pytorch的diceloss
时间: 2025-03-26 18:19:22 浏览: 39
### PyTorch中的Dice Loss实现
在PyTorch中,可以自定义Dice Loss来处理分割任务。下面是一个基于Sigmoid激活函数的二分类Dice Loss实现[^1]:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DiceLoss(nn.Module):
def __init__(self, smooth=1e-6):
super(DiceLoss, self).__init__()
self.smooth = smooth
def forward(self, inputs, targets):
# Flatten label and prediction tensors
inputs = inputs.view(-1)
targets = targets.view(-1)
intersection = (inputs * targets).sum()
dice_coefficient = (2.*intersection + self.smooth) / \
(inputs.sum() + targets.sum() + self.smooth)
return 1 - dice_coefficient
```
对于多类别分割问题,则通常采用Softmax作为最后一层激活函数并调整损失计算方式以适应多个类别的预测输出:
```python
class MultiClassDiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(MultiClassDiceLoss, self).__init__()
def forward(self, inputs, target,smooth=1):
N = target.size(0)
C = inputs.size(1)
# Predicted probabilities for each class
probs = F.softmax(inputs,dim=1)
mtarget = one_hot(target,C)
# Reshape to have a separate dimension per channel/class
mtarget = mtarget.permute(0,3,1,2).contiguous().view(N,C,-1)
probs = probs.view(N,C,-1)
intersection = (probs*mtarget).sum(dim=-1)
cardinality = probs.sum(dim=-1)+mtarget.sum(dim=-1)
dice_loss_per_class = ((2. * intersection + smooth)/(cardinality + smooth)).mean()
return 1-dice_loss_per_class.mean()
def one_hot(labels,num_classes):
"""
Convert integer labels into one-hot vectors.
Args:
labels(tensor): input tensor of shape [N,H,W].
num_classes(int): number of classes.
Returns:
Tensor with the same batch size but channels equaling `num_classes`.
"""
n_labels = labels.long().unsqueeze_(dim=1)
one_hot = torch.FloatTensor(n_labels.size(0), num_classes, n_labels.size(2),n_labels.size(3)).zero_()
one_hot.scatter_(1,n_labels.data,1)
return one_hot.cuda()
```
阅读全文
相关推荐


















