活动介绍

Exception caught in handler {"worker_id": "0", "exc": "OpenCV(4.8.0) /io/opencv/modules/imgproc/src/contours.cpp:195: error: (-210:Unsupported format or combination of formats) [Start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL otherwise supports CV_32SC1 images only in function 'cvStartFindContours_Impl'\n", "traceback": "Traceback (most recent call last):\n File \"/opt/nuclio/_nuclio_wrapper.py\", line 118, in serve_requests\n await self._handle_event(event)\n File \"/opt/nuclio/_nuclio_wrapper.py\", line 312, in _handle_event\n entrypoint_output = self._entrypoint(self._context, event)\n File \"/opt/nuclio/main.py\", line 51, in handler\n contours, _ = cv2.findContours(mask_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\ncv2.error: OpenCV(4.8.0) /io/opencv/modules/imgproc/src/contours.cpp:195: error: (-210:Unsupported format or combination of formats) [Start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL otherwise supports CV_32SC1 images only in function 'cvStartFindContours_Impl'\n\n"} 2023-07-16 10:23:22 /opt/nuclio/_nuclio_wrapper.py:395: DeprecationWarning: There is no current event loop 2023-07-16 10:23:22 loop = asyncio.get_event_loop() 2023-07-16 10:24:38 2023-07-16 10:24:40 0: 480x640 1 car, 1 truck, 82.9ms 2023-07-16 10:24:40 Speed: 16.6ms preprocess, 82.9ms inference, 24.2ms postprocess per image at shape (1, 3, 480, 640)

时间: 2024-04-17 11:24:25 浏览: 403
根据你提供的错误信息,问题出现在 `cv2.findContours()` 函数调用时。错误信息提示到了组合格式不受支持的问题。 这个问题通常是由于输入图像的格式不正确导致的。`cv2.findContours()` 函数需要传入一个二值图像(只包含0和255两个像素值)作为输入,而且图像的数据类型应为 `np.uint8`。 你可以尝试在调用 `cv2.findContours()` 函数之前,对 `mask_binary` 进行以下处理,确保输入图像符合要求: ```python mask_binary = mask_binary.astype(np.uint8) # 将掩码二值图像转换为 np.uint8 类型 ``` 添加这行代码后,再次运行程序,看看是否能够解决问题。如果问题仍然存在,请确保 `mask_binary` 是一个正确的二值图像,并且数据类型是 `np.uint8`。你可以使用 `print(mask_binary.dtype)` 来检查数据类型,并使用 `print(mask_binary)` 来检查图像的值范围和格式。如果问题仍然存在,请提供更多代码和上下文信息,以便更好地帮助你解决问题。
相关问题

那为什么报错(E) Exception caught in handler {"exc": "OpenCV(4.8.0) /io/opencv/modules/imgproc/src/contours.cpp:195: error: (-210:Unsupported format or combination of formats) [Start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL otherwise supports CV_32SC1 images only in function 'cvStartFindContours_Impl'\n", "traceback": "Traceback (most recent call last):\n File \"/opt/nuclio/_nuclio_wrapper.py\", line 118, in serve_requests\n await self._handle_event(event)\n File \"/opt/nuclio/_nuclio_wrapper.py\", line 312, in _handle_event\n entrypoint_output = self._entrypoint(self._context, event)\n File \"/opt/nuclio/main.py\", line 51, in handler\n contours, _ = cv2.findContours(mask_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\ncv2.error: OpenCV(4.8.0) /io/opencv/modules/imgproc/src/contours.cpp:195: error: (-210:Unsupported format or combination of formats) [Start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL otherwise supports CV_32SC1 images only in function 'cvStartFindContours_Impl'\n\n", "worker_id": "0"}

根据报错信息,可能是由于传递给`cv2.findContours`函数的`mask_binary`图像格式不正确导致的错误。`cv2.findContours`函数要求输入的图像是单通道、8位无符号整数类型(CV_8UC1)的二值图像。请确保`mask_binary`的数据类型是`np.uint8`,并且只有一个通道。可以使用`mask_binary = mask_binary.astype(np.uint8)`来确保数据类型正确,并使用`cv2.cvtColor`函数将图像转换为灰度图像,例如: ```python mask_binary = cv2.cvtColor(mask_binary, cv2.COLOR_BGR2GRAY) ``` 此外,还要确保`mask_binary`图像是二值图像,即只包含0和255两个像素值。您可以使用阈值函数来确保图像二值化,例如: ```python _, mask_binary = cv2.threshold(mask_binary, 0, 255, cv2.THRESH_BINARY) ``` 这样处理后,再调用`cv2.findContours`函数应该就不会报错了。

(E) Exception caught in handler {"exc": "OpenCV(4.8.0) /io/opencv/modules/imgproc/src/contours.cpp:195: error: (-210:Unsupported format or combination of formats) [Start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL otherwise supports CV_32SC1 images only in function 'cvStartFindContours_Impl'\n", "traceback": "Traceback (most recent call last):\n File \"/opt/nuclio/_nuclio_wrapper.py\", line 118, in serve_requests\n await self._handle_event(event)\n File \"/opt/nuclio/_nuclio_wrapper.py\", line 312, in _handle_event\n entrypoint_output = self._entrypoint(self._context, event)\n File \"/opt/nuclio/main.py\", line 51, in handler\n contours, _ = cv2.findContours(mask_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\ncv2.error: OpenCV(4.8.0) /io/opencv/modules/imgproc/src/contours.cpp:195: error: (-210:Unsupported format or combination of formats) [Start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL otherwise supports CV_32SC1 images only in function 'cvStartFindContours_Impl'\n\n", "worker_id": "0"}这个报错怎么办

这个报错是由于 `cv2.findContours()` 函数在处理图像时遇到了不支持的格式或组合格式。 错误信息中提到,`findContours()` 函数在 `mode` 参数不等于 `CV_RETR_FLOODFILL` 时,只支持 `CV_8UC1` 格式的图像;而在 `mode` 参数为 `CV_RETR_FLOODFILL` 时,只支持 `CV_32SC1` 格式的图像。 要解决这个问题,你可以尝试检查和调整输入图像的格式,确保它符合 `findContours()` 函数的要求。具体来说,需要确保输入图像是单通道(灰度图像)且数据类型为 `np.uint8` 或 `np.int32`。 以下是一些可能的解决方案: 1. 确保 `mask_binary` 是灰度图像(单通道):你可以使用 `cv2.cvtColor()` 函数将其转换为灰度图像。例如:`mask_binary = cv2.cvtColor(mask_binary, cv2.COLOR_BGR2GRAY)`。 2. 确保 `mask_binary` 的数据类型是正确的:你可以使用 `astype()` 函数将其转换为正确的数据类型。例如:`mask_binary = mask_binary.astype(np.uint8)` 或 `mask_binary = mask_binary.astype(np.int32)`。 3. 检查 `cv2.findContours()` 函数的参数:确保你正确地传递了 `cv2.RETR_EXTERNAL` 和 `cv2.CHAIN_APPROX_SIMPLE` 作为参数。 请根据你的实际情况尝试这些解决方案,并查看是否能够解决问题。如果问题仍然存在,请提供更多的代码和上下文信息,以便更好地帮助你解决问题。
阅读全文

相关推荐

Exception caught during install: Error processing 'src/exploration/pci_mav' : [src/exploration/pci_mav] Checkout of https://github.com/unr-arl/pci_mav version None into /home/ishtar/mbplanner_ws/src/exploration/pci_mav failed. Error processing 'src/mapping/volumetric_mapping' : [src/mapping/volumetric_mapping] Checkout of https://github.com/unr-arl/volumetric_mapping version gbp_dev into /home/ishtar/mbplanner_ws/src/mapping/volumetric_mapping failed. Error processing 'src/mapping/voxblox' : [src/mapping/voxblox] Checkout of https://github.com/ethz-asl/voxblox version feature/new_abort_criterion_for_fast_integrator into /home/ishtar/mbplanner_ws/src/mapping/voxblox failed. Error processing 'src/misc/catkin_simple' : [src/misc/catkin_simple] Checkout of https://github.com/catkin/catkin_simple version 0e62848b12da76c8cc58a1add42b4f894d1ac21e into /home/ishtar/mbplanner_ws/src/misc/catkin_simple failed. Error processing 'src/misc/eigen_catkin' : [src/misc/eigen_catkin] Checkout of https://github.com/ethz-asl/eigen_catkin version 00b5eb254bad8de9cd68d238aa994e443062cf30 into /home/ishtar/mbplanner_ws/src/misc/eigen_catkin failed. Error processing 'src/misc/eigen_checks' : [src/misc/eigen_checks] Checkout of https://github.com/ethz-asl/eigen_checks version 22a6247a3df11bc285d43d1a030f4e874a413997 into /home/ishtar/mbplanner_ws/src/misc/eigen_checks failed. Error processing 'src/misc/gflags_catkin' : [src/misc/gflags_catkin] Checkout of https://github.com/ethz-asl/gflags_catkin version 5324e74119996a6e2da12d20e5388c17480ebd79 into /home/ishtar/mbplanner_ws/src/misc/gflags_catkin failed. Error processing 'src/misc/minkindr' : [src/misc/minkindr] Checkout of https://github.com/ethz-asl/minkindr version bc4503c34970a13b7ef06f62505e3333395ce02c into /home/ishtar/mbplanner_ws/src/misc/minkindr failed. ERROR in config: Error processing 'src/exploration/pci_mav' : [src/exploration/pci_mav] Checkout of https://github.com/unr-arl/pci_mav version None into /home/ishtar/mbplanner_ws/src/exploration/pci_mav failed. Error processing 'src/mapping/volumetric_mapping' : [src/mapping/volumetric_mapping] Checkout of https://github.com/unr-arl/volumetric_mapping version gbp_dev into /home/ishtar/mbplanner_ws/src/mapping/volumetric_mapping failed. Error processing 'src/mapping/voxblox' : [src/mapping/voxblox] Checkout of https://github.com/ethz-asl/voxblox version feature/new_abort_criterion_for_fast_integrator into /home/ishtar/mbplanner_ws/src/mapping/voxblox failed. Error processing 'src/misc/catkin_simple' : [src/misc/catkin_simple] Checkout of https://github.com/catkin/catkin_simple version 0e62848b12da76c8cc58a1add42b4f894d1ac21e into /home/ishtar/mbplanner_ws/src/misc/catkin_simple failed. Error processing 'src/misc/eigen_catkin' : [src/misc/eigen_catkin] Checkout of https://github.com/ethz-asl/eigen_catkin version 00b5eb254bad8de9cd68d238aa994e443062cf30 into /home/ishtar/mbplanner_ws/src/misc/eigen_catkin failed. Error processing 'src/misc/eigen_checks' : [src/misc/eigen_checks] Checkout of https://github.com/ethz-asl/eigen_checks version 22a6247a3df11bc285d43d1a030f4e874a413997 into /home/ishtar/mbplanner_ws/src/misc/eigen_checks failed. Error processing 'src/misc/gflags_catkin' : [src/misc/gflags_catkin] Checkout of https://github.com/ethz-asl/gflags_catkin version 5324e74119996a6e2da12d20e5388c17480ebd79 into /home/ishtar/mbplanner_ws/src/misc/gflags_catkin failed. Error processing 'src/misc/minkindr' : [src/misc/minkindr] Checkout of https://github.com/ethz-asl/minkindr version bc4503c34970a13b7ef06f62505e3333395ce02c into /home/ishtar/mbplanner_ws/src/misc/minkindr failed. ishtar@ubuntu:~/mbplanner_ws$ 以上这些报错是否会影响我的进一步使用?

--------------------------------------------------------------------------- RasterioIOError Traceback (most recent call last) Cell In[1], line 91 89 model.train() 90 epoch_loss = 0 ---> 91 for inputs, labels in train_loader: 92 inputs = inputs.to(device) 93 labels = labels.to(device) File /usr/local/lib/python3.8/site-packages/torch/utils/data/dataloader.py:633, in _BaseDataLoaderIter.__next__(self) 630 if self._sampler_iter is None: 631 # TODO(https://github.com/pytorch/pytorch/issues/76750) 632 self._reset() # type: ignore[call-arg] --> 633 data = self._next_data() 634 self._num_yielded += 1 635 if self._dataset_kind == _DatasetKind.Iterable and \ 636 self._IterableDataset_len_called is not None and \ 637 self._num_yielded > self._IterableDataset_len_called: File /usr/local/lib/python3.8/site-packages/torch/utils/data/dataloader.py:1345, in _MultiProcessingDataLoaderIter._next_data(self) 1343 else: 1344 del self._task_info[idx] -> 1345 return self._process_data(data) File /usr/local/lib/python3.8/site-packages/torch/utils/data/dataloader.py:1371, in _MultiProcessingDataLoaderIter._process_data(self, data) 1369 self._try_put_index() 1370 if isinstance(data, ExceptionWrapper): -> 1371 data.reraise() 1372 return data File /usr/local/lib/python3.8/site-packages/torch/_utils.py:644, in ExceptionWrapper.reraise(self) 640 except TypeError: 641 # If the exception takes multiple arguments, don't try to 642 # instantiate since we don't know how to 643 raise RuntimeError(msg) from None --> 644 raise exception RasterioIOError: Caught RasterioIOError in DataLoader worker process 0. Original Traceback (most recent call last): File "rasterio/_base.pyx", line 310, in rasterio._base.DatasetBase.__init__ File "rasterio/_base.pyx", line 221, in rasterio._base.open_dataset File "rasterio/_err.pyx", line 221, in rasterio._err.exc_wrap_pointer rasterio._err.CPLE_OpenFailedError: /openbayes/input/input1/output_cut/rgb/52983.tif: No such file or directory During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop data = fetcher.fetch(index) File "/usr/local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 51, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/usr/local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 51, in data = [self.dataset[idx] for idx in possibly_batched_index] File "/tmp/ipykernel_477/3259673788.py", line 22, in __getitem__ with rasterio.open(self.rgb_paths[idx]) as src: File "/output/.pylibs/lib/python3.8/site-packages/rasterio/env.py", line 451, in wrapper return f(*args, **kwds) File "/output/.pylibs/lib/python3.8/site-packages/rasterio/__init__.py", line 304, in open dataset = DatasetReader(path, driver=driver, sharing=sharing, **kwargs) File "rasterio/_base.pyx", line 312, in rasterio._base.DatasetBase.__init__ rasterio.errors.RasterioIOError: /openbayes/input/input1/output_cut/rgb/52983.tif: No such file or directory ​ 是什么原因

Server Error Error: Element type is invalid: expected a string (for built-in components) or a class/function (for composite components) but got: undefined. You likely forgot to export your component from the file it's defined in, or you might have mixed up default and named imports. This error happened while generating the page. Any console logs will be displayed in the terminal window. Call Stack ReactDOMServerRenderer.render file:///D:/PycharmProjects/blog-master/blog/node_modules/react-dom/cjs/react-dom-server.node.development.js (4053:17) ReactDOMServerRenderer.read file:///D:/PycharmProjects/blog-master/blog/node_modules/react-dom/cjs/react-dom-server.node.development.js (3690:29) Object.renderToString file:///D:/PycharmProjects/blog-master/blog/node_modules/react-dom/cjs/react-dom-server.node.development.js (4298:27) Object.renderPage file:///D:/PycharmProjects/blog-master/blog/node_modules/next/dist/server/render.js (768:45) Object.defaultGetInitialProps file:///D:/PycharmProjects/blog-master/blog/node_modules/next/dist/server/render.js (375:51) MyDocument.getInitialProps node_modules\next\dist\pages\_document.js (173:19) Object.loadGetInitialProps file:///D:/PycharmProjects/blog-master/blog/node_modules/next/dist/shared/lib/utils.js (65:29) documentInitialProps file:///D:/PycharmProjects/blog-master/blog/node_modules/next/dist/server/render.js (781:48) renderDocument file:///D:/PycharmProjects/blog-master/blog/node_modules/next/dist/server/render.js (806:55) Object.renderToHTML file:///D:/PycharmProjects/blog-master/blog/node_modules/next/dist/server/render.js (906:34)

/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/tyro/_parsers.py:332: UserWarning: The field model.action-expert-variant is annotated with type typing.Literal['dummy', 'gemma_300m', 'gemma_2b', 'gemma_2b_lora'], but the default value gemma_300m_lora has type <class 'str'>. We'll try to handle this gracefully, but it may cause unexpected behavior. warnings.warn(message) 19:07:30.004 [I] Running on: shuo-hp (10287:train.py:195) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' 19:07:30.228 [I] Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' (10287:xla_bridge.py:945) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory 19:07:30.228 [I] Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory (10287:xla_bridge.py:945) 19:07:30.500 [I] Wiped checkpoint directory /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoints.py:25) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] [thread=MainThread] Failed to get flag value for EXPERIMENTAL_ORBAX_USE_DISTRIBUTED_PROCESS_ID. (10287:multihost.py:375) 19:07:30.500 [I] [process=0][thread=MainThread] CheckpointManager init: checkpointers=None, item_names=None, item_handlers={'assets': <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, 'train_state': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, 'params': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>}, handler_registry=None (10287:checkpoint_manager.py:622) 19:07:30.501 [I] Deferred registration for item: "assets". Adding handler <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50> for item "assets" and save args <class 'openpi.training.checkpoints.CallbackSave'> and restore args <class 'openpi.training.checkpoints.CallbackRestore'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "train_state". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90> for item "train_state" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "params". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0> for item "params" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "metrics". Adding handler <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10> for item "metrics" and save args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Initialized registry DefaultCheckpointHandlerRegistry({('assets', <class 'openpi.training.checkpoints.CallbackSave'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('assets', <class 'openpi.training.checkpoints.CallbackRestore'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>}). (10287:composite_checkpoint_handler.py:508) 19:07:30.501 [I] orbax-checkpoint version: 0.11.1 (10287:abstract_checkpointer.py:35) 19:07:30.501 [I] [process=0][thread=MainThread] Using barrier_sync_fn: <function get_barrier_sync_fn.<locals>.<lambda> at 0x72e5cacb85e0> timeout: 7200 secs and primary_host=0 for async checkpoint writes (10287:async_checkpointer.py:80) 19:07:30.501 [I] Found 0 checkpoint steps in /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoint_manager.py:1528) 19:07:30.501 [I] Saving root metadata (10287:checkpoint_manager.py:1569) 19:07:30.501 [I] [process=0][thread=MainThread] Skipping global process sync, barrier name: CheckpointManager:save_metadata (10287:multihost.py:293) 19:07:30.501 [I] [process=0][thread=MainThread] CheckpointManager created, primary_host=0, CheckpointManagerOptions=CheckpointManagerOptions(save_interval_steps=1, max_to_keep=1, keep_time_interval=None, keep_period=5000, should_keep_fn=None, best_fn=None, best_mode='max', keep_checkpoints_without_metrics=True, step_prefix=None, step_format_fixed_length=None, step_name_format=None, create=False, cleanup_tmp_directories=False, save_on_steps=frozenset(), single_host_load_and_broadcast=False, todelete_subdir=None, enable_background_delete=False, read_only=False, enable_async_checkpointing=True, async_options=AsyncOptions(timeout_secs=7200, barrier_sync_fn=None, post_finalization_callback=None, create_directories_asynchronously=False), multiprocessing_options=MultiprocessingOptions(primary_host=0, active_processes=None, barrier_sync_key_prefix=None), should_save_fn=None, file_options=FileOptions(path_permission_mode=None), save_root_metadata=True, temporary_path_class=None, save_decision_policy=None), root_directory=/home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name: <orbax.checkpoint.checkpoint_manager.CheckpointManager object at 0x72e5cadffd10> (10287:checkpoint_manager.py:797) 19:07:30.553 [I] Loaded norm stats from s3://openpi-assets/checkpoints/pi0_base/assets/trossen (10287:config.py:166) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.553 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.554 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.555 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Traceback (most recent call last): File "/home/shuo/VLA/openpi/scripts/train.py", line 273, in <module> main(_config.cli()) File "/home/shuo/VLA/openpi/scripts/train.py", line 226, in main batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 177, in __iter__ for batch in self._data_loader: File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 257, in __iter__ batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 708, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1480, in _next_data return self._process_data(data) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1505, in _process_data data.reraise() File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/_utils.py", line 733, in reraise raise exception KeyError: Caught KeyError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/worker.py", line 349, in _worker_loop data = fetcher.fetch(index) # type: ignore[possibly-undefined] ^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in data = [self.dataset[idx] for idx in possibly_batched_index] ~~~~~~~~~~~~^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 47, in __getitem__ return self._transform(self._dataset[index]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 70, in __call__ data = transform(data) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in __call__ return jax.tree.map(lambda k: flat_item[k], self.structure) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree.py", line 155, in map return tree_util.tree_map(f, tree, *rest, is_leaf=is_leaf) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in tree_map return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in <genexpr> return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in <lambda> return jax.tree.map(lambda k: flat_item[k], self.structure) ~~~~~~~~~^^^ KeyError: 'observation.images.cam_low'

lidar_file path: /root/autodl-tmp/project/data/KITTI/object/testing/velodyne/000204.bin lidar_file path: /root/autodl-tmp/project/data/KITTI/object/testing/velodyne/000205.bin lidar_file path: /root/autodl-tmp/project/data/KITTI/object/testing/velodyne/000206.bin lidar_file path: /root/autodl-tmp/project/data/KITTI/object/testing/velodyne/000207.bin eval: 39%|█████████████████████████████▍ | 44/112 [00:06<00:07, 8.56it/s, mode=TEST, recall=0/0, rpn_iou=0]Traceback (most recent call last): File "eval_rcnn.py", line 908, in <module> eval_single_ckpt(root_result_dir) File "eval_rcnn.py", line 771, in eval_single_ckpt eval_one_epoch(model, test_loader, epoch_id, root_result_dir, logger) File "eval_rcnn.py", line 694, in eval_one_epoch ret_dict = eval_one_epoch_rpn(model, dataloader, epoch_id, result_dir, logger) File "eval_rcnn.py", line 143, in eval_one_epoch_rpn for data in dataloader: File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 435, in __next__ lidar_file path: /root/autodl-tmp/project/data/KITTI/object/testing/velodyne/000208.bin data = self._next_data() File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1085, in _next_data return self._process_data(data) File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1111, in _process_data data.reraise() File "/root/miniconda3/lib/python3.8/site-packages/torch/_utils.py", line 428, in reraise raise self.exc_type(msg) AssertionError: Caught AssertionError in DataLoader worker process 0.

[rank0]: Traceback (most recent call last): [rank0]: File "test.py", line 213, in <module> [rank0]: main() [rank0]: File "test.py", line 209, in main [rank0]: eval_single_ckpt(model, test_loader, args, eval_output_dir, logger, epoch_id, dist_test=dist_test) [rank0]: File "test.py", line 72, in eval_single_ckpt [rank0]: eval_utils.eval_one_epoch( [rank0]: File "/home/mtr/MTR/tools/eval_utils/eval_utils.py", line 42, in eval_one_epoch [rank0]: for i, batch_dict in enumerate(dataloader): [rank0]: File "/root/anaconda3/envs/mtr/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 630, in __next__ [rank0]: data = self._next_data() [rank0]: File "/root/anaconda3/envs/mtr/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1324, in _next_data [rank0]: return self._process_data(data) [rank0]: File "/root/anaconda3/envs/mtr/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1370, in _process_data [rank0]: data.reraise() [rank0]: File "/root/anaconda3/envs/mtr/lib/python3.8/site-packages/torch/_utils.py", line 706, in reraise [rank0]: raise exception [rank0]: AssertionError: Caught AssertionError in DataLoader worker process 2. [rank0]: Original Traceback (most recent call last): [rank0]: File "/root/anaconda3/envs/mtr/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 309, in _worker_loop [rank0]: data = fetcher.fetch(index) # type: ignore[possibly-undefined] [rank0]: File "/root/anaconda3/envs/mtr/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch [rank0]: data = [self.dataset[idx] for idx in possibly_batched_index] [rank0]: File "/root/anaconda3/envs/mtr/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 52, in [rank0]: data = [self.dataset[idx] for idx in possibly_batched_index] [rank0]: File "/home/mtr/MTR/tools/../mtr/datasets/waymo/waymo_dataset.py", line 68, in __getitem__ [rank0]:

大家在看

recommend-type

密码::unlocked::sparkles::locked:创新,方便,安全的加密应用程序

隐身者 创新,方便,安全的加密应用程序。 加密无限位。 只记得一点。 Crypter是一款跨平台的加密应用程序,它使加密和解密变得很方便,同时仍然保持强大的安全性。 它解决了当今大多数安全系统中最弱的链接之一-弱密码。 它简化了安全密码的生成和管理,并且只需要记住一个位-MasterPass。 是一个加密应用程序,可以解密和加密包括文件和文件夹在内的任意数据。 该版本已发布,并针对macOS(OSX),Linux(适用于所有通过发行的发行版)和Windows(32和64位)进行了全面测试。 所有核心模块(提供核心功能的模块)都经过了全面测试。 会将MasterPass保存在操作系统的钥匙串中,因此您不必在每次打开应用程序时都输入它。 为了帮助加快开发速度,请发送PR剩下的内容做 如果您有任何建议,请打开一个问题,并通过PR进行改进! 还要签出 ( )一个分散的端到端加密消息传递应用程序。 链接到此自述文件: : 内容 安装 适用于所有主要平台的所有预构建二进制文件都可以在。 Crypter也适用于macOS的 。 因此,要安装它,只需在终端中运行以下命令:
recommend-type

cpptools-win32.vsix.zip

当vscode安装c/c++扩展时出现与系统不兼容,可离线下载并在扩展中从vsix中安装。使vscode可以自动跳转到变量、函数的声明、定义处,同时支持自动补全。安装完了,重启vscode就可以生效。
recommend-type

模拟电子技术基础简明教程Multisim

模拟电子技术基础简明教程Multisim,仿真实例,很珍贵的
recommend-type

01.WS 445-2014 电子病历基本数据集.rar

WS 445-2014 电子病历基本数据集
recommend-type

制作仪器半高宽补正曲线-jade初学者教程分析

制作仪器半高宽补正曲线 在一些需要仪器半高宽计算的处理前,必须设置好仪器的半高宽,Jade使用标准样品来制作一条随衍射角变化的半高宽曲线,当该曲线制作完成后,保存到参数文件中,以后测量所有的样品都使用该曲线所表示的半高宽作为仪器宽度。 标准样品必须是无晶粒细化、无应力(宏观应力或微观应力)、无畸变的完全退火态样品,一般采用 NIST-LaB6,Silicon-640作为标准样品。

最新推荐

recommend-type

TMS320F28335 SVPWM三相逆变学习板卡:硬件组成与功能详解

基于TMS320F28335 DSP的SVPWM三相逆变学习板卡,涵盖硬件组成、供电与保护机制、SVPWM技术原理及其优势、应用场景和输入电压范围。文中还展示了闭环控制程序的工作流程,并附有简化的示例代码。该板卡采用高效的SVPWM技术,使逆变器电压利用率提升至1.1倍,远高于传统SPWM的0.866倍,适用于多种逆变和控制任务,具有广泛的实际应用价值。 适合人群:对电力电子、嵌入式系统和数字控制感兴趣的工程师和技术爱好者。 使用场景及目标:①研究和学习SVPWM技术及其在三相逆变中的应用;②掌握TMS320F28335 DSP的硬件设计和编程技巧;③应用于电机控制、电源管理等领域,提高逆变效率和稳定性。 其他说明:文中提供的示例代码有助于理解和实现AD采样数据处理及SVPWM更新,便于读者快速上手实践。
recommend-type

Pansophica开源项目:智能Web搜索代理的探索

Pansophica开源项目是一个相对较新且具有创新性的智能Web搜索代理,它突破了传统搜索引擎的界限,提供了一种全新的交互方式。首先,我们来探讨“智能Web搜索代理”这一概念。智能Web搜索代理是一个软件程序或服务,它可以根据用户的查询自动执行Web搜索,并尝试根据用户的兴趣、历史搜索记录或其他输入来提供个性化的搜索结果。 Pansophica所代表的不仅仅是搜索结果的展示,它还强调了一个交互式的体验,在动态和交互式虚拟现实中呈现搜索结果。这种呈现方式与现有的搜索体验有着根本的不同。目前的搜索引擎,如Google、Bing和Baidu等,多以静态文本和链接列表的形式展示结果。而Pansophica通过提供一个虚拟现实环境,使得搜索者可以“扭转”视角,进行“飞行”探索,以及“弹网”来浏览不同的内容。这种多维度的交互方式使得信息的浏览变得更加快速和直观,有望改变用户与网络信息互动的方式。 接着,我们关注Pansophica的“开源”属性。所谓开源,指的是软件的源代码可以被公众获取,任何个人或组织都可以自由地使用、学习、修改和分发这些代码。开源软件通常由社区进行开发和维护,这样的模式鼓励了协作创新并减少了重复性劳动,因为全世界的开发者都可以贡献自己的力量。Pansophica项目作为开源软件,意味着其他开发者可以访问和使用其源代码,进一步改进和扩展其功能,甚至可以为Pansophica构建新的应用或服务。 最后,文件名称“Pansophica-src-1.3”表明了我们讨论的特定版本的Pansophica开源代码。数字“1.3”很可能指的是该版本号,表明这是Pansophica项目的第1.3个公开版本。这个版本号对于开发者来说很重要,因为它可以帮助他们追踪更新的进度、比较版本间的差异以及选择最适合其项目的版本。 综合以上信息,Pansophica开源项目不仅在搜索代理领域引入了创新的交互方式,而且通过开源的方式,提供了技术共享和协作的可能性。对于IT行业来说,开源项目是推动技术发展的重要力量,它激发了社区的活力,促进了知识的传播和技术的进步。通过构建一个开源社区,Pansophica可以吸引来自世界各地的开发者和研究人员,共同探索如何将搜索技术与交互式虚拟现实技术结合起来,为用户带来更加丰富和有效的信息检索体验。同时,Pansophica的开源性质也使其更容易适应未来技术的发展,随着社区的不断贡献和反馈,这一平台有望在功能和性能上得到持续的优化和增强。
recommend-type

跨平台内容提取无忧:coze工作流应对社交媒体挑战

# 1. 社交媒体内容提取的必要性与挑战 ## 1.1 内容提取的必要性 在数字时代,社交媒体内容是信息与数据流动的主干道,公司、个人和研究者都在寻求从这些信息中提取价值。无论是为了市场趋势分析、品牌监控、消费者洞察还是公共舆论监测,有效的社交媒体内容提取变得至关重要。这不仅有助于企业做出数据驱动的决策,也能使个人更好地理
recommend-type

vrrp主设备发送的免费arp

<think>好的,我现在需要回答用户关于VRRP主设备发送免费ARP的目的和工作原理的问题。首先,我得回忆一下VRRP的基本概念和工作机制。VRRP,虚拟路由冗余协议,主要用于在局域网中提供默认网关的冗余备份,确保网络的高可用性。主设备(Master)负责转发流量,而备用设备(Backup)则在主设备故障时接管工作。 用户的问题集中在主设备发送免费ARP的目的和机制上。根据引用[2],免费ARP用于通知下游设备虚拟MAC地址的变更。当主设备被选举出来后,它需要让局域网内的其他设备知道虚拟IP对应的MAC地址已经指向自己,这样流量才会被正确路由到主设备。免费ARP的作用应该就是更新这些设备的
recommend-type

为Ghost博客平台打造的Meteor流星包装使用指南

从给定文件信息中,我们可以提炼出以下IT知识点: ### 标题知识点:流星Ghost软件包 1. **流星Ghost软件包的用途**:流星Ghost软件包是专为Ghost博客平台设计的流星(Meteor)应用程序。流星是一个开源的全栈JavaScript平台,用于开发高性能和易于编写的Web应用程序。Ghost是一个开源博客平台,它提供了一个简单且专业的写作环境。 2. **软件包的作用**:流星Ghost软件包允许用户在流星平台上轻松集成Ghost博客。这样做的好处是可以利用流星的实时特性以及易于开发和部署的应用程序框架,同时还能享受到Ghost博客系统的便利和美观。 ### 描述知识点:流星Ghost软件包的使用方法 1. **软件包安装方式**:用户可以通过流星的命令行工具添加名为`mrt:ghost`的软件包。`mrt`是流星的一个命令行工具,用于添加、管理以及配置软件包。 2. **初始化Ghost服务器**:描述中提供了如何在服务器启动时运行Ghost的基本代码示例。这段代码使用了JavaScript的Promise异步操作,`ghost().then(function (ghostServer) {...})`这行代码表示当Ghost服务器初始化完成后,会在Promise的回调函数中提供一个Ghost服务器实例。 3. **配置Ghost博客**:在`then`方法中,首先会获取到Ghost服务器的配置对象`config`,用户可以在此处进行自定义设置,例如修改主题、配置等。 4. **启动Ghost服务器**:在配置完成之后,通过调用`ghostServer.start()`来启动Ghost服务,使其能够处理博客相关的请求。 5. **Web浏览器导航**:一旦流星服务器启动并运行,用户便可以通过Web浏览器访问Ghost博客平台。 ### 标签知识点:JavaScript 1. **JavaScript作为流星Ghost软件包的开发语言**:标签指出流星Ghost软件包是使用JavaScript语言开发的。JavaScript是一种在浏览器端广泛使用的脚本语言,它也是流星平台的基础编程语言。 2. **流星和Ghost共同使用的语言**:JavaScript同样也是Ghost博客平台的开发语言。这表明流星Ghost软件包可以无缝集成,因为底层技术栈相同。 ### 压缩包子文件的文件名称列表知识点:meteor-ghost-master 1. **版本控制和软件包结构**:文件名称`meteor-ghost-master`暗示了该软件包可能托管在像GitHub这样的版本控制系统上。文件名中的`master`通常指的是主分支或主版本。 2. **软件包的目录结构**:通过文件名称可以推断出该软件包可能拥有一个标准的流星软件包结构,包含了初始化、配置、运行等必要的模块和文件。 3. **软件包的维护状态**:由于文件名没有包含特定的版本号,我们无法直接得知软件包的最新更新情况。通常,软件包维护者会将最新的版本代码放在`master`分支上。 ### 总结 流星Ghost软件包提供了一个有效的解决方案,使得流星平台的开发者能够在他们的应用中添加Ghost博客功能。软件包的使用简便,通过流星的命令行工具安装,并通过JavaScript代码配置和启动Ghost服务。通过流星Ghost软件包,开发者能够享受流星的实时特性以及Ghost博客系统的便利性。此外,软件包的命名和结构也暗示了其维护和版本控制的模式,有助于开发者更好地理解如何使用和维护这一软件包。
recommend-type

抖音标题生成自动化:用coze工作流释放创意

# 1. 抖音标题生成自动化的重要性 随着社交媒体平台的崛起,内容的吸引力很大程度上取决于标题的创意与精准性。抖音作为一个日活亿级的短视频平台,高质量的标题能够有效提高视频的点击率,增加内容的传播。但是,人工撰写标题不仅耗时耗力,而且很难做到快速响应热点,自动化标题生成工具应运而生。coze工作流,作为一种实现自动化生成抖音标题的工具,其重要性不言而喻。它能够利用大数据分析和机器学习技术,提高标题的吸引
recommend-type

spss消费结构因子分析

<think>好的,我现在需要帮助用户在SPSS中进行消费结构的因子分析。首先,我要回忆一下因子分析的基本步骤和SPSS的操作流程。用户可能对SPSS不太熟悉,所以步骤要详细,同时需要结合他们提供的引用内容,特别是引用[2]中的适用条件和检验方法。 首先,用户提到了消费结构的数据,这可能包括多个变量,如食品、住房、交通等支出。因子分析适用于这种情况,可以降维并找出潜在因子。根据引用[2],需要检查样本量是否足够,变量间是否有相关性,以及KMO和Bartlett检验的结果。 接下来,我需要按照步骤组织回答:数据准备、适用性检验、因子提取、因子旋转、命名解释、计算得分。每个步骤都要简明扼要,说
recommend-type

OpenMediaVault的Docker映像:快速部署与管理指南

根据提供的文件信息,我们将详细讨论与标题和描述中提及的Docker、OpenMediaVault以及如何部署OpenMediaVault的Docker镜像相关的一系列知识点。 首先,Docker是一个开源的应用容器引擎,允许开发者打包应用及其依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口(类似 iPhone 的 app)。 OpenMediaVault是一个基于Debian的NAS(网络附加存储)解决方案。它专为家庭或小型办公室提供文件共享、网络附加存储以及打印服务。它提供了一个易用的Web界面,通过这个界面用户可以管理服务器配置、网络设置、用户权限、文件服务等。 在描述中提到了一些Docker命令行操作: 1. `git clone`:用于克隆仓库到本地,这里的仓库指的是“docker-images-openmedivault”。 2. `docker build -t omv`:这是一个构建Docker镜像的命令,其中`-t`参数用于标记镜像名称和标签,这里是标记为“omv”。 3. `docker run`:运行一个容器实例,`-t`参数用于分配一个伪终端,`-i`参数用于交互式操作,`-p 80:80`则是将容器的80端口映射到宿主机的80端口。 启动服务的部分涉及OpenMediaVault的配置和初始化: - ssh服务:用于远程登录到服务器的协议。 - php5-fpm:是PHP的一个FastCGI实现,用于加速PHP的运行。 - nginx:是一个高性能的HTTP和反向代理服务器,常用于优化静态内容的分发。 - openmediavault引擎:指的是OpenMediaVault的核心服务。 - rrdcached:用于收集和缓存性能数据,这些数据可以被rrdtool图形化工具读取。 - collectd:是一个守护进程,用于收集系统性能和提供各种存储方式和传输方式来存储所收集的数据。 为了访问服务,需要在浏览器中输入"http:// IP_OF_DOCKER",其中`IP_OF_DOCKER`指的是运行Docker容器的主机IP地址。 描述中还提到了一个步骤:“在System-> Network-> Interfaces中添加带有dhcp的eth0”,这指的是需要在OpenMediaVault的Web管理界面中配置网络接口。`eth0`是网络接口的名称,通常代表第一个以太网接口。DHCP(动态主机配置协议)是一种自动为网络中的设备分配IP地址的协议,这样设备就可以连接网络并开始通信,无需手动配置IP地址。 【压缩包子文件的文件名称列表】中的“docker-images-openmediavault-master”暗示了这是一个包含Docker镜像文件的代码仓库。通常,“master”分支是代码的主分支,包含了代码库中最新且通常是最稳定的版本。用户可以通过克隆该仓库到本地来获取所有相关的Dockerfile、配置脚本及依赖文件,以便能够自行构建和运行OpenMediaVault的Docker镜像。 综上所述,这些知识点涵盖了从基本的Docker概念、Docker命令行操作、OpenMediaVault服务启动和管理,到具体的网络配置及Docker仓库操作,都是进行Docker化OpenMediaVault部署的关键步骤。
recommend-type

小红书文案提取一步到位:coze工作流操作全攻略

# 1. coze工作流概述 工作流系统是企业信息化和数字化转型的核心组件之一,它通过自动化流程管理提升效率,确保业务流程的顺畅执行。coze工作流作为当前市场上较为先进的工作流解决方案,它不仅仅是一套软件工具,更是一个集成化的平台,旨在通过流程自动化和智能化提升企业运营效率。 coze工作流的引入不仅有助于标准化和优化企业的业务流程,还可以通过可配置的流程设计,满足不同部门的特定需求。在组织的业务流程中
recommend-type

戴尔R630设置来电自动开机

<think>嗯,用户需要设置Dell R630服务器在断电恢复后自动开机。这个问题很实用,特别是对于托管在机房或需要远程管理的服务器来说,电源恢复后自动启动能减少运维压力。 从用户提到的R630型号来看,这是Dell PowerEdge系列的主流机型,设置方法应该和其他同代服务器类似。用户可能遇到意外断电后需要手动开机的情况,这会影响服务可用性。 我回忆Dell服务器的电源管理逻辑:主要有两个关键设置点。首先是BIOS里的电源恢复策略,选项包括"保持关机"、"自动开机"和"恢复断电前状态"。其次是iDRAC远程管理卡里的设置,这个更灵活但需要配置网络。 用户可能不熟悉服务器管理,所以需