deeplabv3plus网络结构图
时间: 2025-01-06 21:42:46 AIGC 浏览: 121
### DeepLabV3Plus 网络架构解析
DeepLabV3Plus 是一种先进的语义分割模型,在编码器部分引入大量空洞卷积,这使得在不丢失信息的前提下增加了感受野大小,从而让每一个卷积层的输出都能携带更广泛的信息[^2]。
#### 编码器-解码器结构
该网络采用了一个改进版的Xception作为骨干网,并在此基础上构建了ASPP模块(Atrous Spatial Pyramid Pooling)。具体来说:
- **ASPP模块**:位于编码器顶部,通过不同采样率的空洞卷积来捕捉多尺度上下文信息;
- **解码器阶段**:用于恢复空间分辨率,它会融合来自浅层的低级特征以及经过ASPP处理后的高级语义特征,最终得到精细的结果图。
```mermaid
graph LR;
A[Input Image] --> B[Xception Backbone];
B --> C{ASPP Module};
C --> D[Low-Level Features Fusion];
E[Decoder Stage] <-- D;
F[Output Segmentation Map] <-- E;
```
此架构设计有效地解决了传统CNN方法难以兼顾全局和局部细节的问题,提高了边界区域预测精度的同时也增强了对物体形状的理解能力[^1]。
相关问题
deeplabv3plus网络结构
### DeepLabV3Plus 网络架构详解
#### 背景介绍
DeepLab系列模型旨在解决语义分割任务中的挑战,特别是处理不同尺度的对象。通过引入空洞卷积(Atrous Convolution)、ASPP模块和其他改进技术,这些模型能够在不降低特征图分辨率的情况下增加感受野。
#### 主要组件解析
#### 编码器部分:基于ResNet的Backbone
编码器采用预训练的ResNet作为骨干网来提取图像特征[^1]。为了维持较高的空间分辨率并扩展感受域,在某些层中应用了`replace_stride_with_dilation`策略,即用膨胀率大于1的空洞卷积代替标准步长为2的标准卷积操作。这使得网络可以在相同计算成本下获得更大的上下文信息量。
```python
from torchvision import models
def build_backbone(output_stride):
model = models.resnet50(pretrained=True)
if output_stride == 8:
rates = [1, 2, 4]
elif output_stride == 16:
rates = [1, 2, 1]
for name, layer in model.named_children():
if isinstance(layer, nn.Conv2d) and 'downsample' not in name:
stride = layer.stride
kernel_size = layer.kernel_size
if stride[0] > 1:
dilation_rate = rates.pop(0)
new_padding = ((kernel_size[0]-1)*dilation_rate+1)//2
setattr(model, name,
nn.Conv2d(in_channels=layer.in_channels,
out_channels=layer.out_channels,
kernel_size=kernel_size,
stride=(1, 1),
padding=new_padding,
dilation=dilation_rate))
return model
```
#### ASPP (Atrous Spatial Pyramid Pooling) 模块
该模块位于编码器之后,由多个平行分支组成,每个分支都执行具有不同扩张比率的空洞卷积运算。这种设计允许模型捕捉多尺度的信息,并有效地增强了对于目标物体边界的理解能力[^3]。
```python
class ASPP(nn.Module):
def __init__(self, inplanes, planes, rate_list=[1, 6, 12, 18]):
super().__init__()
self.branches = nn.ModuleList([
nn.Sequential(
nn.Conv2d(inplanes, planes, 1, bias=False),
nn.BatchNorm2d(planes),
nn.ReLU(inplace=True)),
*[nn.Sequential(
nn.Conv2d(inplanes, planes, 3, padding=r, dilation=r, bias=False),
nn.BatchNorm2d(planes),
nn.ReLU(inplace=True)) for r in rate_list],
nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(inplanes, planes, 1, bias=False),
nn.BatchNorm2d(planes),
nn.ReLU(inplace=True))
])
self.project = nn.Sequential(
nn.Conv2d(len(rate_list)+2 * planes, planes, 1, bias=False),
nn.BatchNorm2d(planes),
nn.ReLU(inplace=True))
def forward(self, x):
size = x.shape[-2:]
feats = []
for branch in self.branches[:-1]:
feat = F.interpolate(branch(x).unsqueeze(-1).unsqueeze(-1), size=size, mode='bilinear', align_corners=True).squeeze(-1).squeeze(-1)
feats.append(feat)
global_feat = self.branches[-1](F.adaptive_avg_pool2d(x, (1, 1)))
global_feat = F.interpolate(global_feat, size=x.size()[2:], mode="bilinear", align_corners=True)
feats.append(global_feat.squeeze(-1).squeeze(-1))
concat_feats = torch.cat(feats, dim=-1)
proj_output = self.project(concat_feats.unsqueeze(-1).unsqueeze(-1)).squeeze(-1).squeeze(-1)
return proj_output.view(*proj_output.shape[:2], *size)
```
#### 解码器部分
解码阶段融合来自低层次浅层特征与经过ASPP增强后的高层抽象表示。具体来说,先利用双线性插值放大高维特征映射至原始输入尺寸的一半;接着将其同早期阶段获取到的空间细节相结合,最终得到精确度更高的预测结果。
```python
import torch.nn.functional as F
class Decoder(nn.Module):
def __init__(self, low_level_inplanes, num_classes):
super().__init__()
self.conv_lowlevel = nn.Sequential(
nn.Conv2d(low_level_inplanes, 48, 1, bias=False),
nn.BatchNorm2d(48),
nn.ReLU()
)
self.last_conv = nn.Sequential(
nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv2d(256, num_classes, kernel_size=1, stride=1)
)
def forward(self, x, low_level_feature):
low_level_feature = self.conv_lowlevel(low_level_feature)
x = F.interpolate(x, scale_factor=4, mode='bilinear', align_corners=True)
x = torch.cat([x, low_level_feature], dim=1)
x = self.last_conv(x)
return x
```
#### 总结
综上所述,DeepLabV3Plus 结合了强大的编码机制和有效的解码流程,不仅能够高效地学习丰富的场景表征,而且还能恢复细粒度的位置信息,从而显著提升了语义分割的效果。
deeplabv3plus网络结构详解
### DeepLabV3Plus 网络架构详细解析
#### Encoder 部分
DeepLabV3Plus 的编码器部分主要依赖于改进的 Xception 或 ResNet 架构作为骨干网络。此部分大量采用空洞卷积,在不减少特征图尺寸的前提下扩大感受野,从而保留更多空间分辨率信息[^3]。
#### Atrous Spatial Pyramid Pooling (ASPP) 模块
位于编码器末端的是 ASPP 模块,它由多个并行分支组成,每个分支执行不同膨胀率的空洞卷积操作。这种设计允许模型在同一层内捕捉多种尺度下的上下文信息,对于改善边界区域以及小目标检测至关重要[^2]。
```python
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels, rates=[1, 6, 12, 18]):
super(ASPP, self).__init__()
self.aspp_block1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.ReLU(inplace=True)
)
self.aspp_blocks = []
for rate in rates:
block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3,
padding=rate, dilation=rate),
nn.ReLU(inplace=True))
self.add_module(f'aspp_block{len(self.aspp_blocks)+2}', block)
self.aspp_blocks.append(block)
self.global_avg_pool = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.ReLU(),
nn.Upsample(scale_factor=(height, width), mode='bilinear', align_corners=True))
self.conv1x1_out = nn.Conv2d(out_channels * (len(rates) + 2), out_channels, kernel_size=1)
def forward(self, x):
height, width = x.shape[-2:]
res = [block(x) for block in self.children()]
res += [F.interpolate(self.global_avg_pool(x), size=x.size()[2:], mode="bilinear", align_corners=False)]
return self.conv1x1_out(torch.cat(res, dim=1))
```
#### Decoder 组件
解码阶段则相对简单得多,仅包含少量上采样层与跳跃连接机制。这些组件负责恢复因下采样而丢失的空间维度,并融合来自浅层特征映射的数据以增强最终预测的质量。
```python
class Decoder(nn.Module):
def __init__(self, low_level_inplanes, num_classes):
super().__init__()
self.conv1 = nn.Conv2d(low_level_inplanes, 48, 1, bias=False)
self.bn1 = nn.BatchNorm2d(48)
self.relu = nn.ReLU()
self.last_conv = nn.Sequential(
nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv2d(256, num_classes, kernel_size=1, stride=1)
)
def forward(self, x, low_level_feat):
low_level_feat = self.conv1(low_level_feat)
low_level_feat = self.bn1(low_level_feat)
low_level_feat = self.relu(low_level_feat)
x = F.interpolate(x, size=low_level_feat.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x, low_level_feat), dim=1)
x = self.last_conv(x)
return x
```
阅读全文
相关推荐


















