法、mini-batch K-means算法和K-means++算法是改进了原生K-means算法的哪些方面
时间: 2023-11-18 07:55:20 浏览: 219
二分K-means算法、mini-batch K-means算法和K-means++算法都是对原生K-means算法的改进,它们主要改进了以下方面:
1. 二分K-means算法通过不断地对簇进行二分,将原本需要进行K次迭代的K-means算法迭代次数降低到了logK次,从而提高了算法的效率。
2. mini-batch K-means算法通过每次只随机选取一部分数据进行聚类,从而减少了计算量,提高了算法的效率。同时,由于每次只使用一部分数据进行聚类,因此算法的结果可能会略有偏差,但是这种偏差往往可以通过增加迭代次数来弥补。
3. K-means++算法通过改变初始质心的选择方式,使得算法更容易收敛到全局最优解,从而提高了算法的准确性。具体来说,K-means++算法在选择初始质心时,会优先选择距离已有质心较远的数据点作为新的质心,从而避免了初始质心过于集中或过于分散的情况。
相关问题
查资料分析 二分K-means算法、mini-batch K-means算法和K-means++算法是改进了原生K-means算法的哪些方面,并描述他们的算法流程。
二分K-means算法、mini-batch K-means算法和K-means++算法都是对原生K-means算法的改进,主要改进了以下几个方面:
1. 二分K-means算法:该算法通过不断地对簇进行二分,将原本需要聚类的数据集分成多个子集,从而提高了聚类的效率和准确性。算法流程如下:
- 将所有数据看作一个簇
- 当簇数目小于K时
- 对于每一个簇
- 计算总误差
- 在该簇上进行K-means聚类(K=2)
- 计算将该簇一分为二后的总误差
- 选择误差最小的那个簇进行划分操作
2. mini-batch K-means算法:该算法通过随机抽取一部分数据进行聚类,从而减少了计算量,提高了聚类效率。算法流程如下:
- 随机抽取一部分数据作为mini-batch
- 对mini-batch进行K-means聚类
- 将聚类结果与原有簇进行合并
- 重复以上步骤直到收敛
3. K-means++算法:该算法通过改进初始质心的选择方式,避免了陷入局部最优解的问题,提高了聚类效果。算法流程如下:
- 随机选择一个数据点作为第一个质心
- 对于每一个数据点,计算它与已有质心的最短距离
- 选择距离最远的数据点作为下一个质心
- 重复以上步骤直到选出K个质心
阅读全文
相关推荐
















